Contributions to the segmentationof e-commerce nonusers:clustering the reasonsnot to shop online
DOI:
https://doi.org/10.1108/REGE-06-2022-0087Keywords:
Consumer behavior, Online shopping, Non-shopper segmentation, Electronic market, Retailin, Shopping preferencAbstract
PurposeThe purpose is to investigate whether Brazilian e-commerce nonusers all have the same reasons not to purchase online or whether different behavior patterns might lead them to cluster in different groups.
Design/methodology/approachThis study carried out cluster analyses on a large sample (N = 9,065) from a nationwide survey on the use of information and communication technology in Brazil.
FindingsThree clusters of e-commerce nonusers were identified: the first cluster is quite reluctant; the second is characterized by disbelief in e-commerce; and the last cluster includes members who must see a product to believe it. Overall, nonusers have different reasons not to shop online, but they also share some similarities in this regard. Furthermore, socioeconomic factors do not seem to affect their behavior. The findings suggest that merchants’ failure to attract customers’ attention and tangibility are the major barriers to e-commerce use.
Practical implicationsEven though nonusers have different reasons not to shop online, the key pattern that emerges is the value of tangibility for these individuals, which is a barrier present in all three clusters. This suggests that current marketing strategies and advertisements are ineffective to reach these consumers. Vendors should therefore try different approaches.
Originality/valueThe findings contribute to the information systems (IS) literature by bringing a new perspective to the understanding of e-commerce rejection in addition to having managerial implications that involve strategies to attract potential users based on their specificities.
Downloads
References
Anckar, B. (2003). Drivers and inhibitors to E-commerce adoption: Exploring the rationality of consumer behavior in the electronic marketplace. In ECIS 2003 Proceedings, Paper 24.
Araujo, M. H., & Reinhard, N. (2018). Caracterizando os usuários de Internet no Brasil: uma análise a partir das habilidades digitais. In Twenty-Fourth Americas Conference on Information Systems, New Orleans (1–10), August.
Bach, T. M., Silva, W. V., Souza, A. M., Kudlawicz-Franco, C., & Veiga, C.P. (2020). Online customer behavior: Perceptions regarding the types of risks incurred through online purchases. Palgrave Communications, 6(1). doi: 10.1057/s41599-020-0389-4.
Cetic.br (2019). [Microdados] TIC Domicílios - 2019 – Indivíduos. Available from: https://www.cetic.br/pt/pesquisa/domicilios/microdados/ (accessed 12 August 2020).
Cetic.br (2022). TIC Domicílios 2021: Lançamento dos resultados. Available from: https://cetic.br/media/analises/tic_domicilios_2021_coletiva_imprensa.pdf (accessed 16 October 2022).
CGI.br (2019). Survey on the use of information and communication technologies in brazilian households: ICT households 2018 [ebook] (Bilingual). São Paulo: CGI.br.
Chang, M. K., Cheung, W., & Lai, V. S. (2005). Literature derived reference models for the adoption of online shopping. Information & Management, 42(4), 543–559. doi: 10.1016/j.im.2004.02.006.
Faqih, K. M. S. (2016). An empirical analysis of factors predicting the behavioral intention to adopt Internet shopping technology among non-shoppers in a developing country context: Does gender matter? Journal of Retailing and Consumer Services, 30, 140–164. doi: 10.1016/j.jretconser.2016.01.016.
Ganesh, J., Reynolds, K. E., Luckett, M., & Pomirleanu, N. (2010). Online shopper motivations, and e-store attributes: An examination of online patronage behavior and shopper typologies. Journal of Retailing, 86(1), 106–115. doi: 10.1016/j.jretai.2010.01.003.
Gewald, H., Wang, X., Weeger, A., Raisinghani, M. S., Grant, G., Sanchez, O. P., & Pittayachawan, S. (2017). Millennials’ attitudes toward IT consumerization in the workplace. Communications of the ACM, 60(10), 62–69. doi: 10.1145/3132745.
Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27(4), 857–871.
Guagnano, G. A., Stern, P. C., & Dietz, T. (1995). Influences on attitude-behavior relationships: A natural experiment with curbside recycling. Environment and Behavior, 27(5), 699–718. doi: 10.1177/0013916595275005.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Andover: Cengage Learning.
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17(2-3), 107–145. doi: 10.1023/A:1012801612483.
Hernández-García, Á., Iglesias-Pradas, S., Chaparro-Peláez, J., & Pascual-Miguel, F. (2011). Exploring the attitudes and intentions of non-shoppers in the acceptance of e-commerce. Journal of Universal Computer Science, 17(9), 1314–1328.
Hernandez, B., Jimenez, J., & Martín, M. J. (2009). Adoption vs acceptance of e-commerce: Two different decisions. European Journal of Marketing, 43(9), 1232–1245. doi: 10.1108/03090560910976465.
Hsu, M. H., Chang, C. M., & Chuang, L. W. (2015). Understanding the determinants of online repeat purchase intention and moderating role of habit: The case of online group-buying in Taiwan. International Journal of Information Management, 35(1), 45–56. doi: 10.1016/j.ijinfomgt.2014.09.002.
Iglesias-Pradas, S., Pascual-Miguel, F., Hernández-García, Á., & Chaparro-Peláez, J. (2013). Barriers and drivers for non-shoppers in B2C e-commerce: A latent class exploratory analysis. Computers in Human Behavior, 29(2), 314–322. doi: 10.1016/j.chb.2012.01.024.
Kassambara, A. (2017). Practical guide to cluster analysis in R: Unsupervised machine learning (1st ed.). STHDA, available at: https://www.datanovia.com/en/product/practical-guide-to-cluster-analysis-in-r/.
Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.
Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking. Journal of Business Research, 69(7), 2432–2439. doi: 10.1016/j.jbusres.2016.01.013.
Laumer, S., & Eckhardt, A. (2012). Why do people reject technologies: A review of user resistance theories. In Y. K. Dwivedi, M. R. Wade, & S. L. Schneberger (Eds.), Information Systems Theory: Explaining and Predicting Our Digital Society (Vol. 1, pp. 63–86). New York: Springer. doi: 10.1007/978-1-4419-6108-2_4.
Lestari, D. (2019). Measuring e-commerce adoption behaviour among gen-Z in Jakarta, Indonesia. Economic Analysis and Policy, 64, 103–115. doi: 10.1016/j.eap.2019.08.004.
Li, H., Kuo, C., & Russell, M. G. (1999). The impact of perceived channel utilities, shopping orientations, and demographics on the consumer’s online buying behavior. Journal of Computer-Mediated Communication, 5(2). doi: 10.1111/j.1083-6101.1999.tb00336.x.
Li, Y., Li, X., Zhang, Z., Zhang, G., & Gong, M. (2020). Understanding consumers online furniture purchase behavior: An updated UTAUT perspective. Journal of Forest Economics, 35(4), 267–303. doi: 10.1561/112.00000516.
Li, G., Zhang, X., Chiu, S. M., Liu, M., & Sethi, S. P. (2019). Online market entry and channel sharing strategy with direct selling diseconomies in the sharing economy era. International Journal of Production Economics, 218, 135–147. doi: 10.1016/j.ijpe.2019.05.006.
Lissitsa, S., & Kol, O. (2016). Generation X vs. Generation Y - a decade of online shopping. Journal of Retailing and Consumer Services, 31, 304–312. doi: 10.1016/j.jretconser.2016.04.015.
Liu, X., & Wei, K. K. (2003). An empirical study of product differences in consumers’ E-commerce adoption behavior. Electronic Commerce Research and Applications, 2(3), 229–239. doi: 10.1016/S1567-4223(03)00027-9.
Maia, C., Lunardi, G., Longaray, A., & Munhoz, P. (2018). Factors and characteristics that influence consumers’ participation in social commerce. Revista de Gestão, 25(2), 194–211. doi: 10.1108/REGE-03-2018-031.
Mainardes, E. W., Souza, I. M., & Correia, R. D. (2020). Antecedents and consequents of consumers not adopting e-commerce. Journal of Retailing and Consumer Services, 55(April). doi: 10.1016/j.jretconser.2020.102138.
Moorthy, K., Suet Ling, C., Weng Fatt, Y., Mun Yee, C., Ket Yin, E. C., Sin Yee, K., & Kok Wei, L. (2017). Barriers of mobile commerce adoption intention: Perceptions of generation X in Malaysia. Journal of Theoretical and Applied Electronic Commerce Research, 12(2), 37–53. doi: 10.4067/S0718-18762017000200004.
Nery-da-Silva, G., Barbosa, R. A. P., & Figueiredo, J. C. B. (in press). The impact of socio-economic and demographic factors on the individual use of e-commerce in Brazil: Evidence of the digital divide. International Journal of Business Information Systems, 1–17. doi: 10.1504/IJBIS.2022.10049394.
Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101–134. doi: 10.1080/10864415.2003.11044275.
Pawełoszek, I., & Korczak, J. (2016). An approach to discovery of customer profiles. In A. Tjoa, L. Xu, M. Raffai, & N. Novak (Eds.), CONFENIS 2016: Research and Practical Issues of Enterprise Information Systems (Vol. 268, pp. 88–99). Springer. doi: 10.1007/978-3-319-49944-4_7, available at: https://link.springer.com/chapter/10.1007/978-3-319-49944-4_7#citeas.
Scheerder, A., van Deursen, A., & van Dijk, J. (2017). Determinants of Internet skills, uses and outcomes. A systematic review of the second- and third-level digital divide. Telematics and Informatics, 34(8), 1607–1624. doi: 10.1016/j.tele.2017.07.007.
Sohail, M. S. (2014). Factors Impeding online shopping: An arab world perspective. European Online Journal of Natural and Social Sciences, 3(4), 972–982. Available from: www.european-science.com
Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 11(2), 33–40. Available from: https://www.jstor.org/stable/1217208
Spena, T. R., D’Auria, A., & Bifurco, F. (2021). Customer insight and customer profiling. In T. R. Spena, & F. Bifurco (Eds.), Digital Transformation in the Cultural Heritage Sector: Challenges to Marketing in the New Digital Era (pp. 95–117). Cham: Springer Nature.
Statista (2021a). E-Commerce in Brazil - statistics & facts. Available from: https://www.statista.com/topics/4697/e-commerce-in-brazil/#dossierKeyfigures (accessed Statista website accessed 20 October 2021).
Statista (2021b). E-Commerce worldwide - statistics & facts. Available from: https://www.statista.com/topics/871/online-shopping/ (accessed Statista website accessed 2 September 2021).
Swinyard, W. R., & Smith, S. M. (2003). Why people (Don’t) Shop Online: A Lifestyle Study of the Internet Consumer. Psychology & Marketing, 20(7), 567–597. doi: 10.1002/mar.10087.
Swinyard, W. R., & Smith, S. M. (2004). Activities, Interests, And Opinions Of Online Shoppers And Non-Shoppers. International Business & Economics Research Journal, 3(4), 37–48.
van Deursen, A. J. A. M., Courtois, C., & van Dijk, J. A. (2014). Internet Skills, Sources of Support, and Benefiting From Internet Use. International Journal of Human-Computer Interaction, 30(4), 278–290. doi: 10.1080/10447318.2013.858458.
van Deursen, A. J. A. M., Helsper, E. J., & Eynon, R. (2016). Development and validation of the Internet Skills Scale (ISS). Information, Communication & Society, 19(6), 804–823. doi: 10.1080/1369118X.2015.1078834.
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly: Management Information Systems, 36(1), 157–178. doi: 10.2307/41410412.
Zepeda, L., & Deal, D. (2009). Organic and local food consumer behaviour: Alphabet theory. International Journal of Consumer Studies, 33(6), 697–705. doi: 10.1111/j.1470-6431.2009.00814.x.
Zhou, J., Wei, J., & Xu, B. (2021). Customer segmentation by web content mining. Journal of Retailing and Consumer Services, 61, 102588. doi: 10.1016/j.jretconser.2021.102588.
Zhu, S., & Chen, J. (2013). The digital divide in individual e-commerce utilization in China: Results from a national survey. Information Development, 29(1), 69–80. doi: 10.1177/0266666912450168.