Distribution of total suspended solids and dynamics of the estuarine turbidity maximum in the Ipojuca River estuary

Authors

  • Sayonara Lins
  • Carmen Medeiros
  • Issac Freitas

DOI:

https://doi.org/10.1590/

Keywords:

Sediments, Suspended particulate matter, Constricted river mouth, Tropical estuary

Abstract

This study focused on the distribution of total suspended solids (TSS) concentration along the Ipojuca River
estuary and on identifying the average location of the estuarine turbidity maximum (ETM) zone considering
the seasonality of its rainfall and tidal regime. This research was carried out along a 13.6 km stretch of the
chosen river, with 21 sampling stations during the rainy (Jun-Jul/17) and dry periods (Dec/17). Temperature and
salinity data were obtained at each station using CTD profiling. Furthermore, current intensity and direction were
measured using a current meter, and water samples were collected to determine TSS concentrations. The water
column showed vertically homogeneous temperature (~27° C). Salinity distribution varied seasonally and along
the tidal cycle throughout the system. The estuary shows a weakly to moderately stratified water column that
intensifies itself upstream. At just 2.28 km from the river mouth (second station), salinity varies by 0.2-32.9. This
stratification primarily stems from the constriction of its river mouth, trapping freshwater in its interior. Currents
showed higher values during the rainy period (-5 to 95.8 cms-1). TSS concentrations were higher during the rainy
season, ranging from 8.6 to 241.2 mg L-1 during spring tides and from 6.5 to 223.0 mg L-1 during neap tides.
The ETM was located at 1.8-2.2 km from the river mouth during the rainy season and at 2-8 km during the dry
season. The ETM coincided with the boundaries of salt propagation in the estuary, corresponding to salinities
of 0.2-10, and longitudinal currents ranging from 60 to -10 cm s-1, indicating the mixing zone of water masses.
Since the ETM is also associated with the area of highest sediment deposition in the estuary, it is likely that most
materials transported to the estuary that are associated with sediment transport remain trapped in this zone,
making it an important area for further studies.

References

Ahmerkamp, S., Liu, B., Kindler, K., Maerz, J., Stocker, R.,

Kuypers, M. M. M. & Khalil, A. 2022. Settling of highly

porous and impermeable particles in linear stratification:

Implications for marine aggregates. Journal of Fluid

Mechanics, 931, A9. DOI: https://doi.org/10.1017/

jfm.2021.913

ANA (National Water Agency). 2023. HIDROWEB:

Hydrometeorological Database. v3.2.7. Available

from: https://www.snirh.gov.br/hidroweb/apresentacao.

Access on: 2023 Oct. 20.

APAC (Pernambuco Agency of Waters and Climate). 2022.

Rainfall Station Data. Available from: http://old.apac.

pe.gov.br/meteorologia/monitoramento-pluvio.php.

Access on: 2022 July 15.

Arruda-Santos, R. H., Schettini, C. A. F., Yogui, G. T.,

Maciel, D. C. & Zanardi-Lamardo, E. 2018. Sources and

distribution of aromatic hydrocarbons in a tropical marine

protected area estuary under influence of sugarcane

cultivation. Science of the Total Environment, 624, 935-

DOI: https://doi.org/10.1016/j.scitotenv.2017.12.174

Asp, N. E., Schettini, C. A. F., Siegle, E., Silva, M. S. & Brito,

R. N. 2012. The dynamics of a frictionally-dominated

Amazonian estuary. Brazilian Journal of Oceanography,

(3), 391-403. Available from: https://www.scielo.br/j/

bjoce/a/4BLrPPhmJVrk75ytLNk7TgR/?lang=en. Access

on: 2024 May. 16. Barcellos, R. L. & Santos, L. D. 2018. Histórico de impactos

e o estado da arte em Oceanografia no sistema

estuarino-lagunar de Suape-Ipojuca (PE). Parcerias

Estratégicas, 26(46), 155-168. Available from: https://

seer.cgee.org.br/parcerias_estrategicas/issue/view/86.

Access on: 2024 May. 16.

Baptista Neto, J. A., Abelin, V. R. P. & Sichel, S. E. 2004.

Introdução à Geologia Marinha. Rio de Janeiro,

Interciência.

Batista, T. N. F. & Flores-Montes, M. J. 2014. Estado

trófico dos estuários dos rios Ipojuca e Merepe – PE.

Tropical Oceanography, 42(3), 22-30. DOI: https://doi.

org/10.5914/tropocean.v42i3.5767

Berlamont, J., Ockenden, M., Toorman, E. & Winterwerp,

J. 1993. The characterization of cohesive sediment

properties. Coastal Engineering, 21(1-3), 105-128. DOI:

https://doi.org/10.1016/0378-3839(93)90047-C

Chen, M. S., Wartel, S., Eck, B. V. & Maldegem, D. V. 2005.

Suspended matter in the Scheldt estuary. Hydrobiologia,

, 79-104. DOI: https://doi.org/10.1007/s10750-004-

-y

Garel, E., Pinto, L., Santos, A. & Ferreira, Ó. 2009. Tidal

and river discharge forcing upon water and sediment

Total suspended solids and ETM in a tropical estuary

Ocean and Coastal Research 2024, v72:e24050 14

Lins et al.

circulation at a rock-bound estuary (Guadiana estuary,

Portugal). Estuarine, Coastal and Shelf Science, 84(2),

-281. DOI: https://doi.org/10.1016/j.ecss.2009.07.002

Ghazali, M. E. B., Argo, Y., Kyotoh, H. & Adachi, Y. 2020.

Effect of the concentration of NaCl and cylinder height

on the sedimentation of flocculated suspension of NaMontmorillonite in the semi-dilute regime. Paddy and

Water Environment, 18, 309-316. DOI: https://doi.

org/10.1007/s10333-019-00783-6

Gibbs, R. J. 1985. Estuarine flocs: their size, settling

velocity and density. Journal of Geophysical Research,

(C2), 3249-3251. DOI: https://doi.org/10.1029/

jc090ic02p03249

Gibbs, R. J. 1986. Segregation of metals by coagulation

in estuaries. Marine Chemistry, 18(2-4), 149-159. DOI:

https://doi.org/10.1016/0304-4203(86)90004-6

IBGE (Instituto Brasileiro de Geografia e Estatística). 2017.

Indicadores de desenvolvimento sustentável – Edição

Available from: https://sidra.ibge.gov.br/pesquisa/

ids/tabelas. Access on: 2022 Oct. 9.

IBGE (Instituto Brasileiro de Geografia e Estatística). 2021.

Base cartográfica contínua do Brasil, escala 1:250 000 –

BC250. Versão 2021. Available from: https://geoftp.ibge.

gov.br/cartas_e_mapas/bases_cartograficas_continuas/

bc250/versao2021/shapefile/. Access on: 2023 Jul. 20.

IOC, SCOR and IAPSO. 2010. The International

Thermodynamic Equation of Seawater – 2010:

Calculation and use of thermodynamic properties.

Intergovernmental Oceanographic Commission,

Manuals and Guides 56, Geneva, UNESCO.

INMET (Instituto Nacional de Meteorologia). 2017.

Precipitação pluviométrica estação D016 Ipojuca.

Available from: https://portal.inmet.gov.br/. Access on:

Oct. 10.

Kösters, F., Grabemann, I. & Schubert, R. 2014. On SPM

dynamics in the turbidity maximum zone of the Weser

Estuary. Die Küste, 81(81), 393-408. Available from:

https://hdl.handle.net/20.500.11970/101702. Access

on: 2024 May. 16.

Krahl, E., Vowinckel, B., Ye, L., Hsu, T. J. & Manning, A. J.

Impact of the salt concentration and biophysical

cohesion on the settling behavior of bentonites.

Frontiers in Earth Science, 10, 886006. DOI: https://doi.

org/10.3389/feart.2022.886006

Kranenburg, C. 1994. The fractal structure of cohesive

sediment aggregates. Estuarine, Coastal and Shelf

Science, 39(6), 451-460. DOI: https://doi.org/10.1016/

S0272-7714(06)80002-8

Krone, R. B. 1962. Flume studies of the transport of

sediment in estuarial shoaling process (Final Report).

Berkeley: Hydraulic Engineering Laboratory and

Sanitary Engineering Research Laboratory, University

of California.

Lee, B. J., Fettweis, M., Toorman, E. & Molz, F. J. 2012.

Multimodality of a particle size distribution of cohesive

suspended particulate matters in a coastal zone.

Journal of Geophysical Research: Oceans, 117(C3).

DOI: https://doi.org/10.1029/2011jc007552

Li, W., Zhang, W., Shan, B., Sun, B., Guo, X. & Li, Z.

Risk assessment of heavy metals in suspended

particulate matter in a typical urban river. Environmental

science and pollution research international, 29(31),

-46664. DOI: https://doi.org/10.1007/s11356-

-18966-w

Lins, S. R. R. M. 2018. Propagação das marés salina e

dinâmica no Rio Ipojuca-PE, Brasil (Mestrado em

Oceanografia). Recife: Universidade Federal de

Pernambuco.

Lins, S. R. R. M. & Medeiros, C. 2018. Propagação da maré

salina em um estuário tropical estrangulado, Ipojuca,

NE-Brasil. Tropical Oceanography, 46(1), 70-91. DOI:

https://doi.org/10.5914/tropocean.v46i1.237251

Maggi, F. 2009. Biological flocculation of suspended

particles in nutrient rich aqueous ecosystems. Journal

of Hydrology, 376(1-2), 116-125. DOI: https://doi.

org/10.1016/j.jhydrol.2009.07.040

Manning, A. J. & Bass, S. J. 2006. Variability in cohesive

sediment settling fluxes: observations under different

estuarine tidal conditions. Marine Geology, 235(1-4), 177-

DOI: https://doi.org/10.1016/j.margeo.2006.10.013

Manning, A. J., Bass, S. J. & Dyer, K. R. 2007. Preliminary

findings of a study of the upper reaches of the Tamar

Estuary, UK, throughout a complete tidal cycle: Part

II: In-situ floc spectra observations. in Estuarine and

Coastal Fine Sediments Dynamics. In: Maa, J. P.-Y.,

Sanford, L. P. & Schoellhamer, D. H. (Ed.). Proceedings

in Marine Science (v. 8, pp. 1-14). Amsterdam: Elsevier.

Manning, A. J. & Dyer, K. R. 2002. a comparison of floc

properties observed during neap and spring tidal

conditions. In: Winterwerp, J. C., Kranenburg, C. (Ed.).

Proceedings in marine science (v. 5, pp. 233-250).

Amsterdam: Elsevier.

Mikkelsen, O., Hill, P. & Milligan, T. 2006. Single-grain,

microfloc and macrofloc volume variations observed

with a LISST-100 and a digital floc camera. Journal

of Sea Research, 55(2), 87-102. DOI: https://doi.

org/10.1016/j.seares.2005.09.003

Millero, F. J. 2006. Chemical oceanography. 3rd. ed. Boca

Raton, CRC Press.

Miranda, A. M. 2019. Condições ambientais do estuário do

rio merepe (Pernambuco/BR): biomassa fitoplânctonica

e parâmetros hidrológicos (Mestrado em Oceanografia).

Recife: Universidade Federal de Pernambuco.

Miranda, L. B., Andutta, F. P., Kjerfve, B., & Castro, B. M.

Fundamentals estuarine physical oceanography.

Berlin, Springer.

Noriega, C., Santiago, M. F., Façanha, P., Silva Cunha,

M. G., Silva, R., Flores Montes, M., Araujo, M., Costa,

K. M., Eskinazi, E. & Neumann-Leitão, S. 2013. The

instantaneous transport of inorganic and organic

material in a highly polluted tropical estuary. Marine and

Freshwater Research, 64(6), 562-572. DOI: https://doi.

org/10.1071/MF12083

Oliveira, T. S., Xavier, D., Santos, L., França, E., Sanders,

C., Passos, T. & Barcellos, R. 2020. Geochemical

background indicators within a tropical estuarine system

influenced by a port-industrial complex. Marine Pollution

Bulletin, 161, 111794. DOI: https://doi.org/10.1016/j.

marpolbul.2020.111794

PERNAMBUCO. Secretaria de Recursos Hídricos. 2010.

Plano hidroambiental da bacia hidrográfica do rio

Ipojuca: Tomo I – Diagnóstico hidroambiental – Volume

Total suspended solids and ETM in a tropical estuary

Ocean and Coastal Research 2024, v72:e24050 15

Lins et al.

/03 - Recursos Hídricos. Available from: https://www.

apac.pe.gov.br/images/media/1569523666_PHA_

Ipojuca_TOMO_I_VOL_1_Diagnostico_10.09.11.pdf.

Access on: 2024 May. 16.

Schettini, C. A. F., Paiva, B. P., Batista, R. D. A. L., Oliveira

Filho, J. C. D., Truccolo, E. C. 2016. Observation

of an estuarine turbidity maximum in the highly

impacted Capibaribe Estuary, Brazil. Brazilian Journal

of Oceanography, 64(2), 185-190. DOI: https://doi.

org/10.1590/S1679-87592016115006402

Seiphoori, A., Gunn, A., Kosgodagan Acharige, S., Arratia,

P. E., & Jerolmack, D. J. 2021. Tuning sedimentation

through surface charge and particle shape. Geophysical

Research Letters, 48(7), e2020GL091251. DOI: https://

doi.org/10.1029/2020gl091251

Strickland, J. D. H., Parsons, T. R. 1972. A practical

handbook of seawater analysis. 2nd.ed. Ottawa,

Queen’s Printer.

Talley, L. D., Pickard, G. L., Emery, W. J. & Swift, J. H. 2011.

Descriptive physical oceanography: An introduction. 6th.

ed., Boston, Elsevier.

Telesh, I. V. & Khlebovich, V. V. 2010. Principal process

within the estuarine salinity gradient: A review. Marine

Pollution Bulletin, 61(4-6), 149-155, DOI: https://doi.

org/10.1016/j.marpolbul.2010.02.008

Turner, A. & Millward, G. E. 2002. Suspended particles:

their role in estuarine biogeochemical cycles. Estuarine,

Coastal and Shelf Science, 55(6), 857-883, DOI: https://

doi.org/10.1006/ecss.2002.1033

Varona, H. L., Noriega, C., Araujo, J., Lira, S., Araujo, M.

& Hernandez, F. 2023. Plotting and statistical analysis

for oceanographers, meteorologists and ecologists

(mStatGraph). Zenodo, version (1.5). DOI: https://doi.

org/10.5281/zenodo.8095883

Veiga, T. T., Santos, L. D. & Barcellos, R. L. 2021. Análise da

dinâmica sedimentar espaço-temporal dos estuários do

ipojuca e merepe (PE) com base nos componentes da

fração arenosa (0,25mm e 0,50mm). In: Silva, C. D. D.,

Mota, D. A. (Org.). A pesquisa em ciências biológicas:

desafios atuais e perspectivas futuras (pp. 1-18). 2nd.

ed. Ponta Grossa: Atena.

Ye, L., Manning, A. J. & Hsu, T. J. 2020. Oil-mineral

flocculation and settling velocity in saline water. Water

Research, 173, 115569. DOI: https://doi.org/10.1016/j.

watres.2020.115569

Ye, L., Manning, A. J., Holyoke, J., Penaloza-Giraldo, J.

A. & Hsu, T. J. 2021. The role of biophysical stickiness

on oil-mineral flocculation and settling in seawater.

Frontiers in Marine Science, 8, 628827. DOI: https://doi.

org/10.3389/fmars.2021.628827

Yuan, Y., Wei, H., Zhao, L. & Cao, Y. 2009. Implications of

intermittent turbulent bursts for sediment resuspension

in a coastal bottom boundary layer: A field study in the

western Yellow Sea, China. Marine Geology, 263(1-4),

-96. DOI: https://doi.org/10.1016/j.margeo.2009.03.023

Downloads

Published

17.12.2024

How to Cite

Distribution of total suspended solids and dynamics of the estuarine turbidity maximum in the Ipojuca River estuary. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/