Conservative behavior of δ13C values of dissolved inorganic carbon in the Cananéia-Iguape estuarine-lagoon complex (southeastern Brazil)

Authors

  • Christian Millo
  • Rita Stasevskas Kujawski
  • Silvia Helena de Mello e Sousa
  • Anna Grizon
  • Elisa Oudin
  • Gláucia Bueno Benedetti Berbel
  • Guillaume Bertrand
  • Vitor Gonsalez Chiozzini
  • Elisabete de Santis Braga

DOI:

https://doi.org/10.1590/

Keywords:

Carbon isotopes, Water geochemistry, Tidal mixing, Freshwater input

Abstract

The carbon isotope composition of Dissolved Inorganic Carbon (δ13CDIC) is a useful tool to study the carbon budget in estuarine settings. Here we present the first set of δ13CDIC data from the Cananéia-Iguape Estuarine Complex (São Paulo, Brazil), a changing environment undergoing freshening at a rate of the order of 770 m3  s-1. We measured δ13CDIC values of water at 15 stations distributed across the area, both during neap and spring tide, in May 2015 and April 2017. The spatio-temporal variability of δ13CDIC suggests a conservative mixing of two water endmembers, freshwater with δ13CDIC = −10 ‰ (V-PDB) and seawater with δ13CDIC = +2.0 ‰ (V-PDB). Linear regression of δ13CDIC vs. salinity predicts the δ13CDIC values of open ocean surface water from the nearby Santos Basin and suggests that the freshwater and seawater endmembers mix at 1:1 proportion in the estuarine complex. Mixing was the dominant process governing the behavior of δ13CDIC values, whereas photosynthesis, degradation of organic matter, and CO2  uptake or outgassing did not play a significant role. In particular, phytoplankton production had no impact on δ13CDIC, suggesting that the ecosystem was exempt from eutrophication. Long-term freshening in the NE sector of the estuary did not significantly impact the δ13C values of DIC. These results underline the need for longterm measurements of δ13CDIC in the study area to contribute to the understanding of the evolution of the estuarine complex, whose freshening trend could be enhanced by extreme precipitation events linked to climate change.

References

Alling, V., Porcelli, D., mörth, C. m., Anderson, L. G.,

Sanchez-Garcia, L., Gustafsson, Ö., Andersson, P. S.

& Humborg, C. 2012. Degradation of terrestrial organic

carbon, primary production and out-gassing of CO2

in

the Laptev and East Siberian Seas as inferred from δ13C

values of DIC. Geochimica et Cosmochimica Acta, 95,

-159.

Assayag, N., Rivé, K., Ader, m., Jézéquel, D. & Agrinier,

P. 2006. Improved method for isotopic and quantitative

analysis of dissolved inorganic carbon in natural water

samples. Rapid Communications in mass Spectrometry,

, 2243-2251.

Bass, A. m., munksgaard, N. C., O’grady, D., Williams, m.

J. m., Bostock, H. C., Rintoul, S. R. & Bird, m. I. 2014.

Continuous shipboard measurements of oceanic δ18O,

δD and δ13CDIC along a transect from New Zealand to

Antarctica using cavity ring-down isotope spectrometry.

Journal of marine Systems, 137, 21-27.

Bérgamo, A. L. 2000. Caraterística da hidrografia, circulação

e transporte de sal: Barra de Cananéia, sul do mar de

δ13C values of DIC - Cananéia-Iguape

Ocean and Coastal Research 2024, v72:e24077 15

Millo et al.

Cananéia e Baia do Trapandé (Tese de mestrado). São

Paulo: Universidade de São Paulo.

Bhavya, P. S., Kumar, S., Gupta, G. V. m., Sudharma, K.

V. & Sudheesh, V. 2018. Spatio-temporal variation in

δ13CDIC of a tropical eutrophic estuary (Cochin estuary,

India) and adjacent Arabian Sea. Continental Shelf

Research, 153, 75-85.

Cotovicz, L. C., Knoppers, B. A., Deirmendjian, L. & Abril,

G. 2019. Sources and sinks of dissolved inorganic

carbon in an urban tropical coastal bay revealed by

δ13C-DIC signals. Estuarine, Coastal and Shelf Science,

, 185-195.

De mahiques, m. m., Figueira, R. C., Alves, D. P., Italiani,

D. m., martins, C. C. & Dias, J. m. 2014. Coastline

changes and sedimentation related with the opening of an

artificial channel: the Valo Grande Delta, SE Brazil. Anais

da Academia Brasileira Ciências, 86(4), 1597-1607.

De mahiques, m. m., Figueira, R. C. L., Salaroli, A. B.,

Alves, D. P. V. & Gonçalves, C. 2013. 150 years of

anthropogenic metal input in a Biosphere Reserve: the

case study of the Cananéia–Iguape coastal system,

Southeastern Brazil. Environmental Earth Sciences, 68,

-1087.

Deuser, W. G. & Hunt, J. m. 1969. Stable isotope ratios of

dissolved inorganic carbon in the Atlantic. Deep Sea

Research and Oceanographic Abstracts, 16, 221-225.

Filipsson, H. L., mccorkle, D. C., mackensen, A., Bernhard,

J. m., Andersson, L. S., Naustvoll, L.-J., CaballeroAlfonso, A. m., Nordberg, K. & Danielssen, D. S. 2017.

Seasonal variability of stable carbon isotopes (δ13CDIC)

in the Skagerrak and the Baltic Sea: Distinguishing

between mixing and biological productivity.

Palaeogeography, Palaeoclimatology, Palaeoecology,

, 15-30.

FOFONOFF, P. & MILLARD, R. C. 1983. TR Algorithms

for computation of fundamental propetries of seawater.

UNESCO Technical Papers in Marine Sciences, 44,

pp. 58

Ge, T., Luo, C., Ren, P., Zhang, H., Fan, D., Chen, H., Chen,

Z., Zhang, J. & Wang, X. 2022. Stable carbon isotopes

of dissolved inorganic carbon in the Western North

Pacific Ocean: Proxy for water mixing and dynamics.

Frontiers in marine Science, 9.

Hauksson, N. E., Xu, X., Pedron, S., martinez, H. A., Lewis,

C. B., Glynn, D. S., Glynn, C., Garcia, N., Flaherty, A.,

Thomas, K., Griffin, S. & Druffel, E. R. m. 2023. Time

series of surface water dissolved inorganic carbon

isotopes from the southern California Bight. Radiocarbon,

-16. https://doi.org/10.1017/RDC.2023.73

Inoue, H. & Sugimura, Y. 1985. Carbon isotopic fractionation

during the CO2

exchange process between air and

sea water under equilibrium and kinetic conditions.

Geochimica et Cosmochimica Acta, 49, 2453-2460.

Jeffrey, S. W. & Humphrey, G. F. 1975. New

spectrophotometric equations for determining

chlorophylls a, b, c1 and c2 in higher plants, algae and

natural phytoplankton. Biochemie und Physiologie der

Pflanzen, 167, 191-194.

Jones, R. I., Grey, J., Quarmby, C. & Sleep, D. 2001. Sources

and fluxes of inorganic carbon in a deep, oligotrophic

lake (Loch Ness, Scotland). Global Biogeochemical

Cycles, 15, 863-870.

Kroopnick, P. m. 1985. The distribution of 13C of ΣCO2

in the world oceans. Deep Sea Research Part A.

Oceanographic Research Papers, 32, 57-84.

Lamb, A. L., Wilson, G. P. & Leng, m. J. 2006. A

review of coastal palaeoclimate and relative sealevel reconstructions using δ13C and C/N ratios in

organic material. Earth-Science Reviews, 75, 29-57.

Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S. & Fairbanks,

R. G. 1995. The influence of air-sea exchange on the

isotopic composition of oceanic carbon: Observations

and modeling. Global Biogeochemical Cycles, 9,

-665.

Mahiques, m. m. D., Burone, L., Figueira, R. C. L., LavenéreWanderley, A. A. D. O., Capellari, B., Rogacheski, C. E.,

Barroso, C. P., Samaritano Dos Santos, L. A., Cordero,

L. m. & Cussioli, m. C. 2009. Anthropogenic influences

in a lagoonal environment: a multiproxy approach at

the valo grande mouth, Cananéia-Iguape system (SE

Brazil). Brazilian Journal of Oceanography, 57, 325-337.

Mesquita, A. R. & Harari, J. 1983. Tides and Tide gauges

of Cananeia and Ubatuba. Relatorio interno do Instituto

Oceanográfico da USP, 1, 14.

Millo, C., Bravo, C., Covelli, S., Pavoni, E., Petranich, E.,

Contin, m., De Nobili, m., Crosera, m., Otero Sutti, B.,

Das mercês Silva, C. & De Santis Braga, E. 2021. metal

Binding and Sources of Humic Substances in Recent

Sediments from the Cananéia-Iguape Estuarine-Lagoon

Complex (South-Eastern Brazil). Applied Sciences, 11.

Mook, W. G., Bommerson, J. C. & Staverman, W. H.

Carbon isotope fractionation between dissolved

bicarbonate and gaseous carbon dioxide. Earth and

Planetary Science Letters, 22, 169-176.

Ortiz, J. D., mix, A. C., Wheeler, P. A. & Key, R. m. 2000.

Anthropogenic CO2

invasion into the northeast Pacific

based on concurrent δ13CDIC and nutrient profiles from

the California Current. Global Biogeochemical Cycles,

, 917-929.

Schmittner, A., Gruber, N., mix, A. C., Key, R. m., Tagliabue,

A. & Westberry, T. K. 2013. Biology and air–sea

gas exchange controls on the distribution of carbon

isotope ratios (δ13C) in the ocean. Biogeosciences, 10,

-5816.

Torres, m. E., mix, A. C. & Rugh, W. D. 2005. Precise

δ13C analysis of dissolved inorganic carbon in natural

waters using automated headspace sampling and

continuous-flow mass spectrometry. Limnology and

Oceanography: methods, 3, 349-360.

YAKIR, Z. 2003. The Stable Isotopic Composition of

Atmospheric CO2

. In: HOLLAND, H. D. & TUREKIAN,

K. K. (eds.) Treatise in Geochemistry. Amsterdam,

Elsevier.

Zeebe, R. E., Wolf-Gladrow, D. 2001. Chapter 1 Equilibrium.

In: Zeebe, R. E. & Wolf-Gladrow, D. (eds.) Elsevier

Oceanography Series (pp. 1-84). Amsterdam: Elsevier.

Downloads

Published

14.01.2025

How to Cite

Conservative behavior of δ13C values of dissolved inorganic carbon in the Cananéia-Iguape estuarine-lagoon complex (southeastern Brazil). (2025). Ocean and Coastal Research, 72. https://doi.org/10.1590/