Distribution of total suspended solids and dynamics of the estuarine turbidity maximum in the Ipojuca River estuary
DOI:
https://doi.org/10.1590/Keywords:
Sediments, Suspended particulate matter, Constricted river mouth, Tropical estuaryAbstract
This study focused on the distribution of total suspended solids (TSS) concentration along the Ipojuca River
estuary and on identifying the average location of the estuarine turbidity maximum (ETM) zone considering
the seasonality of its rainfall and tidal regime. This research was carried out along a 13.6 km stretch of the
chosen river, with 21 sampling stations during the rainy (Jun-Jul/17) and dry periods (Dec/17). Temperature and
salinity data were obtained at each station using CTD profiling. Furthermore, current intensity and direction were
measured using a current meter, and water samples were collected to determine TSS concentrations. The water
column showed vertically homogeneous temperature (~27° C). Salinity distribution varied seasonally and along
the tidal cycle throughout the system. The estuary shows a weakly to moderately stratified water column that
intensifies itself upstream. At just 2.28 km from the river mouth (second station), salinity varies by 0.2-32.9. This
stratification primarily stems from the constriction of its river mouth, trapping freshwater in its interior. Currents
showed higher values during the rainy period (-5 to 95.8 cms-1). TSS concentrations were higher during the rainy
season, ranging from 8.6 to 241.2 mg L-1 during spring tides and from 6.5 to 223.0 mg L-1 during neap tides.
The ETM was located at 1.8-2.2 km from the river mouth during the rainy season and at 2-8 km during the dry
season. The ETM coincided with the boundaries of salt propagation in the estuary, corresponding to salinities
of 0.2-10, and longitudinal currents ranging from 60 to -10 cm s-1, indicating the mixing zone of water masses.
Since the ETM is also associated with the area of highest sediment deposition in the estuary, it is likely that most
materials transported to the estuary that are associated with sediment transport remain trapped in this zone,
making it an important area for further studies.
References
Ahmerkamp, S., Liu, B., Kindler, K., Maerz, J., Stocker, R.,
Kuypers, M. M. M. & Khalil, A. 2022. Settling of highly
porous and impermeable particles in linear stratification:
Implications for marine aggregates. Journal of Fluid
Mechanics, 931, A9. DOI: https://doi.org/10.1017/
jfm.2021.913
ANA (National Water Agency). 2023. HIDROWEB:
Hydrometeorological Database. v3.2.7. Available
from: https://www.snirh.gov.br/hidroweb/apresentacao.
Access on: 2023 Oct. 20.
APAC (Pernambuco Agency of Waters and Climate). 2022.
Rainfall Station Data. Available from: http://old.apac.
pe.gov.br/meteorologia/monitoramento-pluvio.php.
Access on: 2022 July 15.
Arruda-Santos, R. H., Schettini, C. A. F., Yogui, G. T.,
Maciel, D. C. & Zanardi-Lamardo, E. 2018. Sources and
distribution of aromatic hydrocarbons in a tropical marine
protected area estuary under influence of sugarcane
cultivation. Science of the Total Environment, 624, 935-
DOI: https://doi.org/10.1016/j.scitotenv.2017.12.174
Asp, N. E., Schettini, C. A. F., Siegle, E., Silva, M. S. & Brito,
R. N. 2012. The dynamics of a frictionally-dominated
Amazonian estuary. Brazilian Journal of Oceanography,
(3), 391-403. Available from: https://www.scielo.br/j/
bjoce/a/4BLrPPhmJVrk75ytLNk7TgR/?lang=en. Access
on: 2024 May. 16. Barcellos, R. L. & Santos, L. D. 2018. Histórico de impactos
e o estado da arte em Oceanografia no sistema
estuarino-lagunar de Suape-Ipojuca (PE). Parcerias
Estratégicas, 26(46), 155-168. Available from: https://
seer.cgee.org.br/parcerias_estrategicas/issue/view/86.
Access on: 2024 May. 16.
Baptista Neto, J. A., Abelin, V. R. P. & Sichel, S. E. 2004.
Introdução à Geologia Marinha. Rio de Janeiro,
Interciência.
Batista, T. N. F. & Flores-Montes, M. J. 2014. Estado
trófico dos estuários dos rios Ipojuca e Merepe – PE.
Tropical Oceanography, 42(3), 22-30. DOI: https://doi.
org/10.5914/tropocean.v42i3.5767
Berlamont, J., Ockenden, M., Toorman, E. & Winterwerp,
J. 1993. The characterization of cohesive sediment
properties. Coastal Engineering, 21(1-3), 105-128. DOI:
https://doi.org/10.1016/0378-3839(93)90047-C
Chen, M. S., Wartel, S., Eck, B. V. & Maldegem, D. V. 2005.
Suspended matter in the Scheldt estuary. Hydrobiologia,
, 79-104. DOI: https://doi.org/10.1007/s10750-004-
-y
Garel, E., Pinto, L., Santos, A. & Ferreira, Ó. 2009. Tidal
and river discharge forcing upon water and sediment
Total suspended solids and ETM in a tropical estuary
Ocean and Coastal Research 2024, v72:e24050 14
Lins et al.
circulation at a rock-bound estuary (Guadiana estuary,
Portugal). Estuarine, Coastal and Shelf Science, 84(2),
-281. DOI: https://doi.org/10.1016/j.ecss.2009.07.002
Ghazali, M. E. B., Argo, Y., Kyotoh, H. & Adachi, Y. 2020.
Effect of the concentration of NaCl and cylinder height
on the sedimentation of flocculated suspension of NaMontmorillonite in the semi-dilute regime. Paddy and
Water Environment, 18, 309-316. DOI: https://doi.
org/10.1007/s10333-019-00783-6
Gibbs, R. J. 1985. Estuarine flocs: their size, settling
velocity and density. Journal of Geophysical Research,
(C2), 3249-3251. DOI: https://doi.org/10.1029/
jc090ic02p03249
Gibbs, R. J. 1986. Segregation of metals by coagulation
in estuaries. Marine Chemistry, 18(2-4), 149-159. DOI:
https://doi.org/10.1016/0304-4203(86)90004-6
IBGE (Instituto Brasileiro de Geografia e Estatística). 2017.
Indicadores de desenvolvimento sustentável – Edição
Available from: https://sidra.ibge.gov.br/pesquisa/
ids/tabelas. Access on: 2022 Oct. 9.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2021.
Base cartográfica contínua do Brasil, escala 1:250 000 –
BC250. Versão 2021. Available from: https://geoftp.ibge.
gov.br/cartas_e_mapas/bases_cartograficas_continuas/
bc250/versao2021/shapefile/. Access on: 2023 Jul. 20.
IOC, SCOR and IAPSO. 2010. The International
Thermodynamic Equation of Seawater – 2010:
Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission,
Manuals and Guides 56, Geneva, UNESCO.
INMET (Instituto Nacional de Meteorologia). 2017.
Precipitação pluviométrica estação D016 Ipojuca.
Available from: https://portal.inmet.gov.br/. Access on:
Oct. 10.
Kösters, F., Grabemann, I. & Schubert, R. 2014. On SPM
dynamics in the turbidity maximum zone of the Weser
Estuary. Die Küste, 81(81), 393-408. Available from:
https://hdl.handle.net/20.500.11970/101702. Access
on: 2024 May. 16.
Krahl, E., Vowinckel, B., Ye, L., Hsu, T. J. & Manning, A. J.
Impact of the salt concentration and biophysical
cohesion on the settling behavior of bentonites.
Frontiers in Earth Science, 10, 886006. DOI: https://doi.
org/10.3389/feart.2022.886006
Kranenburg, C. 1994. The fractal structure of cohesive
sediment aggregates. Estuarine, Coastal and Shelf
Science, 39(6), 451-460. DOI: https://doi.org/10.1016/
S0272-7714(06)80002-8
Krone, R. B. 1962. Flume studies of the transport of
sediment in estuarial shoaling process (Final Report).
Berkeley: Hydraulic Engineering Laboratory and
Sanitary Engineering Research Laboratory, University
of California.
Lee, B. J., Fettweis, M., Toorman, E. & Molz, F. J. 2012.
Multimodality of a particle size distribution of cohesive
suspended particulate matters in a coastal zone.
Journal of Geophysical Research: Oceans, 117(C3).
DOI: https://doi.org/10.1029/2011jc007552
Li, W., Zhang, W., Shan, B., Sun, B., Guo, X. & Li, Z.
Risk assessment of heavy metals in suspended
particulate matter in a typical urban river. Environmental
science and pollution research international, 29(31),
-46664. DOI: https://doi.org/10.1007/s11356-
-18966-w
Lins, S. R. R. M. 2018. Propagação das marés salina e
dinâmica no Rio Ipojuca-PE, Brasil (Mestrado em
Oceanografia). Recife: Universidade Federal de
Pernambuco.
Lins, S. R. R. M. & Medeiros, C. 2018. Propagação da maré
salina em um estuário tropical estrangulado, Ipojuca,
NE-Brasil. Tropical Oceanography, 46(1), 70-91. DOI:
https://doi.org/10.5914/tropocean.v46i1.237251
Maggi, F. 2009. Biological flocculation of suspended
particles in nutrient rich aqueous ecosystems. Journal
of Hydrology, 376(1-2), 116-125. DOI: https://doi.
org/10.1016/j.jhydrol.2009.07.040
Manning, A. J. & Bass, S. J. 2006. Variability in cohesive
sediment settling fluxes: observations under different
estuarine tidal conditions. Marine Geology, 235(1-4), 177-
DOI: https://doi.org/10.1016/j.margeo.2006.10.013
Manning, A. J., Bass, S. J. & Dyer, K. R. 2007. Preliminary
findings of a study of the upper reaches of the Tamar
Estuary, UK, throughout a complete tidal cycle: Part
II: In-situ floc spectra observations. in Estuarine and
Coastal Fine Sediments Dynamics. In: Maa, J. P.-Y.,
Sanford, L. P. & Schoellhamer, D. H. (Ed.). Proceedings
in Marine Science (v. 8, pp. 1-14). Amsterdam: Elsevier.
Manning, A. J. & Dyer, K. R. 2002. a comparison of floc
properties observed during neap and spring tidal
conditions. In: Winterwerp, J. C., Kranenburg, C. (Ed.).
Proceedings in marine science (v. 5, pp. 233-250).
Amsterdam: Elsevier.
Mikkelsen, O., Hill, P. & Milligan, T. 2006. Single-grain,
microfloc and macrofloc volume variations observed
with a LISST-100 and a digital floc camera. Journal
of Sea Research, 55(2), 87-102. DOI: https://doi.
org/10.1016/j.seares.2005.09.003
Millero, F. J. 2006. Chemical oceanography. 3rd. ed. Boca
Raton, CRC Press.
Miranda, A. M. 2019. Condições ambientais do estuário do
rio merepe (Pernambuco/BR): biomassa fitoplânctonica
e parâmetros hidrológicos (Mestrado em Oceanografia).
Recife: Universidade Federal de Pernambuco.
Miranda, L. B., Andutta, F. P., Kjerfve, B., & Castro, B. M.
Fundamentals estuarine physical oceanography.
Berlin, Springer.
Noriega, C., Santiago, M. F., Façanha, P., Silva Cunha,
M. G., Silva, R., Flores Montes, M., Araujo, M., Costa,
K. M., Eskinazi, E. & Neumann-Leitão, S. 2013. The
instantaneous transport of inorganic and organic
material in a highly polluted tropical estuary. Marine and
Freshwater Research, 64(6), 562-572. DOI: https://doi.
org/10.1071/MF12083
Oliveira, T. S., Xavier, D., Santos, L., França, E., Sanders,
C., Passos, T. & Barcellos, R. 2020. Geochemical
background indicators within a tropical estuarine system
influenced by a port-industrial complex. Marine Pollution
Bulletin, 161, 111794. DOI: https://doi.org/10.1016/j.
marpolbul.2020.111794
PERNAMBUCO. Secretaria de Recursos Hídricos. 2010.
Plano hidroambiental da bacia hidrográfica do rio
Ipojuca: Tomo I – Diagnóstico hidroambiental – Volume
Total suspended solids and ETM in a tropical estuary
Ocean and Coastal Research 2024, v72:e24050 15
Lins et al.
/03 - Recursos Hídricos. Available from: https://www.
apac.pe.gov.br/images/media/1569523666_PHA_
Ipojuca_TOMO_I_VOL_1_Diagnostico_10.09.11.pdf.
Access on: 2024 May. 16.
Schettini, C. A. F., Paiva, B. P., Batista, R. D. A. L., Oliveira
Filho, J. C. D., Truccolo, E. C. 2016. Observation
of an estuarine turbidity maximum in the highly
impacted Capibaribe Estuary, Brazil. Brazilian Journal
of Oceanography, 64(2), 185-190. DOI: https://doi.
org/10.1590/S1679-87592016115006402
Seiphoori, A., Gunn, A., Kosgodagan Acharige, S., Arratia,
P. E., & Jerolmack, D. J. 2021. Tuning sedimentation
through surface charge and particle shape. Geophysical
Research Letters, 48(7), e2020GL091251. DOI: https://
doi.org/10.1029/2020gl091251
Strickland, J. D. H., Parsons, T. R. 1972. A practical
handbook of seawater analysis. 2nd.ed. Ottawa,
Queen’s Printer.
Talley, L. D., Pickard, G. L., Emery, W. J. & Swift, J. H. 2011.
Descriptive physical oceanography: An introduction. 6th.
ed., Boston, Elsevier.
Telesh, I. V. & Khlebovich, V. V. 2010. Principal process
within the estuarine salinity gradient: A review. Marine
Pollution Bulletin, 61(4-6), 149-155, DOI: https://doi.
org/10.1016/j.marpolbul.2010.02.008
Turner, A. & Millward, G. E. 2002. Suspended particles:
their role in estuarine biogeochemical cycles. Estuarine,
Coastal and Shelf Science, 55(6), 857-883, DOI: https://
doi.org/10.1006/ecss.2002.1033
Varona, H. L., Noriega, C., Araujo, J., Lira, S., Araujo, M.
& Hernandez, F. 2023. Plotting and statistical analysis
for oceanographers, meteorologists and ecologists
(mStatGraph). Zenodo, version (1.5). DOI: https://doi.
org/10.5281/zenodo.8095883
Veiga, T. T., Santos, L. D. & Barcellos, R. L. 2021. Análise da
dinâmica sedimentar espaço-temporal dos estuários do
ipojuca e merepe (PE) com base nos componentes da
fração arenosa (0,25mm e 0,50mm). In: Silva, C. D. D.,
Mota, D. A. (Org.). A pesquisa em ciências biológicas:
desafios atuais e perspectivas futuras (pp. 1-18). 2nd.
ed. Ponta Grossa: Atena.
Ye, L., Manning, A. J. & Hsu, T. J. 2020. Oil-mineral
flocculation and settling velocity in saline water. Water
Research, 173, 115569. DOI: https://doi.org/10.1016/j.
watres.2020.115569
Ye, L., Manning, A. J., Holyoke, J., Penaloza-Giraldo, J.
A. & Hsu, T. J. 2021. The role of biophysical stickiness
on oil-mineral flocculation and settling in seawater.
Frontiers in Marine Science, 8, 628827. DOI: https://doi.
org/10.3389/fmars.2021.628827
Yuan, Y., Wei, H., Zhao, L. & Cao, Y. 2009. Implications of
intermittent turbulent bursts for sediment resuspension
in a coastal bottom boundary layer: A field study in the
western Yellow Sea, China. Marine Geology, 263(1-4),