Theoretical and practical foundations of mokken scale analysis in psychology

Authors

DOI:

https://doi.org/10.1590/1982-4327e3223

Keywords:

Nonparametric inference, Item response theory, Measurement

Abstract

Item Response Theory represents one of the major advances in the field of developing valid and reliable measures in psychology. Among the main models used in this perspective are the Rasch model and the logistic models. These parametric models, however, are not suitable for all applications in psychology, since a substantial number of databases in psychology do not satisfy the assumptions of these models: unidimensionality; latent monotonicity; local independence; and, for some models, non-intersecting functions. Given this framework, the objective of this study was to present the theoretical and practical foundations of Mokken Scale Analysis (MSA). We present some historical issues involving the development of MSA, in addition to the main characteristics and assumptions of the two models used in this perspective. After exemplifying a MSA application, limitations and final considerations are presented, supporting the decision-making process for researchers who come to use MSA.

Downloads

Download data is not yet available.

Author Biographies

  • Víthor Rosa Franco, Universidade São Francisco

    Assistant Professor at the Universidade São Francisco, Campinas - SP, Brazil

  • Jacob Arie Laros, Universidade de Brasília

    Full Professor at the Universidade de Brasília, Brasília-DF, Brazil.

  • Rafael Valdece Sousa Bastos, Universidade São Francisco

    Master’s candidate of the Graduate Program in Psychology at Universidade São Francisco, Campinas-SP, Brazil

References

Andrade, J. M., Laros, J. A., & Lima, K. S. (2021). Teoria de resposta ao item paramétrica e não paramétrica [Parametric and Nonparametric item response theory]. In C. Faiad, M. N. Baptista, & R. Primi (Orgs.), Tutoriais em análise de dados aplicados à psicometria [Tutorials in data analysis applied to psychometrics] (pp. 183-204). Petrópolis, RJ: Vozes.

Bond, T., Yan, Z., & Heene, M. (2021). Applying the Rasch model fundamental measurement in the human sciences (4th ed.). New York, NY: Routledge.

Crișan, D. R., Tendeiro, J., & Meijer, R. (2019). The Crit value as an effect size measure for violations of model assumptions in Mokken Scale Analysis for binary data. PsyArXiv. doi:10.31234/osf.io/8ydmr

Engelhard, G., Jr. (2008). Historical perspectives on invariant measurement: Guttman, Rasch, and Mokken. Measurement: Interdisciplinary Research and Perspectives, 6(3), 155-189. doi:10.1080/15366360802197792

Gonçalves, F. B., & Dias, B. C. C. (2018). Um estudo da relação entre traço latente e variáveis contextuais no Saeb e Enem [A study relating latent traits to contextual variables for the Saeb and Enem exams]. Examen: Política, Gestão e Avaliação Da Educação, 2(2), 152-172. Retrieved from https://examen.emnuvens.com.br/rev/article/view/91

Gregory, R. J. (2014). Psychological testing: History, principles, and applications (7th ed.). Boston, MA: Allyn & Bacon.

Irwing, P., Booth, T., & Hughes, D. J. (Eds.). (2018). The Wiley handbook of psychometric testing: A multidisciplinary reference on survey, scale and test development. Hoboken, NJ: John Wiley & Sons.

Junker, B. W., & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models. Applied Psychological Measurement, 24(1), 65-81. doi:10.1177/01466216000241004

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272. doi:10.1177/01466210122032064

Ligtvoet, R. (2015). A test for using the sum score to obtain a stochastic ordering of subjects. Journal of Multivariate Analysis, 133, 136-139. doi:10.1016/j.jmva.2014.09.003

Loevinger, J. (1948). The technique of homogenous tests compared with some aspects of “scale analysis” and factor analysis. Psychological Bulletin, 45(6), 507-529. doi:10.1037/h0055827

Magis, D., Yan, D., & von Davier, A. A. (2017). Computerized adaptive and multistage testing with R: Using packages catR and mstR. Cham, Switzerland: Springer.

Mair, P. (2018). Modern psychometrics with R. Cham, Switzerland: Springer.

Mokken, R. J. (1971). A theory and procedure of scale analysis: With applications in political research. Berlin, German: De Gruyter.

R Core Team. (2022). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory. Thousand Oaks, CA: Sage.

Sijtsma, K., & van der Ark, L. A. (2017). A tutorial on how to do a Mokken scale analysis on your test and questionnaire data. British Journal of Mathematical and Statistical Psychology, 70(1), 137-158. doi:10.1111/bmsp.12078

Slaney, K. (2017). Validating psychological constructs: Historical, philosophical, and practical dimensions. London, United Kingdom, Mcmillan.

Stout, W. (2001). Nonparametric item response theory: A maturing and applicable measurement modeling approach. Applied Psychological Measurement, 25(3), 300-306. doi:10.1177/01466210122032109

Straat, J. H., van der Ark, L. A., & Sijtsma, K. (2013). Comparing optimization algorithms for item selection in Mokken scale analysis. Journal of Classification, 30(1), 72-99. doi:10.1007/s00357-013-9122-y

Straat, J. H., van der Ark, L. A., & Sijtsma, K. (2016). Using conditional association to identify locally independent item sets. Methodology, 12(4), 117-123. doi:10.1027/1614-2241/a000115

van der Ark, L. A., Koopman, L., Straat, J. H., & van den Bergh, D. (2021). Mokken: Conducts Mokken Scale Analysis. Retrieved from https://cran.r-project.org/web/packages/mokken/index.html

Verweij, A. C., Sijtsma, K., & Koops, W. (1996). A Mokken scale for transitive reasoning suited for longitudinal research. International Journal of Behavioral Development, 19(1), 219-238. doi:10.1177/016502549601900115

Wiberg, M., Ramsay, J. O., & Li, J. (2018). Optimal scores: An alternative to parametric item response theory and sum scores. Psychometrika, 84(1), 310-322. doi:10.1007/s11336-018-9639-4

Wind, S. A. (2022). Identifying problematic item characteristics with small samples using mokken scale analysis. Educational and Psychological Measurement, 82(4), 747-756. doi:10.1177/00131644211045347

Zhang, S., Chen, Y., & Liu, Y. (2020). An improved stochastic EM algorithm for large‐scale full‐information item factor analysis. British Journal of Mathematical and Statistical Psychology, 73(1), 44-71. doi:10.1111/bmsp.12153

Downloads

Published

2022-09-14

Issue

Section

Psychological Evaluation

How to Cite

Franco, V. R., Laros, J. A., & Bastos, R. V. S. (2022). Theoretical and practical foundations of mokken scale analysis in psychology. Paidéia (Ribeirão Preto), 32, e3223. https://doi.org/10.1590/1982-4327e3223