Regeneration patterns in Naineris aurantiaca (Müller, 1858) (Annelida, Orbiniidae)
DOI:
https://doi.org/10.1590/Keywords:
Morphological variation, Polychaete, Body reconstruction, Worm, Regeneration experimentAbstract
Regeneration is a widespread ability in annelids, and each species and developmental stage may present differences in healing and regeneration processes. Some species can completely regenerate the posterior or anterior region or both. Among the orbiniids, regeneration studies are scarce. In Naineris aurantiaca (Müller, 1858), first species of Naineris described in Brazil, studies about the species’ biology and regeneration capabilities are absent. Aiming to observe the regeneration capabilities of N. aurantiaca and its abnormalities, we sampled the specimens from Lagoa da Sereia Beach, Mel Island, Brazil, among algae tufts and between the mussel’s shells. The experimental design consisted of three different amputations: i) at the end of the thorax—creating treatment AM (anterior and medium) and P (posterior) —; ii) at the chaetiger where branchiae first appear—treatment A (anterior) and MP (medium and posterior) —; iii), and combined—treatment A (anterior), treatment M (medium) and P (posterior). Analysis showed that time (weeks) and treatments (A, AM, M, MP, P) affected survivorship and other features such as length and width. Treatments AM and A had higher mortality rates than P and MP, showing robust anterior regeneration. Treatment M had no survivors. Mean size and width were higher in treatment MP. Remarkable and robust head regeneration and inability to regenerate the gut and the branchial segments suggests that food absorption and gas exchange are key functions in this species.
References
Álvarez, R. C., Miranda, V. R. & Brasil, A. C. S. 2019. Redescription of Naineris aurantiaca (Müller, 1858) and designation of a neotype from the Brazilian coast (Annelida: Orbiniidae). Zootaxa, 4571(1), 125–136. DOI: https://doi.org/10.11646/zootaxa.4571.1.8.
Álvarez-Campos, P., Planques, A., Bideau, L., Vervoort, M. & Gazave, E. 2023. On the hormonal control of posterior regeneration in the annelid Platynereis dumerilii. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 340(4), 298–315. DOI:
https://doi.org/10.1002/jez.b.23182.
Anderson, J. C. 1956. Relations between Metabolism and Morphogenesis during Regeneration in Tubifex tubifex. II. The Biological Bulletin, 111(2), 179–189. Available from: https://www.journals.uchicago.edu/doi/10.2307/1539010. access date: 2024 Oct. 16.
Bely, A. E. 2006. Distribution of segment regeneration ability in the Annelida. Integrative and Comparative Biology, 46(4), 508–518. DOI: https://doi.org/10.1093/icb/icj051.
Bely, A. E. 2010. Evolutionary loss of animal regeneration: pattern and process. Integrative and Comparative Biology, 50(4), 515–527. DOI: https://doi.org/10.1093/icb/icq118.
Bely, A. E. & Nyberg, K. G. 2010. Evolution of animal regeneration: re-emergence of a field. Trends in Ecology & Evolution, 25(3), 161–170. DOI: https://doi.org/10.1016/j.tree.2009.08.005.
Bely, A. E., Zattara, E. E. & Sikes, J. M. 2014. Regeneration in spiralians: evolutionary patterns and developmental processes. International Journal of Developmental Biology, 58(6-7-8), 623–634. DOI: https://doi.org/10.1387/ijdb.140142ab.
Berrill, N. J. 1952. Regeneration and budding in worms. Biological Reviews, 27(4), 401–438. DOI: https://doi.org/10.1111/j.1469-
X.1952.tb01512.x
Brockes, J. P. & Kumar, A. 2008. Comparative aspects of animal regeneration. Annual Review of Cell and Developmental Biology, 24, 525–549. DOI: https://doi.org/10.1146/annurev.cellbio.24.110707.175336.
Cho, S. J., Koh, K. S., Lee, E. & Park, S. C. 2009. Differential expression of three labial genes during earthworm head regeneration. Bioscience, Biotechnology, and Biochemistry, 73(12), 2609–2614. DOI: https://doi.org/10.1271/bbb.90416.
Francoeur, A. A. & Dorgan, K. M. 2014. Burrowing behavior in mud and sand of morphologically divergent polychaete species (Annelida: Orbiniidae). The Biological Bulletin, 226(2), 131–145. DOI: https://doi.org/10.1086/BBLv226n2p131.
Glasby, C. J., Erséus, C. & Martin, P. 2021. Annelids in extreme aquatic environments: diversity, adaptations and evolution. Diversity, 13(2), 98. DOI: https://doi.org/10.3390/d13020098.
Gravier, C. 1908. Sur les annélides polychètes rapportés par M. le Dr. Rivet, de Payta (Pérou). Bulletin du Museum de Histoire Naturelle Paris, 14(1), 40–44.
Herlant-Meewis, H. 1964. Regeneration in annelids. Advances in Morphogenesis, 4, 155–215. DOI: https://doi.org/10.1016/B978-1-4831-9951-1.50008-5.
Hyman, L. H. 1940. Aspects of regeneration in annelids. The American Naturalist, 74(755), 513–527. de Jong, D. M. & Seaver, E. C. 2017. Investigation into the cellular origins of posterior regeneration in the annelid Capitella teleta. Regeneration, 5(1), 61–77. DOI: https://
doi.org/10.1002/reg2.94.
Kostyuchenko, R. P. & Kozin, V. V. 2021. Comparative aspects of annelid regeneration: towards understanding the mechanisms of regeneration. Genes, 12(8), 1148. DOI: https://doi.org/10.3390/genes12081148.
Kozin, V. V. & Kostyuchenko, R. P. 2015. Vasa, PL10, and Piwi gene expression during caudal regeneration of the polychaete annelid Alitta virens. Development Genes and Evolution, 225(3), 129–138. DOI: https://doi.org/10.1007/s00427-015-0496-1.
Meyer, A., Bleidorn, C., Rouse, G. W. & Hausen, H. 2007. Morphological and molecular data suggest a cosmopolitan distribution of the polychaete Proscoloplos cygnochaetus Day, 1954 (Annelida, Orbiniidae). Marine Biology, 153(5), 879–889. DOI: https://doi.org/10.1007/
s00227-007-0860-4. Regeneration in Naineris aurantiaca (Annelida, Orbiniidae) Ocean and Coastal Research 2024, v72(suppl 1):e24087 11
Álvarez et al.
Miyamoto, N., Shinozaki, A. & Fujiwara, Y. 2014. Segment regeneration in the vestimentiferan tubeworm, Lamellibrachia satsuma. Zoological Science, 31(8), 535–541. DOI: https://doi.org/10.2108/zs130259.
Müller, F. 1858. Einiges über die Annelidenfauna der Insel Santa Catharina an der brasilianischen Küste. Archiv für Naturgeschichte, 24(1), 211–220. Available from: https://www.marinespecies.org/aphia.php?p=sourcedetails&id=752. Acess date: 2024 Oct. 16.
Nikanorova, D. D., Kupriashova, E. E. & Kostyuchenko, R. P. 2020. Regeneration in annelids: cell sources, tissue remodeling, and differential gene expression. Russian Journal of Developmental Biology, 51(3), 148–161. DOI: https://doi.org/10.1134/S1062360420030042.
Özpolat, B. D. & Bely, A. E. 2016. Developmental and molecular biology of annelid regeneration: a comparative review of recent studies. Current Opinion in Genetics & Development, 40, 144–153. DOI: https://doi.org/10.1016/j.gde.2016.07.010.
Özpolat, B. D., Sloane, E. S., Zattara, E. E. & Bely, A. E. 2016. Plasticity and regeneration of gonads in the annelid Pristina leidyi. EvoDevo, 7, 22. DOI: https://doi.org/10.1186/s13227-016-0059-1.
Planques, A., Malem, J., Parapar, J., Vervoort, M. & Gazave, E. 2019. Morphological, cellular and molecular characterization of posterior regeneration in the marine annelid Platynereis dumerilii. Developmental Biology, 445(2), 189–210. DOI: https://doi.org/10.1016/j.ydbio.2018.11.004.
Probst, G. 1931. Beiträge zur Regeneration der anneliden: I. Die Herkunft des Regenerationsmaterials bei der Regeneration des kaudalen Körperendes von Aricia foetida Claparède. Wilhelm Roux‘ Archiv für Entwicklungsmechanik der Organismen, 124, 369–403. DOI: https://doi.org/10.1007/BF00652481.
Ribeiro, R. P., Bleidorn, C. & Aguado, M. T. 2018. Regeneration mechanisms in Syllidae (Annelida). Regeneration, 5(1), 26–42. DOI: https://doi.org/10.1002/reg2.98.
Ribeiro, R. P., Ponz-Segrelles, G., Bleidorn, C. & Aguado, M. T. 2019. Comparative transcriptomics in Syllidae (Annelida) indicates that posterior regeneration and regular growth are comparable, while anterior regeneration is a distinct process. BMC Genomics, 20(1), 855. DOI: https://doi.org/10.1186/s12864-019-6223-y.
Schoeman, S. & Simon, C. A. 2023. Live to die another day: regeneration in Diopatra aciculata Knox and Cameron, 1971 (Annelida: Onuphidae) collected as bait in Knysna Estuary, South Africa. Biology, 12(3), 483. DOI: https://doi.org/10.3390/biology12030483.
Seaver, E. C. 2022. Sifting through the mud: a tale of building the annelid Capitella teleta for EvoDevo studies. Current Topics in Developmental Biology, 147, 401–432. DOI: https://doi.org/10.1016/bs.ctdb.2021.12.018.
Seaver, E. C. & de Jong, D. M. 2021. Regeneration in the segmented annelid Capitella teleta. Genes, 12(11), 1769. DOI: https://doi.org/10.3390/genes12111769.
Schenkelaars, Q. & Gazave, E. 2021. The Annelid Platynereis dumerilii as an experimental model for evo-devo and regeneration studies. In: Boutet, A. & Schierwater, B. (Ed.) Handbook of Marine Model Organisms in Experimental Biology (pp. 235–257). Boca Raton: CRC Press.
Tadokoro, R., Sugio, M., Kutsuna, J., Tochinai, S. & Takahashi, Y. 2006. Early segregation of germ and somatic lineages during gonadal regeneration in the annelid Enchytraeus japonensis. Current Biology, 16(10), 1012–1017. DOI: https://doi.org/10.1016/j.cub.2006.04.036.
R Development Core Team. 2021. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Weidhase, M., Helm, C. & Bleidorn, C. 2015. Morphological investigations of posttraumatic regeneration in Timarete cf. punctata (Annelida: Cirratulidae). Zoological Letters, 1, 20. DOI: https://doi.org/10.1186/s40851-015-0023-2.
Weidhase, M., Beckers, P., Bleidorn, C. & Aguado, M. T. 2016. On the role of the proventricle region in reproduction and regeneration in Typosyllis antoni (Annelida: Syllidae). BMC Evolutionary Biology, 16,196. DOI: https://doi.org/10.1186/s12862-016-0770-5.
Yáñez-Rivera, B. & Méndez, N. 2014. Regeneration in the stinging fireworm Eurythoe (Annelida): lipid and triglyceride evaluation. Journal of Experimental Marine Biology and Ecology, 459, 137–143. DOI: https://doi.org/10.1016/j.jembe.2014.05.023.
Zhadan, A., Stupnikova, A. & Neretina, T. 2015. Orbiniidae (Annelida: Errantia) from Lizard Island, Great Barrier Reef, Australia with notes on orbiniid phylogeny. Zootaxa, 4019(1), 773–801. DOI: https://doi.org/10.11646/zootaxa.4019.1.27.
Zhadan, A. 2020. Review of Orbiniidae (Annelida, Sedentaria) from Australia. Zootaxa, 4860(4), 451–502. DOI: http://doi.org/10.11646/ZOOTAXA.4860.4.1.
Zoran, M. J. (2010, Sep. 15). Regeneration in annelids. Encyclopedia of Life Sciences (eLS). DOI: http://doi.org/10.1002/9780470015902.a0022103
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ocean and Coastal Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.