Sensibilidade e especificidade de sistemas open access para detecção de interações medicamentosas potenciais

Autores

DOI:

https://doi.org/10.11606/issn.2176-7262.rmrp.2021.176483

Palavras-chave:

Interações medicamentosas, Doenças não transmissíveis, Sistemas de apoio a decisão clínica, Acesso à informação, Segurança do paciente

Resumo

Modelo do estudo: Estudo transversal. Objetivo: avaliar a sensibilidade e especificidade de sistemas de rastreamento de acesso aberto para interações medicamentosas potenciais (IMp) em comparação com o DRUG-REAX® system e analisar o impacto clínico potencial das IMp de gravidades “Contraindicada” e “Maior” não detectadas. Métodos: amostra composta por 140 pacientes em acompanhamento em um ambulatório especializado no atendimento a pessoas com doenças crônicas não transmissíveis (DCNT) de um hospital universitário. As IMp foram identificadas e classificadas no DRUG-REAX® System e em oito sistemas de rastreamento de acesso aberto. As IMp de gravidade “Contraindicada” e “Maior” foram analisadas segundo o impacto clínico. Utilizou-se estatística descritiva e calculou-se sensibilidade e especificidade dos sistemas de rastreamento na identificação das IMp. Resultados: Os sistemas de acesso aberto pertencentes as bases Drugs.com, UCLA School of Health e CVC Caremark apresentaram sensibilidade e especificidade > 70%. A totalidade dos sistemas de acesso aberto não detectou os pares ciprofibrato + estatinas e metformina + sitagliptina, cujos impactos clínicos incluíram risco de miopatia e rabdomiólise e hipoglicemia, respectivamente. Cerca de um terço (37,5%) dos sistemas de acesso aberto não detectou a IMp ácido acetilsalicílico + hidroclorotiazida, capaz de ocasionar nefrotoxicidade. Conclusão: A maioria dos pares de IMp integra o rol terapêutico de pacientes com DCNT e cujos impactos clínicos são tempo-dependentes. A combinação de julgamento clínico, revisão periódica do plano terapêutico e os atributos de precisão (sensibilidade e especificidade) são fundamentais para garantir a segurança do paciente, sobretudo no contexto ambulatorial.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Sandro Ritz Alves Bezerra , Escola de Enfermagem da Universidade de São Paulo

    Doutor em Ciências

  • Danilo Donizetti Trevisan, Universidade Federal de São João del Rei

    Doutor em Ciência da Saúde

  • Maria Helena Melo Lima, Universidade Estadual de Campinas. Faculdade de Enfermagem

    Doutora em Biologia Funcional e Molecular

  • Silvia Regina Secoli, Universidade de São Paulo. Escola de Enfermagem

    Doutora em Enfermagem

Referências

Uijtendaal E, Van Harssel LLM, Hugenholtz GWK, Kuck EM, Zwart-Van Rijkom JEF, Cremer OL, et al. Analysis of potential drug-drug interactions in medical intensive care unit patients. Pharmacotherapy. 2014;34(3):213–9.

Hennessy S, Leonard C, Gagne JJ, Flory JH, Han X, Brensinger CM, et al. Pharmacoepidemiologic Methods for Studying the Health Effects of Drug-Drug Interactions. Clinical Pharmacology and Therapeutics. 2016;99(1):92–100.

Rekić D, Reynolds KS, Zhao P, Zhang L, Yoshida K, Sachar M, et al. Clinical Drug–Drug Interaction Evaluations to Inform Drug Use and Enable Drug Access. Journal of Pharmaceutical Sciences. 2017;106(9):2214–8.

Guthrie B, Makubate B, Hernandez-Santiago V, Dreishculte T. The rising tide of polypharmacy and drug-drug interactions: population database analysis 1995-2010. BMC Medicine. 2015;13:74.

Askari M, Eslami S, Louws M, Wierenga PC, Dongelmans DA, Kuiper RA, et al. Frequency and nature of drug-drug interactions in the intensive care unit. Pharmacoepidemiology and Drug Safety. 2013;22(4):430–7.

Trevisan DD, Silva JB, Póvoa VC, Araujo CP, Oliveira HC, Araújo EP, et al. Prevalence and clinical significance of potential drug-drug interactions in diabetic patients attended in a tertiary care outpatient center, Brazil. International Journal of Diabetes in Developing Countries. 2016;36(3):283–9.

Roblek T, Vaupotic T, Mrhar A, Lainscak M. Drug-drug interaction software in clinical practice: A systematic review. European Journal of Clinical Pharmacology. 2015;71(2):131–42.

Ramos G V, Guaraldo L, Japiassú AM, Bozza FA. Comparison of two databases to detect potential drug-drug interactions between prescriptions of HIV/AIDS patients in critical care. Journal of Clinical Pharmacy and Therapeutics. 2015;40(1):63–7.

Muhič N, Mrhar A, Brvar M. Comparative analysis of three drug–drug interaction screening systems against probable clinically relevant drug–drug interactions: a prospective cohort study. European Journal of Clinical Pharmacology. 2017;73:875–882.

Kheshti R, Aalipour M, Namazi S. A comparison of five common drug–drug interaction software programs regarding accuracy and comprehensiveness. Journal of Research in Pharmacy Practice. 2016;5(4):257–63.

Leão DFL, Moura CS, Medeiros DS. Evaluation of potential drug interactions in primary health care prescriptions in Vitória da Conquista, Bahia (Brazil). Ciencia e Saude Coletiva. 2014;19(1):311–8.

Bossaer JB, Thomas CM. Drug interaction database sensitivity with oral antineoplastics: An exploratory analysis. Journal of Oncology Practice. 2017;13(3):e217–22.

Nanji KC, Seger DL, Slight SP, Amato MG, Beeler PE, Her QL, et al. Medication-related clinical decision support alert overrides in inpatients. Journal of the American Medical Informatics Association : JAMIA. 2018;25(5):476–81.

Wong A, Wright A, Seger DL, Amato MG, Fiskio JM, Bates D. Comparison of overridden medication-related clinical decision support in the intensive care unit between a commercial system and a legacy system. Applied Clinical Informatics. 2017;8(3):866–79.

Smithburger PL, Kane-Gill SL, Seybert AL. Drug-drug interactions in cardiac and cardiothoracic intensive care units: An analysis of patients in an academic medical centre in the US. Drug Safety. 2010;33(10):879–88.

Clauson KA, Marsh WA, Polen HH, Seamon MJ, Ortiz BI. Clinical decision support tools: Analysis of online drug information databases. BMC Medical Informatics and Decision Making. 2007;7:7.

von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. International Journal of Surgery. 2014;12(12):1495–9.

Vonbach P, Dubied A, Krähenbühl S, Beer JH. Evaluation of frequently used drug interaction screening programs. Pharmacy World and Science. 2008;30(4):367–74.

Wang LM, Wong M, Lightwood JM, Cheng CM. Black box warning contraindicated comedications: Concordance among three major drug interaction screening programs. Annals of Pharmacotherapy. 2010;44(1):28–34.

Espinosa MAFP, Carrasco MSD, Soler JLF, Merino GR, Nieto MAR, Miró AE. Pharmacoepidemiological study of drug–drug interactions in onco-hematological pediatric patients. International Journal of Clinical Pharmacy. 2014;36(6):1160–9.

Hazlet TK, Lee TA, Hansten PD, Horn JR. Performance of community pharmacy drug interaction software. Journal of the American Pharmaceutical Association (Washington,DC : 1996). 2001;41(2):200–4.

American Diabetes Association. Comprehensive medical evaluation and assessment of comorbidities: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl. 1):S37–47.

Ito H, Ishida H, Takeuchi Y, Antoku S, Abe M, Mifune M, et al. Long-term effect of metformin on blood glucose control in non-obese patients with type 2 diabetes mellitus. Nutrition and Metabolism. 2010;7(83).

UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;34(352):854–65.

Xie M, Shan Z, Zhang Y, Chen S, Yang W, Bao W, et al. Aspirin for primary prevention of cardiovascular events: Meta-analysis of randomized controlled trials and subgroup analysis by sex and diabetes status. PLoS ONE. 2014;9:e90286.

Bertoluci MC, Moreira RO, Faludi A, Izar MC, Schaan BD, Valerio CM, et al. Brazilian guidelines on prevention of cardiovascular disease in patients with diabetes: A position statement from the Brazilian Diabetes Society (SBD), the Brazilian Cardiology Society (SBC) and the Brazilian Endocrinology and Metabolism Society (SBEM). Diabetology and Metabolic Syndrome. 2017;9(53):1–36.

Micromedex® Healthcare Series. Greenwood Village (US): Thomson Reuters (Healthcare) [Internet]. [cited 2019 Nov 5]. Available from: https://www-micromedexsolutions-com.ez32.periodicos.capes.gov.br

Cho I, Slight SP, Nanji KC, Seger DL, Maniam N, Dykes PC, et al. Understanding physicians’ behavior toward alerts about nephrotoxic medications in outpatients: A cross-sectional analysis. BMC Nephrology. 2014;15:200.

Oshikoya KA, Oreagba IA, Ogunleye OO, Lawal S, Senbanjo IO. Clinically significant interactions between antiretroviral and co-prescribed drugs for HIV-infected children: profiling and comparison of two drug databases. Therapeutics and Clinical Risk Management. 2013;9:215–21.

Catisti DG, Cruciol-Souza JM. Comparação de fontes bibliográficas para o diagnóstico farmacoterapêutico de interações medicamentosas. Latin American Journal of Pharmacy. 2009;28(5):682–7.

Smith WD, Karpinski JP, Timpe EM, Hatton RC. Evaluation of seven i.v. drug compatibility references by using requests from a drug information center. American Journal of Health-System Pharmacy. 2009;66(15):1369–75.

Downloads

Publicado

2021-12-20

Edição

Seção

Artigo Original

Como Citar

1.
Bezerra SRA, Trevisan DD, Lima MHM, Secoli SR. Sensibilidade e especificidade de sistemas open access para detecção de interações medicamentosas potenciais. Medicina (Ribeirão Preto) [Internet]. 20º de dezembro de 2021 [citado 21º de novembro de 2024];54(3):e-176483. Disponível em: https://journals.usp.br/rmrp/article/view/176483