Indonesia Cable-Based Tsunameter (InaCBT): Tsunami detection and identification on other seismic wave signals

Authors

  • Wahyu W. Pandoe
  • Michael A. Purwoadi
  • Zulfa Qonita
  • Alfi Rusdiansyah
  • Aris Suwarjono

DOI:

https://doi.org/10.1590/

Keywords:

Tsunami early warning, Deep sea pressure, Lanczos filtering, Seismic and tsunami signals, Spectral analysis

Abstract

The Indonesian Cable-Based Tsunameter (InaCBT) is the most recently developed innovative prototype that has
been deployed in the Flores Sea north of Labuan Bajo, Flores Island, Indonesia. Two ocean bottom units (OBU)
were attached to a single fiber-optic cable. The first one is 34.0 km from the shore at a depth of 2100 m (LB-01) and
the second one is 54.2 km from the shore at depth of 4110 m (LB-02), respectively. Each OBU comprises one deepsea bottom pressure recorder (BPR); a three-axis accelerometer; and temperature, humidity, and leakage sensors.
Since deployment, the InaCBT has detected at least three near-field and distant earthquake events. One of them,
the M7.5 Banda earthquake (EQ), detected on January 9, 2023, resulted a rise of the sea level recorded at six
coastal tidal stations around the location. Near real-time analysis applies Lanczos filtering to split EQ signals (high
frequency) and tsunamis (low frequency, if present). EQ wave signals dominate at 10-14-second wave periods.
Using data from Banda EQ, the low-frequency wave shows an oscillation that probably indicates the presence of a
tsunami wave. The identification and distinction of EQs and tsunami can be done by directly filtering raw data without
detiding and by using harmonic analysis. The 30-50-second cut-off period can separate EQ and tsunami signals.

References

Aguilera, C. A. V. 2022. LanczosFilter.m. MATLAB Central

File Exchange. Available from: https://www.mathworks.

com/matlabcentral/fileexchange/14041-lanczosfilter-m

Access date: Jul 28, 2022.

Dean, R. G. & Dalrymple, R. A. 1984. Water wave mechanics

for engineers and scientists. Eos, 66(24), 490-491.

DOI: https://doi.org/10.1029/eo066i024p00490-06

Dogan, G. G., Annunziato, A., Hidayat, R.,

Husrin, S., Prasetya, G., Kongko, W., Zaytsev, A.,

Pelinovsky, E., Imamura, F. & Yalciner, A. C. 2021.

Numerical Simulations of December 22, 2018 Anak

Krakatau Tsunami and Examination of Possible

Submarine Landslide Scenarios. Pure and Applied

Geophysics, 178(1), 1–20. DOI: https://doi.org/10.1007/

s00024-020-02641-7

Duchon, C. E. 1979. Lanczos Filtering in One and

Two Dimensions. Journal of Applied Meteorology, 18,

–1022.

Fatimah, S., Hafidz, A., Zikri, M. S., Safira, N.,

Indra, T. L. & Supriyanto. 2022. Landslide triggered

tsunami modelling: A study in Anak Krakatoa

collapse. E3S Web of Conferences, 340, 1–5.

https://doi.org/10.1051/e3sconf/202234001003

Kobayashi, M., Takemura, S. & Yoshimoto, K. 2015.

Frequency and distance changes in the apparent

P-wave radiation pattern: Effects of seismic

wave scattering in the crust inferred from dense

InaCBT: Tsunami and Seismic Wave Signals

Ocean and Coastal Research 2024, v72:e24059 10

Pandoe et al.

seismic observations and numerical simulations.

Geophysical Journal International, 202(3), 1895–1907.

https://doi.org/10.1093/gji/ggv263

Kongko, W., Karima, S. & Daryono. 2020. The Tsunami

Model of Mount Anak Krakatau Landslide in 2018 and

Its Future Potential Hazard to the Coastal Infrastructures

in Sunda Strait. Journal of Physics: Conference

Series, 1625(1). DOI: https://doi.org/10.1088/1742-

/1625/1/012052

Kusuma, A. A. N. A., Agastani, T., Nugroho, T.,

Anggraeni, S. P. & Hartawan, A. R. 2022.

Estimating MQTT Performance in A Virtual

Testbed of INA-CBT Communication Sub-System.

In: Proceeding - 2022 International Conference

on Radar, Antenna, Microwave, Electronics, and

Telecommunications: Emerging Science and Industrial

Innovation in Electronics and Telecommunication,

ICRAMET 2022 (pp. 73-77). DOI: https://doi.

org/10.1109/ICRAMET56917.2022.9991213

Lacanna, G. & Ripepe, M. 2020. Genesis of Tsunami Waves

Generated by Pyroclastic Flows and the Early-Warning

System. Miscellanea INGV, 255.

Lanczos resampling. 2023. Wikipedia. Available from:

https://en.wikipedia.org/wiki/Lanczos_resampling

Access date: Jan 12, 2023

Low-pass Filter. (2023). Wikipedia. Available from:

https://en.wikipedia.org/wiki/Low-pass_filter. Access date:

Jan 12, 2023

Mizutani, A., Yomogida, K. & Tanioka, Y. 2020. Early Tsunami

Detection With Near-Fault Ocean-Bottom Pressure

Gauge Records Based on the Comparison With Seismic

Data. Journal of Geophysical Research: Oceans,

(9). DOI: https://doi.org/10.1029/2020JC016275

Nakata, K., Katsumata, A. & Muhari, A. 2020.

Submarine landslide source models consistent with

multiple tsunami records of the 2018 Palu tsunami,

Sulawesi, Indonesia. Earth, Planets and Space, 72(1).

https://doi.org/10.1186/s40623-020-01169-3

National Centers for Environmental Information. 2023.

Tsunami Event Banda Sea. Silver Spring: NCEI.

Available from: https://www.ngdc.noaa.gov/hazel/view/

hazards/tsunami/runup-more-info/36972 Access date:

Feb 17, 2023

Ouchi, T. 1981. Spectral Structure of High Frequency P

and S Phases Observed by Obs’s in the Mariana Basin.

Journal of Physics of the Earth, 29, 305–326.

Pandoe, W. W., Djamaluddin, R. & Kongko, W. 2008.

The 12 September 2007 Tsunami Detected on

Indonesian “Krakatau” Tsunameter. In: International

Conference of the Tsunami Warning, Ministry

of Research and Technology of the Republic of

Indonesia, Bali.

Privadi, A., Damara, D. R., Widati, P. L. & Triputra, F. R. 2021.

Indonesia’s Cable Based Tsunameter (CBT) System

as an Earthquake Disaster Mitigation System in East

Nusa Tenggara. Proceeding - 2021 IEEE Ocean

Engineering Technology and Innovation Conference:

Ocean Observation, Technology and Innovation

in Support of Ocean Decade of Science, OETIC

(pp. 63-67), Jakarta. DOI: https://doi.org/

1109/OETIC53770.2021.9733734

Purwoadi, M. A., Anantasena, Y., Pandoe, W. W.,

Widodo, J. & Sakya, A. E. 2023. Introduction to

Indonesian Cable-based Subsea Tsunameter. 2023

IEEE International Symposium on Underwater

Technology, UT 2023, March (pp. 1-6), Tokyo.

DOI: https://doi.org/10.1109/UT49729.2023.10103368

Shinohara, M., Yamada, T., Sakai, S., Shiobara, H. &

Kanazawa, T. 2015. New ocean bottom cabled seismic

and tsunami observation system enhanced by ICT.

Oceans - St. John’s, OCEANS 2014, St. John’s.

DOI: https://doi.org/10.1109/OCEANS.2014.7003045

Triyono, R., Prasetya, T., Anugrah, S. D., Sudrajat, A.,

Setiyono, U., Gunawan, I., Priyobudi, Yatimantoro, T.,

Hidayanti, Anggraini, S., Rahayu, R. H., Yogaswara, D. S.,

Hawati, P., Apriyani, M., Julius, A. M., Harvan, M.,

Simangunsong, G. & Kriswinarso, T. 2019. Katalog

Tsunami Indonesia Per-Wilayah Tahun 416-2018. In:

Pusat Gempabumi dan Tsunami Kedeputian Bidang

Geofisika. Jakarta: BMKG.

Wiegel, L. R. 2005. Oceanographical Engineering. In:

Wiegel, L. R. Prentice-Hall international series in

theoretical and applied mechanics Prentice-Hall series

in fluid mechanics (pp. 532). [S. l.]: Prentice-Hall

Downloads

Published

17.12.2024

How to Cite

Indonesia Cable-Based Tsunameter (InaCBT): Tsunami detection and identification on other seismic wave signals. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/