Food Clock:Mechanisms of Circadian Food Entrainment
Palavras-chave:
Food anticipatory activity, Food entrained oscillator (FEO), Food availability, Anticipatory behaviorResumo
A ritmicidade circadiana é um aspecto comum nos seres vivos, sendo o ciclo claro-escuro de 24h seu sincronizador ambiental mais evidente. A disponibilidade de alimento se constitui também como um sincronizador ambiental para muitas espécies. Em mamíferos, o aumento da locomoção, da vigília e da temperatura central nas horas que antecedem uma oportunidade de alimentação caracterizam a sincronização por alimento, controlada por um oscilador circadiano independente do oscilador fótico (núcleo supraquiasmático). Apesar da sincronização circadiana à alimentação ser bem caracterizada comportamentalmente, não há ainda uma identificação precisa do substrato físico deste oscilador. Nos últimos anos, a sincronização de órgãos periféricos e diversas áreas do sistema nervoso central aos horários de alimentação tem sido descrita, sugerindo uma organização complexa do substrato físico por trás da sincronização por alimento. Nesta revisão, apresentamos as principais características e propriedades da sincronização por alimento. Além disso, discutimos também potenciais mecanismos fisiológicos que promovem a sincronização, dentro da perspectiva de um sistema circadiano multioscilatório.
Downloads
Referências
Abraham, U., Saleh, M., & Kramer, A. (2013). Odor is a time cue for circadian behavior. Journal of Biological Rhythms, 28(1), 26–37. https://doi.org/10.1177/0748730412469353
Akiyama, M., Yuasa, T., Hayasaka, N., Horikawa, K., Sakurai, T., & Shibata, S. (2004). Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. European Journal of Neuroscience, 20(11), 3054–3062. https://doi.org/10.1111/j.1460-9568.2004.03749.x
Anand, B. K., & Brobeck, J. R. (1951). Hypothalamic control of food intake in rats and cats. The Yale Journal of Biology and Medicine, 24(2), 123–40. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2599116/?report=classic&page=1
Ángeles-Castellanos, M., Mendoza, J., & Escobar, C. (2007). Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience, 144(1), 344–355. https://doi.org/10.1016/j.neuroscience.2006.08.064
Atger, F., Mauvoisin, D., Weger, B., Gobet, C., & Gachon, F. (2017). Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms. Frontiers in Endocrinology, 8(March), 1–13. https://doi.org/10.3389/fendo.2017.00042
Bakker, E. S., Reiffers, R. C., Olff, H., & Gleichman, J. M. (2005). Experimental manipulation of predation risk and food quality: Effect on grazing behaviour in a central-place foraging herbivore. Oecologia, 146(1), 157–167. https://doi.org/10.1007/s00442-005-0180-7
Bellinger, L. L., & Bernardis, L. L. (2002). The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: Lessons learned from lesioning studies. Physiology and Behavior, 76(3), 431–442. https://doi.org/10.1016/S0031-9384(02)00756-4
Blum, I. D., Lamont, E. W., & Abizaid, A. (2012). Competing clocks: Metabolic status moderates signals from the master circadian pacemaker. Neuroscience & Biobehavioral Reviews, 36(1), 254–270. https://doi.org/10.1016/j.neubiorev.2011.06.003
Blum, I. D., Patterson, Z., Khazall, R., Lamont, E. W., Sleeman, M. W., Horvath, T. L., & Abizaid, A. (2009). Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience, 164(2), 351–359. https://doi.org/10.1016/j.neuroscience.2009.08.009
Blum, I. D., Waddington Lamont, E., Rodrigues, T., & Abizaid, A. (2012). Isolating Neural Correlates of the Pacemaker for Food Anticipation. PLoS ONE, 7(4), e36117. https://doi.org/10.1371/journal.pone.0036117
Bodosi, B., Gardi, J., Hajdu, I., Szentirmai, E., Obal, F., & Krueger, J. M. (2004). Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287(5), R1071–R1079. https://doi.org/10.1152/ajpregu.00294.2004
Brandstaetter, R. (2004). Circadian lessons from peripheral clocks: is the time of the mammalian pacemaker up? Proceedings of the National Academy of Sciences of the United States of America, 101(16), 5699–5700. https://doi.org/10.1073/pnas.0401378101
Brobeck, J. R. (1946). Mechanism of the development of obesity in animals with hypothalamic lesions. Physiological Reviews, 26(4), 541–59. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21002972
Caba, M., Pabello, M., Moreno, M. L., & Meza, E. (2014). Main and accessory olfactory bulbs and their projections in the brain anticipate feeding in food-entrained rats. Chronobiology International, 31(8), 869–877. https://doi.org/10.3109/07420528.2014.918625
Carneiro, B. T. S. (2017). Avaliação do odor alimentar como uma pista temporal em ratos sincronizados à disponibilidade de alimento. 2017. 77f. Tese (Doutorado em Psicobiologia) - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal.
Carneiro, B. T. S., & Araujo, J. F. (2009). The food-entrainable oscillator: a network of interconnected brain structures entrained by humoral signals? Chronobiology International, 26(7), 1273–89. https://doi.org/10.3109/07420520903404480
Carneiro, B. T. S., & Araujo, J. F. (2012). Food entrainment: major and recent findings. Frontiers in Behavioral Neuroscience, 6(November), 83. https://doi.org/10.3389/fnbeh.2012.00083
Carneiro, B. T. S., Fernandes, D. A. C., Medeiros, C. F. P., Diniz, N. L., & Araujo, J. F. (2012). Daily anticipatory rhythms of behavior and body temperature in response to glucose availability in rats. Psychology & Neuroscience, 5(2), 191–197. https://doi.org/10.3922/j.psns.2012.2.09
Castro-faúndez, J., Díaz, J., & Ocampo-garcés, A. (2016). Temporal Organization of the Sleep-Wake Cycle under Food Entrainment in the Rat. SLEEP, 39(7), 1451–1465. https://doi.org/10.5665/sleep.5982
Chavan, R., Feillet, C., Costa, S. S. F., Delorme, J. E., Okabe, T., Ripperger, J. A., & Albrecht, U. (2016). Liver-derived ketone bodies are necessary for food anticipation. Nature Communications, 7, 10580. https://doi.org/10.1038/ncomms10580
Chiesa, J. J., Aguzzi, J., García, J. A., Sardà, F., & De La Iglesia, H. O. (2010). Light intensity determines temporal niche switching of behavioral activity in deep-water nephrops norvegicus (Crustacea: Decapoda). Journal of Biological Rhythms, 25(4), 277–287. https://doi.org/10.1177/0748730410376159
Chou, T. C., Scammell, T. E., Gooley, J. J., Gaus, S. E., Saper, C. B., & Lu, J. (2003). Critical Role of Dorsomedial Hypothalamic Nucleus in a Wide Range of Behavioral Circadian Rhythms. The Journal of Neuroscience, 23(33), 10691–10702. https://doi.org/23/33/10691 [pii]
Clarke, J. D., & Coleman, G. J. (1986). Persistent meal-associated rhythms in SCN-lesioned rats. Physiology and Behavior, 36(1), 105–113. https://doi.org/10.1016/0031-9384(86)90082-X
Coleman, G. J., Harper, S., Clarke, J. D., & Armstrong, S. (1982). Evidence for a separate meal-associated oscillator in the rat. Physiology and Behavior, 29(1), 107–115. https://doi.org/10.1016/0031-9384(82)90373-0
Coll, A. P., Farooqi, I. S., & O’Rahilly, S. (2007). The Hormonal Control of Food Intake. Cell, 129(2), 251–262. https://doi.org/10.1016/j.cell.2007.04.001
Comperatore, C. A., & Stephan, F. K. (1990). Effects of vagotomy on entrainment of activity rhythms to food access. Physiology and Behavior, 47(4), 671–678. https://doi.org/10.1016/0031-9384(90)90076-G
Cummings, D. E., & Overduin, J. (2007). Gastrointestinal regulation of food intake. Journal of Clinical Investigation, 117(1), 13–23. https://doi.org/10.1172/JCI30227
Damiola, F., Le Minli, N., Preitner, N., Kornmann, B., Fleury-Olela, F., & Schibler, U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes and Development, 14(23), 2950–2961. https://doi.org/10.1101/gad.183500
Dang, F., Sun, X., Ma, X., Wu, R., Zhang, D., Chen, Y., … Liu, Y. (2016). Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nature Communications, 7(23), 12696. https://doi.org/10.1038/ncomms12696
Davidson, A. J. (2009). Lesion studies targeting food-anticipatory activity. European Journal of Neuroscience, 30(9), 1658–1664. https://doi.org/10.1111/j.1460-9568.2009.06961.x
Davidson, A. J., Aragona, B. J., Houpt, T. A., & Stephan, F. K. (2001). Persistence of meal-entrained circadian rhythms following area postrema lesions in the rat. Physiology & Behavior, 74(3), 349–354. https://doi.org/10.1016/S0031-9384(01)00567-4
Davidson, A. J., Cappendijk, S. L. T., & Stephan, F. K. (2000). Feeding-entrained circadian rhythms are attenuated by lesions of the parabrachial region in rats. Am J Physiol Regul Integr Comp Physiol, 278(5), 1296–1304.
Davidson, A. J., & Stephan, F. K. (1998). Circadian Food Anticipation Persists in Capsaicin Deafferented Rats. Journal of Biological Rhythms, 13(5), 422–429. https://doi.org/10.1177/074873049801300507
Davidson, A. J., & Stephan, F. K. (1999). Feeding-entrained circadian rhythms in hypophysectomized rats with suprachiasmatic nucleus lesions. The American Journal of Physiology, 277(5 Pt 2), R1376-84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10564210
Davidson, A. J., Stokkan, K. A., Yamazaki, S., & Menaker, M. (2002). Food-anticipatory activity and liver perl-luc activity in diabetic transgenic rats. Physiol Behav., 76(1), 21–26. https://doi.org/10.1016/S0031-9384(02)00680-7
Davis, J. F., Choi, D. L., Clegg, D. J., & Benoit, S. C. (2011). Signaling through the ghrelin receptor modulates hippocampal function and meal anticipation in mice. Physiology and Behavior, 103(1), 39–43. https://doi.org/10.1016/j.physbeh.2010.10.017
Díaz-Muñoz, M., Vázquez-Martínez, O., Aguilar-Roblero, R., & Escobar, C. (2000). Anticipatory changes in liver metabolism and entrainment of insulin, glucagon, and corticosterone in food-restricted rats. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 279(6), R2048–R2056.
Drazen, D. L., Vahl, T. P., D’Alessio, D. A., Seeley, R. J., & Woods, S. C. (2006). Effects of a fixed meal pattern on ghrelin secretion: Evidence for a learned response independent of nutrient status. Endocrinology, 147(1), 23–30. https://doi.org/10.1210/en.2005-0973
Erkert, H. G., & Cramer, B. (2006). Chronobiological background to cathemerality: Circadian rhythms in Eulemur fulvus albifrons (Prosimii) and Aotus azarai boliviensis (Anthropoidea). Folia Primatologica, 77(1–2), 87–103. https://doi.org/10.1159/000089697
Escobar, C., Díaz-Muñoz, M., Encinas, F., & Aguilar-Roblero, R. (1998). Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 274(5), R1309–R1316.
Feillet, C. A., Mendoza, J., Albrecht, U., Pévet, P., & Challet, E. (2008). Forebrain oscillators ticking with different clock hands. Molecular and Cellular Neuroscience, 37(2), 209–221. https://doi.org/10.1016/j.mcn.2007.09.010
Flôres, D. E. F. L. (2012). Investigando a sincronização fótica na natureza. Revista Da Biologia, 9(3), 7–12. https://doi.org/10.7594/revbio.09.03.02
Gervais, R., & Pager, J. (1979). Combined modulating effects of the general arousal and the specific hunger arousal on the olfactory bulb responses in the rat. Electroencephalography and Clinical Neurophysiology, 46(1), 87–94. https://doi.org/10.1016/0013-4694(79)90053-1
Gooley, J. J., & Saper, C. B. (2007). Is Food-Directed Behavior an Appropriate Measure of Circadian Entrainment to Restricted Daytime Feeding? Journal of Biological Rhythms, 22(6), 479–483. https://doi.org/10.1177/0748730407307810
Gooley, J. J., Schomer, A., & Saper, C. B. (2006). The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nature Neuroscience, 9(3), 398–407. https://doi.org/10.1038/nn1651
Guilding, C., & Piggins, H. D. (2007). Challenging the omnipotence of the suprachiasmatic timekeeper: Are circadian oscillators present throughout the mammalian brain? European Journal of Neuroscience, 25(11), 3195–3216. https://doi.org/10.1111/j.1460-9568.2007.05581.x
Gunapala, K. M., Gallardo, C. M., Hsu, C. T., & Steele, A. D. (2011). Single gene deletions of orexin, leptin, neuropeptide Y, and ghrelin do not appreciably alter food anticipatory activity in mice. PLoS ONE, 6(3). https://doi.org/10.1371/journal.pone.0018377
Hamaguchi, Y., Tahara, Y., Kuroda, H., Haraguchi, A., & Shibata, S. (2015). Entrainment of mouse peripheral circadian clocks to <24 h feeding/fasting cycles under 24 h light/dark conditions. Scientific Reports, 5(1), 14207. https://doi.org/10.1038/srep14207
Hut, R. A., Pilorz, V., Boerema, A. S., Strijkstra, A. M., & Daan, S. (2011). Working for food shifts nocturnal mouse activity into the day. PLoS ONE, 6(3), 1–6. https://doi.org/10.1371/journal.pone.0017527
Inouye, S. I. T. (1982). Ventromedial hypothalamic lesions eliminate anticipatory activities of restricted daily feeding schedules in the rat. Brain Research, 250(1), 183–187. https://doi.org/10.1016/0006-8993(82)90967-2
Kaur, S., Thankachan, S., Begum, S., Blanco-Centurion, C., Sakurai, T., Yanagisawa, M., & Shiromani, P. J. (2008). Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Research, 1205, 47–54. https://doi.org/10.1016/j.brainres.2008.02.026
Kim, J. D., Leyva, S., & Diano, S. (2014). Hormonal regulation of the hypothalamic melanocortin system. Frontiers in Physiology, 5(Nov), 1–7. https://doi.org/10.3389/fphys.2014.00480
King, B. M. (2006). The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiology and Behavior, 87(2), 221–244. https://doi.org/10.1016/j.physbeh.2005.10.007
Krieger, D. T. (1974). Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology, 95(5), 1195–1201. https://doi.org/10.1210/endo-95-5-1195
Krieger, D. T. (1980). Ventromedial Hypothalamic Lesions Abolish Food-Shifted Circadian Adrenal and Temperature Rhythinicity*. Endocrinology, 106(3), 649–654. https://doi.org/10.1210/endo-106-3-649
Lamont, E. W., Bruton, J., Blum, I. D., & Abizaid, A. (2014). Ghrelin receptor-knockout mice display alterations in circadian rhythms of activity and feeding under constant lighting conditions. European Journal of Neuroscience, 39(2), 207–217. https://doi.org/10.1111/ejn.12390
Landry, G. J., & Mistlberger, R. E. (2007). Food entrainment: methodological issues. Journal of Biological Rhythms, 22(6), 484–7. https://doi.org/10.1177/0748730407307811
Landry, G. J., Simon, M. M., Webb, I. C., & Mistlberger, R. E. (2006). Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290(6), R1527-34. https://doi.org/10.1152/ajpregu.00874.2005
Landry, G. J., Yamakawa, G. R. S., & Mistlberger, R. E. (2007). Robust food anticipatory circadian rhythms in rats with complete ablation of the thalamic paraventricular nucleus. Brain Research, 1141(1), 108–18. https://doi.org/10.1016/j.brainres.2007.01.032
Landry, G. J., Yamakawa, G. R., Webb, I. C., Mear, R. J., & Mistlberger, R. E. (2007). The Dorsomedial Hypothalamic Nucleus Is Not Necessary for the Expression of Circadian Food-Anticipatory Activity in Rats. Journal of Biological Rhythms, 22(6), 467–478. https://doi.org/10.1177/0748730407307804
Lesauter, J., Hoque, N., Weintraub, M., Pfaff, D. W., & Silver, R. (2009). Stomach ghrelin-secreting cells as food-entrainable, 1–6.
Lutter, M., & Nestler, E. J. (2009). Homeostatic and Hedonic Signals Interact in the Regulation of Food Intake. Journal of Nutrition, 139(3), 629–632. https://doi.org/10.3945/jn.108.097618
Marchant, E. G., & Mistlberger, R. E. (1997). Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/6j mice. Brain Research, 765(2), 273–282. https://doi.org/10.1016/S0006-8993(97)00571-4
Martínez-Merlos, M. T., Ángeles-Castellanos, M., Díaz-Muñoz, M., Aguilar-Roblero, R., Mendoza, J., & Escobar, C. (2004). Dissociation between adipose tissue signals, behavior and the food-entrained oscillator. Journal of Endocrinology, 181(1), 53–63. https://doi.org/10.1677/joe.0.1810053
Melkani, G. C., & Panda, S. (2017). Time-restricted feeding for prevention and treatment of cardiometabolic disorders. Journal of Physiology, 595(12), 3691–3700. https://doi.org/10.1113/JP273094
Mendes, A. L. B., Menezes, A. A. L., & Azevedo, C. V. M. (2008). The influence of social cues on circadian activity rhythm resynchronisation to the light-dark cycle in common marmosets Callithrix jacchus. Biological Rhythm Research, 39(6), 469–479. https://doi.org/10.1080/09291010701682658
Merkestein, M., van Gestel, M. a, van der Zwaal, E. M., Brans, M. a, Luijendijk, M. C., van Rozen, a J., … Adan, R. (2014). GHS-R1a signaling in the DMH and VMH contributes to food anticipatory activity. International Journal of Obesity (2005), 38(4), 610–8. https://doi.org/10.1038/ijo.2013.131
Mieda, M., Williams, S. C., Richardson, J. A., Tanaka, K., & Yanagisawa, M. (2006). The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 12150–5. https://doi.org/10.1073/pnas.0604189103
Mistlberger, R. E. (1992). Nonphotic entrainment of circadian activity rhythms in suprachiasmatic nuclei-ablated hamsters. Behavioral Neuroscience, 106(1), 192–202. https://doi.org/10.1037/0735-7044.106.1.192
Mistlberger, R. E. (1994). Circadian food-anticipatory activity: formal models and physiological mechanisms. Neuroscience and Biobehavioral Reviews, 18(2), 171–95. https://doi.org/10.1016/0149-7634(94)90023-X
Mistlberger, R. E., & Antle, M. C. (1999). Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity and photic masking in the rat. Brain Research, 842(1), 73–83. https://doi.org/10.1016/S0006-8993(99)01836-3
Mistlberger, R. E., Antle, M. C., Kilduff, T. S., & Jones, M. (2003). F ood- and light-entrained circadian rhythms in rats with hypocretin-2- saporin ablations of the lateral hypothalamus. Brain Research, 980, 161–168.
Mistlberger, R. E., & Marchant, E. G. (1995). Computational and entrainment models of circadian food-anticipatory activity: Evidence from non-24-hr feeding schedules. Behavioral Neuroscience, 109(4), 790–798. https://doi.org/10.1037/0735-7044.109.4.790
Mistlberger, R. E., & Marchant, E. G. (1999). Enhanced food-anticipatory circadian rhythms in the genetically obese Zucker rat. Physiology & Behavior, 66(2), 329–35. https://doi.org/http://dx.doi.org/10.1016/S0031-9384(98)00311-4
Mistlberger, R. E., & Mumby, D. G. (1992). The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies. Behavioural Brain Research, 47(2), 159–68. https://doi.org/10.1016/S0166-4328(05)80122-6
Mistlberger, R. E., & Rechtschaffen, A. (1984). Recovery of anticipatory activity to restricted feeding in rats with ventromedial hypothalamic lesions. Physiology & Behavior, 33(2), 227–35. https://doi.org/10.1016/0031-9384(84)90104-5
Mistlberger, R. E., & Rusak, B. (1988). Food-Anticipatory Circadian Rhythms in Rats with Paraventricular and Lateral Hypothalamic Ablations. Journal of Biological Rhythms, 3(3), 277–291. https://doi.org/10.1177/074873048800300306
Mistlberger, R. E., & Skene, D. J. (2004). Social influences on mammalian circadian rhythms: animal and human studies. Biological Reviews, 79(3), 533–556. https://doi.org/10.1017/S1464793103006353
Moberg, G. P., Bellinger, L. L., & Mendel, V. E. (1975). Effect of Meal Feeding on Daily Rhythms of Plasma Corticosterone and Growth Hormone in the Rat. Neuroendocrinology, 19(2), 160–169. https://doi.org/10.1159/000122436
Montúfar-Chaveznava, R., Trejo-Muñoz, L., Hernández-Campos, O., Navarrete, E., & Caldelas, I. (2013). Maternal Olfactory Cues Synchronize the Circadian System of Artificially Raised Newborn Rabbits. PLoS ONE, 8(9), 1–13. https://doi.org/10.1371/journal.pone.0074048
Moore, R. Y., & Lenn, N. J. (1972). A retinohypothalamic projection in the rat. The Journal of Comparative Neurology, 146(1), 1–14. https://doi.org/10.1002/cne.901460102
Moriya, T., Aida, R., Kudo, T., Akiyama, M., Doi, M., Hayasaka, N., … Shibata, S. (2009). The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice. European Journal of Neuroscience, 29(7), 1447–1460. https://doi.org/10.1111/j.1460-9568.2009.06697.x
Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S., & Schwartz, M. W. (2006). Central nervous system control of food intake and body weight. Nature, 443(7109), 289–295. https://doi.org/10.1038/nature05026
Naylor, E. (1996). Crab clockwork: the case for interactive circatidal and circadian oscillators controlling rhythmic locomotor activity of Carcinus maenas. Chronobiology International, 13(3), 153–161. https://doi.org/10.3109/07420529609012649
NAYLOR, E., & WILLIAMS, B. G. (1984). Environmental entrainment of tidally rhythmic behaviour in marine animals. Zoological Journal of the Linnean Society, 80(2–3), 201–208. https://doi.org/10.1111/j.1096-3642.1984.tb01973.x
Nisembaum, L. G., de Pedro, N., Delgado, M. J., & Isorna, E. (2014). Crosstalking between the “gut-brain” hormone ghrelin and the circadian system in the goldfish. Effects on clock gene expression and food anticipatory activity. General and Comparative Endocrinology, 205, 287–295. https://doi.org/10.1016/j.ygcen.2014.03.016
Nolasco, N., Juárez, C., Morgado, E., Meza, E., & Caba, M. (2012). A Circadian Clock in the Olfactory Bulb Anticipates Feeding during Food Anticipatory Activity. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0047779
Oishi, K., Yasumoto, Y., Higo-Yamamoto, S., Yamamoto, S., & Ohkura, N. (2017). Feeding cycle-dependent circulating insulin fluctuation is not a dominant Zeitgeber for mouse peripheral clocks except in the liver: Differences between endogenous and exogenous insulin effects. Biochemical and Biophysical Research Communications, 483(1), 165–170. https://doi.org/10.1016/j.bbrc.2016.12.173
Olivo, D., Caba, M., Gonzalez-Lima, F., Vázquez, A., & Corona-Morales, A. (2014). Circadian feeding entrains anticipatory metabolic activity in piriform cortex and olfactory tubercle, but not in suprachiasmatic nucleus. Brain Research, 1592, 11–21. https://doi.org/10.1016/j.brainres.2014.09.054
Patterson, R. E., & Sears, D. D. (2017). Metabolic Effects of Intermittent Fasting. Annual Review of Nutrition, 37(1), 371–393. https://doi.org/10.1146/annurev-nutr-071816-064634
Patton, D. F., Katsuyama, ??ngela M., Pavlovski, I., Michalik, M., Patterson, Z., Parfyonov, M., … Mistlberger, R. E. (2014). Circadian mechanisms of food anticipatory rhythms in rats fed once or twice daily: Clock gene and endocrine correlates. PLoS ONE, 9(12), 1–25. https://doi.org/10.1371/journal.pone.0112451
Pezuk, P., Mohawk, J. A., Yoshikawa, T., Sellix, M. T., & Menaker, M. (2010). Circadian organization is governed by extra-SCN pacemakers. Journal of Biological Rhythms, 25(6), 432–441. https://doi.org/10.1177/0748730410385204
Phillips, J. L. M., & Mikulka, P. J. (1979). The effects of restricted food access upon locomotor activity in rats with suprachiasmatic nucleus lesions. Physiology and Behavior, 23(2), 257–262. https://doi.org/10.1016/0031-9384(79)90364-0
Pilorz, V., Helfrich-Förster, C., & Oster, H. (2018). The role of the circadian clock system in physiology. Pflügers Archiv - European Journal of Physiology. https://doi.org/10.1007/s00424-017-2103-y
Recabarren, M. P., Valdés, J. L., Farías, P., Serón-Ferré, M., & Torrealba, F. (2005). Differential effects of infralimbic cortical lesions on temperature and locomotor activity responses to feeding in rats. Neuroscience, 134(4), 1413–1422. https://doi.org/10.1016/j.neuroscience.2005.05.022
Ribeiro, A. C., Ceccarini, G., Dupré, C., Friedman, J. M., Pfaff, D. W., & Mark, A. L. (2011). Contrasting effects of leptin on food anticipatory and total locomotor activity. PLoS ONE, 6(8), 2–9. https://doi.org/10.1371/journal.pone.0023364
Ribeiro, A. C., Sawa, E., Carren-LeSauter, I., LeSauter, J., Silver, R., & Pfaff, D. W. (2007). Two forces for arousal: Pitting hunger versus circadian influences and identifying neurons responsible for changes in behavioral arousal. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 20078–20083. https://doi.org/10.1073/pnas.0710096104
Riede, S. J., van der Vinne, V., & Hut, R. A. (2017). The flexible clock: predictive and reactive homeostasis, energy balance and the circadian regulation of sleep–wake timing. The Journal of Experimental Biology, 220(5), 738–749. https://doi.org/10.1242/jeb.130757
Roky, R., Kapás, L., Taishi, P., Fang, J., & Krueger, J. M. (1999). Food Restriction Alters the Diurnal Distribution of Sleep in Rats. Physiology & Behavior, 67(5), 697–703. https://doi.org/10.1016/S0031-9384(99)00137-7
Silver, R., Balsam, P. D., Butler, M. P., & LeSauter, J. (2011). Food anticipation depends on oscillators and memories in both body and brain. Physiology and Behavior, 104(4), 562–571. https://doi.org/10.1016/j.physbeh.2011.05.034
Sousa-Pinto, A., & Castro-Correia, J. (1970). Light microscopic observations on the possible retinohypothalamic projection in the rat. Experimental Brain Research, 11(5), 159–184. https://doi.org/10.1007/BF00233972
STEPHAN, F. (1984). Phase shifts of circadian rhythms in activity entrained to food access☆. Physiology & Behavior, 32(4), 663–671. https://doi.org/10.1016/0031-9384(84)90323-8
Stephan, F. K. (1981). Limits of entrainment to periodic feeding in rats with suprachiasmatic lesions. Journal of Comparative Physiology ? A, 143(4), 401–410. https://doi.org/10.1007/BF00609906
Stephan, F. K. (2002). The “Other” Circadian System: Food as a Zeitgeber. Journal of Biological Rhythms, 17(4), 284–292. https://doi.org/10.1177/074873040201700402
Stephan, F. K., Swann, J. M., & Sisk, C. L. (1979). Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behavioral and Neural Biology, 25(3), 346–363. https://doi.org/10.1016/S0163-1047(79)90415-1
Stephan, F. K., & Zucker, I. (1972). Circadian Rhythms in Drinking Behavior and Locomotor Activity of Rats Are Eliminated by Hypothalamic Lesions. Proceedings of the National Academy of Sciences, 69(6), 1583–1586. https://doi.org/10.1073/pnas.69.6.1583
Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E., Peterson, C. M., … Peterson, C. M. (2018). Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metabolism, 1–10. https://doi.org/10.1016/j.cmet.2018.04.010
Szentirmai, E., Kapas, L., Sun, Y., Smith, R. G., & Krueger, J. M. (2010). Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. AJP: Regulatory, Integrative and Comparative Physiology, 298(2), R467–R477. https://doi.org/10.1152/ajpregu.00557.2009
Tahara, Y., Otsuka, M., Fuse, Y., Hirao, A., & Shibata, S. (2011). Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbalpha with shifts in the liver clock. J Biol Rhythms, 26(3), 230–240. https://doi.org/10.1177/0748730411405958
Takahashi, J. S. (2016). Transcriptional architecture of the mammalian circadian clock. Nature Reviews Genetics, 18(3), 164–179. https://doi.org/10.1038/nrg.2016.150
Tan, K., Knight, Z. A., & Friedman, J. M. (2014). Ablation of AgRP neurons impairs adaption to restricted feeding. Molecular Metabolism, 3(7), 694–704. https://doi.org/10.1016/j.molmet.2014.07.002
Tomotani, B. M., & Oda, G. A. (2012). Diurnos ou Noturnos? Discutindo padrões temporais de atividade. Revista Da Biologia, 9(3), 1–6. https://doi.org/10.7594/revbio.09.03.01
Vahl, T. P., Drazen, D. L., Seeley, R. J., D’Alessio, D. A., & Woods, S. C. (2010). Meal-anticipatory glucagon-like peptide-1 secretion in rats. Endocrinology, 151(2), 569–575. https://doi.org/10.1210/en.2009-1002
van der Vinne, V., Riede, S. J., Gorter, J. A., Eijer, W. G., Sellix, M. T., Menaker, M., … Hut, R. A. (2014). Cold and hunger induce diurnality in a nocturnal mammal. Proceedings of the National Academy of Sciences, 111(42), 15256–15260. https://doi.org/10.1073/pnas.1413135111
Verhagen, L. A. W., Egecioglu, E., Luijendijk, M. C. M., Hillebrand, J. J. G., Adan, R. A. H., & Dickson, S. L. (2011). Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. European Neuropsychopharmacology, 21(5), 384–392. https://doi.org/10.1016/j.euroneuro.2010.06.005
Verwey, M., & Amir, S. (2009). Food-entrainable circadian oscillators in the brain. European Journal of Neuroscience. https://doi.org/10.1111/j.1460-9568.2009.06960.x
Verwey, M., Khoja, Z., Stewart, J., & Amir, S. (2007). Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neuroscience, 147(2), 277–285. https://doi.org/10.1016/j.neuroscience.2007.04.044
Ware, J. V, Nelson, O. L., Robbins, C. T., & Jansen, H. T. (2012). Temporal organization of activity in the brown bear (Ursus arctos): Roles of circadian rhythms, light, and food entrainment. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 303(9), R890–R902. https://doi.org/10.1152/ajpregu.00313.2012
Zvonic, S., Ptitsyn, A. A., Conrad, S. A., Scott, L. K., Floyd, Z. E., Kilroy, G., … Gimble, J. M. (2006). Characterization of peripheral circadian clocks in adipose tissues. Diabetes, 55(4), 962–970. https://doi.org/10.2337/diabetes.55.04.06.db05-0873
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2019 Breno Tercio Carneiro, Mario André Leocadio-Miguel, John Fontenele-Araujo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Salientamos que nossa revista não detém copyright, estes são exclusivos do autor do texto. Pretendemos com isso não criar entraves ao acesso do material publicado e atingir com mais intensidade nosso objetivo de divulgação da ciência.