Challenges and responses to sea level rise in the context of climate change: A case study of the Paranaguá Estuarine Complex
DOI:
https://doi.org/10.1590/Keywords:
Sea level, Tidal flood, Vulnerable areas, Climate changeAbstract
Understanding the dynamics of sea surface variation and its direct effects on the coastal population has been a central issue of study for oceanography in conjunction with other areas of geosciences. One of the main challenges in a changing global ocean is continuously monitoring on an adequate scale that can detail locally varying phenomena. This study reviews the methods to obtain coastal topo-bathymetric data and the tools available to produce flood maps and coastal sea-level rise monitoring models. The advantages and limitations of the main tools are described, highlighting the difficulties related to implementation time and financial investment in contrast to the quality of the obtained data. A case study of the Paranaguá Estuarine Complex — of great environmental, economic, and tourism importance — is presented as its sea-level fluctuations have been poorly studied. For this reason, we describe the Paranaguá Estuarine Complex, highlighting and discussing the structural and methodological challenges and the lack of resources that limit the possibilities of a detailed study of the Paranaguá Estuarine Complex from the point of view of natural disasters, thus stimulating the debate on the necessary actions to address climate change at the local level.
References
Abbott, S. & Carter, R. 2007. Quaternary Stratigraphy: Sequence Stratigraphy. In: Elias, S. A. (Ed.). Encyclopedia of Quaternary science (Vol. 4, pp. 2856-2869). Amsterdam: Elsevier.
Ablain, M., Legeais, J., Prandi, P., Marcos, M., FenoglioMarc, L., Dieng, H., Benveniste, J. & Cazenave, A. 2017. Satellite altimetry-based sea level at global and regional scales. Surveys in Geophysics, 38, 7–31. DOI: https://doi.org/10.1007/s10712-016-9389-8.
Abrams, M., Crippen, R. & Fujisada, H. 2010. The ASTER global dem. Photogrammetric Engineering and Remote Sensing, 76(4), 344-348. Available from: https://waseda. elsevierpure.com/en/publications/the-aster-global-dem. Access date: 2024 jun 10.
Aguiar, L. D. S., Amaro, V. E., Araújo, P. V. D. N. & Santos, A. L. S. D. 2019. Low cost geotechnology applied to flood risk assessment in coastal urban areas in climate change scenarios. Anuário do Instituto de Geociencias, 42(1), 267–290. DOI: https://doi.org/10.11137/2019_1_267_290.
Al-Mutairi, N., Alsahli, M., El-Gammal, M., Ibrahim, M. & Abou Samra, R. 2021. Environmental and economic impacts of rising sea levels: A case study in kuwait’s coastal zone. Ocean & Coastal Management, 205, 105572. DOI: https://doi.org/10.1016/j.ocecoaman.2021.105572.
Alfredini, P. & Arasaki, E. 2018. Estimation and impacts of sea level rise in santos port and adjacent areas (Brazil). TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 12(4), 739–744. DOI: I: https://doi.org/10.12716/1001.12.04.13
Alizad, K., Hagen, S. C., Morris, J. T., Medeiros, S. C., Bilskie, M. V. & Weishampel, J. F. 2016. Coastal wetland response to sea-level rise in a fluvial estuarine system. Earth’s Future, 4(11), 483–497. DOI: https://doi.org/10.1002/2016EF000385.
Allen, T., Behr, J., Bukvic, A., Calder, R. S., Caruson, K., Connor, C., D’elia, C., Dismukes, D., Ersing, R., Franklin, R., Golstein, J., Goodall, J., Hemmerling, S., Irish, J., Lazarus, S., Loftis, D., Luther, M., McCallister, L., McGlathery, K., Mitchell, M. , moore, W., Nichols, C. R., Nunez, K., Reindenbach, M., Shortridge, J., Weisberg, R., Weiss, R., Wright, L. D., Xia, M., Xu, K., Young, D. Zarillo, G. & Zinnert, J. C. 2021. Anticipating and adapting to the future impacts of climate change on the health, security and welfare of low elevation coastal zone (lecz) communities in southeastern USA. Journal of Marine Science and Engineering, 9(11), 1196. DOI: https://doi.org/10.3390/jmse9111196.
Allison, E. H. & Bassett, H. R. 2015. Climate change in the oceans: Human impacts and responses. Science, 350(6262), 778–782. DOI: https://doi.org/10.1126/science.aac8721.
Almeida, B. A. D. & Mostafavi, A. 2016. Resilience of infrastructure systems to sea-level rise in coastal areas: Impacts, adaptation measures, and implementation challenges. Sustainability, 8(11), 1115. DOI: https://doi.org/10.3390/su8111115.
Almeida, L. P., Almar, R., Bergsma, E. W., Berthier, E., Baptista, P., Garel, E., Dada, O. A. & Alves, B. 2019. Deriving high spatial-resolution coastal topography from sub-meter satellite stereo imagery. Remote Sensing,11(5), 590. DOI: https://doi.org/10.3390/rs11050590.
Alves, T. S. & Dalazoana, R. 2020. Contribuições para os estudos de integração das componentes verticais terrestre e marinha ao longo da costa brasileira. Revista Brasileira de Cartografia, 72(2), 345–364. DOI: https://doi.org/10.14393/rbcv72n2-52611. Scenarios and challenges in responding to sea level rise Ocean and Coastal Research 2024, v72(suppl 1):e2406218.
Silva et al. Amante, C. J. 2018. Estimating coastal digital elevation model uncertainty. Journal of Coastal Research, 34(6), 1382–1397. DOI: https://doi.org/10.2112/JCOASTRES-D-17-00211.1.
Amoura, R. & Dahmani, K. 2022. Visualization of the spatial extent of flooding expected in the coastal area of algiers due to sea level rise. horizon 2030/2100. Ocean & Coastal Management, 219, 106041. DOI: https://doi.org/10.1016/j.ocecoaman.2022.106041.
Angulo, R. J., Souza, M. D. & Lamour, M. R. 2006. Coastal erosion problems induced by dredging activities in the navigation channel of paranaguá and são francisco do sul harbor, southern Brazil. Journal of Coastal Research, 39, 1801–1803. Available from: https://www.researchgate.net/publication/284055372_Coastal_erosion_problems_induced_by_dredging_activities_in_the_navigation_channel_of_Paranagua_and_Sao_Francisco_do_Sul_harbor_Southern_Brazil. Access date: 2024 jun 10.
Angulo, R. J., Souza, M. & Noernberg, M. A. 2020. Anthropic impacts on the morphological and sedimentary processes in the coast of state of paraná, in southern brazil: past and future perspectives. Revista de Gestão Costeira Integrada, 20(1), 5–25. Available from: https://ojs.aprh.pt/index.php/rgci/article/view/197. Access date: 2024 jun 10.
Angus, S. & Hansom, J. D. 2021. Enhancing the resilience of high-vulnerability, low-elevation coastal zones. Ocean & Coastal Management, 200, 105414. DOI: https://doi.org/10.1016/j.ocecoaman.2020.105414. Anuário Estatístico. 2022. Desempenho Portuário 2021. Agência Nacional de Transportes Aquaviários (ANTAQ). Brasília, DF, Ministério da Infraestrutura. Available from: https://www.gov.br/antaq/pt-br. Access date: 2023 jan. 1
Araújo, P. V. N., Amaro, V. E., Aguiar, L. S., Lima, C. C. & Lopes, A. B. 2021a. Tidal flood area mapping in the face of climate change scenarios: case study in a tropical estuary in the brazilian semi-arid region. Natural Hazards and Earth System Sciences, 21(11), 3353–
DOI: https://doi.org/10.5194/nhess-21-3353-2021.
Araújo, R. V., Pereira, P. S., Lino, A. P., Araújo, T. M. & Gonçalves, R. M. 2021b. Morphodynamic study of sandy beaches in a tropical tidal inlet using RPAS. Marine Geology, 438, 106540. DOI: https://doi.org/10.1016/j. margeo.2021.106540.
Araújo, P. V. N., Amaro, V. E., Alcoforado, A. V. C. & Santos, A. L. S. 2018. Acurácia vertical e calibração de modelos digitais de elevação (mdes) para a bacia hidrográfica piranhas-açú, Rio Grande do Norte, Brasil. Anuário do Instituto de Geociências, 41(1), 351–364. DOI: https://doi.org/10.11137/2018_1_351_364.
Awadallah, M. O. M., Juárez, A. & Alfredsen, K. 2022. Comparison between topographic and bathymetric lidar terrain models in flood inundation estimations. Remote Sensing, 14(1), 227. DOI: https://doi.org/10.3390/rs14010227.
Bales, J. D. & Wagner, C. R. 2009. Sources of uncertainty in flood inundation maps. Journal of Flood Risk Management, 2(2), 139–147. DOI: https://doi.org/10.1111/j.1753-318X.2009.01029.x.
Ballu, V., Bouin, M.-N., Siméoni, P., Crawford, W. C., Calmant, S., Boré, J.-M., Kanas, T. & Pelletier, B. 2011. Comparing the role of absolute sea level rise and vertical tectonic move- ments in coastal flooding, Torres Islands (Vanuatu). Proceedings of the National Academy of Sciences, 108(32), 13019–13022. DOI: https://doi.org/10.1073/pnas.1102842108.
Banks, K., Riegl, B., Shinn, E., Piller, W. & Dodge, R. E. 2007. Geomorphology of the southeast florida continental reef tract (Miami-Dade, Broward, and Palm Beach Counties, USA). Coral Reefs, 26(5), 617–633. DOI: https://doi.org/10.1007/s00338-007-0231-0.
Barbier, E. B. 2015. Climate change impacts on rural poverty in low-elevation coastal zones, Estuarine. Coastal and Shelf Science, 165, A1–A13. DOI: https://doi.org/10.1016/j.ecss.2015.05.035.
Barnett, T. P. 1984. The estimation of “global” sea level change: A problem of uniqueness. Journal of Geophysical Research: Oceans, 89(C9), 7980–7988. DOI: https://doi.org/10.1029/JC089iC05p07980.
Le Bars, D., Drijfhout, S. & De Vries, H. 2017. A high-end sea level rise probabilistic projection including rapid antarctic ice sheet mass loss. Environmental Research Letters, 12(4), 044013–044022. DOI: https://doi.org/10.1088/1748-9326/aa6512.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B. & Manica, A. 2019. The configuration of northern hemisphere ice sheets through the quaternary. Nature Communications, 10(1), 3713. DOI: https://doi.org/10.1038/s41467-019-11601-2.
Belibassakis, K. A. & Karathanasi, F. E. 2017. Modeling nearshore hydrodynamics and circulation under the impact of high waves at the coast of varkiza in saronicathens gulf. Oceanologia, 59(3), 350–364. DOI: https://doi.org/10.1016/j.oceano.2017.04.001.
Bergsma, E. W. J., Conley, D. C., Davidson, M. A. & O’hare, T. J. 2016. Video-based nearshore bathymetry estimation in macro-tidal environments. Marine Geology, 374, 31–41. DOI: https://doi.org/10.1016/j.margeo.2016.02.001.
Marini, L. B. , Marcato Junior, J., Ramos, A. P. M., Paranhos Filho, A. C., Barros, W. M. & Higa, L. T. 2017. Análise da acurácia altimétrica dos modelos digitais de superfície srtm, aster e topodata e aplicação na representação 3D do pantanal da nhecolândia. Anuario do Instituto de Geociencias, 40(3). DOI: https://doi.org/10.11137/2017_3_48_54.
Bosello, F. & De Cian, E. 2014. Climate change, sea level rise, and coastal disasters. A review of modeling practices. Energy Economics, 46, 593–605. DOI: https://doi.org/10.1016/j.eneco.2013.09.002.
Bosence, D., Wilson, R. & Coe, A. 2003. The sedimentary record of sea-level change. Cambridge: Cambridge University Press.
Branson, J. & Nicholls, R. 1998. Enhancing coastal resilience – planning for. The Geographical Journal, 164(1), 122–124. Available from: https://www.jstor.org/stable/3060570. Access date: 2024 jun 10 Scenarios and challenges in responding to sea level rise
Ocean and Coastal Research 2024,v72(suppl 1):e2406219.
Silva et al. Brecht, H., Dasgupta, S., Laplante, B., Murray, S. & Wheeler, D. 2012. Sea-level rise and storm surges: High stakes for a small number of developing countries. The Journal of Environment & Development, 21(1), 120–138. DOI: https://doi.org/10.1177/1070496511433601.
Breda, A., Saco, P. M., Sandi, S. G., Saintilan, N., Riccardi, G. & Rodríguez, J. F. 2021. Accretion, retreat and transgression of coastal wetlands experiencing sea-level rise. Hydrology and Earth System Sciences, 25(2), 769–786. DOI: https://doi.org/10.5194/hess-25-769-2021.
C40 Knowledge Hub. 2018. The C40 knowledge hub – the future we don’t want: How climate change could impact the world’s greatest cities, [s. l.]. Available from: https://www.c40knowledgehub.org/. Access date: 2023 aug. 20.
Caglar, B., Becek, K., Mekik, C. & Ozendi, M. 2018. On the vertical accuracy of the alos world 3d-30m digital elevation model. Remote Sensing Letters, 9(6), 607–615. DOI: https://doi.org/10.1080/2150704X.2018.1453174.
Camargo, R. D. & Harari, J. 2003. Modeling the Paranagua estuarine complex, Brazil: tidal circulation and cotidal charts. Revista Brasileira de Oceanografia, 51, 23–31. DOI: https://doi.org/10.1590/S1413-77392003000100003.
Caprario, J., Azevedo, L. T. S., Santana, P. L., Wu, F. K., Uda, P. K. & Finotti, A. R. 2022. Geostatistical strategy to build spatial coastal-flooding models. Urban Water Journal, 19(4), 395–409. DOI: https://doi.org/10.1080/1573062X.2021.2022720.
Carrilho, J. C. 2003. Dinâmica sedimentar do fundo estuarino adjacente ao Porto de ParanaguáPR. (Mestrado em Geologia Ambiental). Curitiba: Universidade Federal do Paraná.
Catuneanu, O. 2002. Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. Journal of African Earth Sciences, 35(1), 1–43. DOI: https://doi.org/10.1016/S0899-5362(02)00004-0.
Catuneanu, O. 2019. Scale in sequence stratigraphy. Marine and Petroleum Geology, 106, 128–159. DOI: https://doi.org/10.1016/j.marpetgeo.2019.04.026.
Catuneanu, O. 2020. Chapter 23 – Sequence stratigraphy. In: Scarselli, N., Adam, J., Chiarella, D., Roberts, D. G. & Bally, A. W. (Ed.). Regional Geology and Tectonics: Principles of Geologic Analysis (2. ed., pp. 605-686). Amsterdam: Elsevier.
Cea, L. & French, J. R. 2012. Bathymetric error estimation for the calibration and validation of estuarine hydrodynamic models. Estuarine, Coastal and Shelf Science, 100(3), 124–132. DOI: https://doi.org/10.1016/j.ecss.2012.01.004.
Chant, R. J., Ralston, D. K., Ganju, N. K., Pianca, C., Simonson, A. E. & Cartwright, R. A. 2021. Sediment budget estimates for a highly impacted embayment with extensive wetland loss. Estuaries and Coasts, 44, 608–626. DOI: https://doi.org/10.1007/s12237-020-00784-3.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer D. & Unnikrishnan, A. S. 2013. Chapter 13: Sea Level Change. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M. (Ed.). Climate Change 2013: The Physical Science Basis (pp. 1137-1216) Cambridge: Cambridge University Press.
Church, J., Gregory, J. M. 2001. Changes in sea level. In: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A. (Coord.) Climate change 2001: The scientific basis (pp. 639–694). Cambridge: Cambridge University Press.
Cipollini, P., Benveniste, J., Birol, F., Fernandes, M. J., Obligis, E., Passaro, M., Strub, P. T., Valladeau, G., Vignudelli, S. & Wilkin, J. 2017. Satellite altimetry in coastal regions. In: Stammer, D. & Cazenove, A. Satellite altimetry over oceans and land surfaces (pp. 343-380).
Boca Raton: CRC Press.
Cipollini, P., Vignudelli, S. & Benveniste, J. 2014. The coastal zone: a mission target for satellite altimeters. Eos: Transactions American Geophysical Union, 95(8), 72. DOI: https://doi.org/10.1002/2014EO080006.
Coe, A. L. 2003. The sedimentary record of sea-level change. Cambridge: Cambridge University Press.
Nicoson, C. & von Uexkull, N. 2019. Overlapping vulnerabilities: the impacts of climate change on humanitarian needs. Oslo: Norwegian Red Cross.
Cruz, O. G. & Noernberg, A. M. 2020. Bedforms controlled by residual current vortices in a subtropical estuarine tidal channel. Estuarine, Coastal and Shelf Science, 232, 106485. DOI: https://doi.org/10.1016/j.ecss.2019.106485.
Dahl, K. A., Spanger-Siegfried, E., Caldas, A. & Udvardy, S. 2017. Effective inundation of continental united states communities with 21st century sea level rise. Elementa: Science of the Anthropocene, 5, 37. DOI: https://doi.org/10.1525/elementa.234.
Dalazoana, R. & De Freitas, S. R. C. 2020. Sistemas geodésicos de referência: Rumo ao ggrs/ggrf. Revista Brasileira de Cartografia, 72, 962–982. DOI: https://doi.org/10.14393/rbcv72nespecial50anos-56601.
Dalton, A. S., Pico, T., Gowan, E. J., Clague, J. J., Forman, S. L., Mcmartin, I., Sarala, P. & Helmens, K. F. 2022. The marine ∆18o record overestimates continental ice volume during marine isotope stage 3. Global and Planetary Change, 212, 103814. DOI: https://doi.org/10.1016/j.gloplacha.2022.103814.
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T. & Riva, R. 2017. Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences, 114(23), 5946–5951. DOI: https://doi.org/10.1073/pnas.1616007114.
Darby, S. E., Appeaning Addo, K., Hazra, S., Rahman, M. M. & Nicholls, R. J. 2020. Fluvial sediment supply and relative sea-level rise. In: Nicholls, R. J., Adger, W. A., Hutton, C. W. & Hanson, S. Deltas in the Anthropocene (pp. 103-126). London: Palgrave Macmillian.
De Figueiredo, S. A., Goulart, E. S. & Calliari, L. J. 2020. Effects of closure depth changes on coastal response to sea level rise: Insights from model experiments in Southern Brazil. Geomorphology, 351, 106935. DOI: https://doi.org/10.1016/j.geomorph.2019.106935.
De Lima, A. D. S., Khalid, A., Miesse, T. W., Cassalho, F., Ferreira, C., Scherer, M. E. G. & Bonetti, J. 2020. Hydrodynamic and waves response during storm surges Scenarios and challenges in responding to sea level rise Ocean and Coastal Research 2024, v72(suppl 1):e2406220
Silva et al. on the southern brazilian coast: A hindcast study. Water, 12(12), 3538. DOI: https://doi.org/10.3390/w12123538.
De Lima, L. T., Fernández-Fernández, S., Weiss, C. V., Bitencourt, V. & Bernardes, C. 2021. Free and opensource software for geographic information system on coastal management: A study case of sea-level rise in Southern Brazil. Regional Studies in Marine Science, 48, 102025. DOI: https://doi.org/10.1016/j.rsma.2021.102025.
De Moel, H., Botzen, W. & Aerts, J. 2013. Economic and direct losses from Hurricane Sandy. Annals of the New York Academy of Sciences 1294, 81–89. Available from: https://www.researchgate.net/publication/297282569_Economic_and_direct_losses_from_Hurricane_Sandy.
Access date: 2024 jun 10.
Denys, P. H., Beavan, R. J., Hannah, J., Pearson, C. F., Palmer, N., Denham, M. & Hreins- Dottir, S. 2020. Sea level rise in New Zealand: The effect of vertical land motion on century-long tide gauge records in a tectonically active region. Journal of Geophysical Research: Solid Earth, 125(1), e2019JB018055. DOI: https://doi.org/10.1029/2019JB018055.
Deo, M. N., Govind, R. & El-Mowafy, A. 2013. The stability of tide gauges in the south pacific determined from multiepoch geodetic levelling, 1992 to 2010. Marine Geodesy, 36(3), 261–284. DOI: https://doi.org/10.1080/01490419.2013.786003.
Didier, D., Baudry, J., Bernatchez, P., Dumont, D., Sadegh, M., Bismuth, E., Bandet, M., Dugas, S. & Sévigny, C. 2018. Multihazard simulation for coastal flood mapping: Bathtub versus numerical modelling in an open estuary, Eastern Canada. Journal of Flood Risk Management, 12, e12505. DOI: https://doi.org/10.1111/jfr3.12505.
Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M. & Dunn, J. R. 2008. Improved estimates of upper-ocean warming and multidecadal sea-level rise. Nature, 453(7198), 1090–1093. DOI: https://doi.org/10.1038/nature07080.
Douglas, B. C. 1997. Global sea rise: A redetermination. Surveys in Geophysics, 18, 279–292. DOI: https://doi.org/10.1023/A:1006544227856.
Du, J., Shen, J., Zhang, Y. J., Ye, F., Liu, Z., Wang, Z., Wang, Y. P., Yu, X., Sisson, M. & Wang, H. V. 2018. Tidal response to sea-level rise in different types of estuaries: The importance of length, bathymetry, and geometry. Geophysical Research Letters, 45(1), 227–235. DOI:
https://doi.org/10.1002/2017GL075963.
Fairchild, T. P., Bennett, W. G., Smith, G., Day, B., Skov, M. W., Möller, I., Beaumont, N., Karunarathna, H. & Griff 2021. Coastal wetlands mitigate storm flooding and associated costs in estuaries. Environmental Research Letters, 16(7), 074034. DOI: https://doi.org/10.1088/1748-9326/ac0c45.
Ferreira, A. T. D. S., Amaro, V. E. & Santos, M. S. T. 2014. Geodésia aplicada à integração de dados topográficos e batimétricos na caracterização de superfícies de praia. Revista Brasileira de Cartografia, 66(1), 167–184. DOI: https://doi.org/10.14393/rbcv66n1-43904.
Finkl, C. W., Benedet, L. & Andrews, J. L. 2005. Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry. Journal of Coastal Research, 21(3), 501–514. DOI: https://doi.org/10.2112/05-756A.1.
Florinsky, I. V., Skrypitsyna, T. N. & Luschikova, O. S. 2018. Comparative accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: A case study on the Zaoksky testing ground, Central European Russia. Remote Sensing Letters, 9(7), 706–714. DOI: https://doi.org/10.
/2150704X.2018.1468098.
Franz, G. A. S., Leitão, P., Santos, A. D., Juliano, M. & Neves, R. 2016. From regional to local scale modelling on the south-eastern Brazilian shelf: case study of Paranaguá estuarine system. Brazilian Journal of Oceanography, 64, 277–294. DOI: https://doi.org/10.1590/S1679-
Franz, G., Garcia, C. A., Pereira, J., De Freitas Assad, L. P., Rollnic, M., Garbossa, L. H. P., Da Cunha, L. C., Lentini, C. A., Nobre, P., Turra, A., Trotte-Duhá, J. R., Cirano, M., Estefen, S. F., Lima, J. A. M., Paiva, A. de M., Noernberg, M. A., Tanajura, C. A. S., Moutinho, J. L., Campuzano, F., Pereira, E. S., Lima, A. C., Mendonça, L. F. F de, Nocko, H., Machado, L., Alvare nga, J. B. R., Martins, R. P., Böck, C. S., Toste, R., Landau, L., Miarnda, T., Santos, F. dos, Pellegrini, J., Juliano, M., Neves, R. & Polejack, A. 2021. Coastal ocean observing and modeling systems in brazil: initiatives and future perspectives. Frontiers in Marine Science, 8, 681619. DOI: https://doi.org/10.3389/fmars.2021.681619.
Gallay, M., Lloyd, C. D., Mckinley, J. & Barry, L. 2013. Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: A case study from the Lake District, England. Computers & Geosciences, 51, 216–227. DOI: https://doi.org/10.1016/j.cageo.2012.08.015.
Ganju, N. K., Kirwan, M. L., Dickhudt, P. J., Guntenspergen, G. R., Cahoon, D. R. & Kroeger, K. D. 2015. Sediment transport-based metrics of wetland stability. Geophysical Research Letters, 42(19), 7992–8000. DOI: https://doi.org/10.1002/2015GL065980.
Gao, J. 2009. Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103–116. DOI: https://doi.org/10.1177/0309133309105657.
Gesch, D. B. 2009. Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. Journal of Coastal Research, 33(1), 49–58. DOI: https://doi.org/10.2112/SI53-006.1.
GGOS. 2009. Ggos – global geodetic observing system. Available from: http://www.ggos.org/. Access date: 2019 sep. 30.
Gindraux, S., Boesch, R. & Farinotti, D. 2017. Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sensing, 9(3), 186. DOI: https://doi.org/10.3390/rs9020186.
Gómez-Enri, J., Vignudelli, S., Cipollini, P., Coca, J. & González, C. 2018. Validation of cryosat-2 siral sea level data in the eastern continental shelf of the Gulf of Cadiz (Spain). Advances in Space Research, 62(6), 1405–1420. DOI: https://doi.org/10.1016/j.asr.2017.10.042.
González-Moradas, M. D. R. & Viveen, W. 2020. Evaluation of aster gdem2, srtmv3. 0, alos aw3d30 and tandem-x Scenarios and challenges in responding to sea level rise Ocean and Coastal Research 2024,v72(suppl 1):e24062 21. Silva et al. dems for the peruvian andes against highly accurate gnss ground control points and geomorphologicalhydrological metrics. Remote Sensing of Environment,
, 111509. DOI: https://doi.org/10.1016/j.rse.2019.111509.
Gornitz, V. 2005. Eustasy. In: Finkl, C. W. & Makowski, C. Encyclopedia of Coastal Science (pp 843-848). Amsterdam: Springer. Gornitz, V. & Lebedeff, S. 1987. Global sea-level changes during the past century. Sea level Fluctuation and Coastal Evolution, 41, 3–16. DOI: https://doi.org/10.2110/pec.87.41.0003.
Gornitz, V., Lebedeff, S. & Hansen, J. 1982. Global sea level trend in the past century. Science, 215(4540), 1611–1614. DOI: https://doi.org/10.1126/science.215.4540.1611.
Gregory, J. M. & Oerlemans, J. 1998. Simulated future sealevel rise due to glacier melt based on regionally and seasonally resolved temperature changes. Nature, 391, 474–476. DOI: https://doi.org/10.1038/35119.
Griggs, G. 2021. Rising seas in California—an update on sea-level rise science. In: Dash, J. W. (Ed.). World Scientific Encyclopedia of Climate Change: Case Studies of Climate Risk, Action, and Opportunity (Vol. 3,105-111). Singapore: World Scientific Publishing.
Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. 2013. Future flood losses in major coastal cities. Nature Climate Change, 3, 802–806. DOI: https://doi.org/10.1038/nclimate1979.
Han, W., Meehl, G. A., Rajagopalan, B., Fasullo, J. T., Hu, A., Lin, J., Large, W. G., Wang, J.-W., Quan, X.-W., Trenary, L. L., Wallcraft, A., Shinoda, T. & Yeager, S. 2010. Patterns of indian ocean sea-level change in a warming climate. Nature Geoscience, 3, 546–550. DOI: https://doi.org/10.1038/ngeo901.
Hao, M., Wang, Q., Cui, D., Liu, L. & Zhou, L. 2016. Present-day crustal vertical motion around the ordos block constrained by precise leveling and gps data. Surveys in Geophysics, 37, 923–936. DOI: https://doi.org/10.1007/s10712-016-9375-1.
Hao, M., Wang, Q., Shen, Z., Cui, D., Ji, L., Li, Y. & Qin, S. 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of tibetan plateau. Tectonophysics, 632, 281–292. DOI: https://doi.org/10.1016/j.tecto.2014.06.016.
Harari, J. & Camargo, R. D. 1998. Modelagem numérica da região costeira de Santos (SP): circulação de maré. Revista Brasileira de Oceanografia, 46(2), 135–156. DOI: https://doi.org/10.1590/S1413-77391998000200004.
Harrison, L. M., Coulthard, T. J., Robins, P. E. & Lewis, M. J. 2022. Sensitivity of estuaries to compound flooding. Estuaries and Coasts, 45(5), 1250–1269. DOI: ttps://doi.org/10.1007/s12237-021-00996-1.
Hauer, M. E., Hardy, D., Kulp, S. A., Mueller, V., Wrathall, D. J. & Clark, P. U. 2021. Assessing population exposure to coastal flooding due to sea level rise. Nature Communications, 12(1), 6900. DOI: https://doi.org/10.1038/s41467-021-27260-1.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S. & Pugh, J. 2013. New data systems and products at the permanent service for mean sea level. Journal of Coastal Research, 29(3), 493–504. DOI: https://doi.org/10.2112/JCOASTRES-D-12-00175.1.
Holman, R., Plant, N. & Holland, T. 2013. cBathy: A robust algorithm for estimating nearshore bathymetry. Journal of geophysical research: Oceans, 118(5), 2595–2609. DOI: https://doi.org/10.1002/jgrc.20199.
Horritt, M. S., Mason, D. C., Cobby, D. M., Davenport, I. J. & Bates, P. D. 2003. Waterline mapping in flooded vegetation from airborne sar imagery. Remote Sensing of Environment, 85(3), 271–281. DOI: https://doi.org/10.1016/S0034-4257(03)00006-3.
IHO (International Hydrographic Organization). 2005. Manual on hydrography: publication c-13. Monaco, International Hidrographic Organization. Available from: https://iho.int/uploads/user/pubs/cb/c-13/english/C-13_Chapter_1_and_contents.pdf. Access date: 2024 jun. 10.
IHO (International Hydrographic Organization). 2020. IHO standards for hydrographic surveys: Special publication (n. 44). Monaco, International Hydrographic Bureau. Available from: https://iho.int/uploads/user/pubs/standards/s-44/S-44_5E.pdf. Access date: 2024 jun. 10.
IOC (Intergovernmental Oceanographic Commission). 2012. The global sea level observing system (GLOSS): Implementation plan. Paris, UNESCO-IOC. Available from: https://unesdoc.unesco.org/ark:/48223/pf0000217832. Access date: 2024 jun. 10.
IPCC (Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, IPCC.
IPCC (Intergovernmental Panel on Climate Change). 2021. Summary for policymakers. In: IPCC. Climate change 2021: The physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.
Ji, W., Civco, D. & Kennard, W. 1992. Satellite remote bathymetry: a new mechanisms for modeling. Photogrammetric Engineering and Remote Sensing, 58(5), 545–549. Available from: https://www.researchgate.net/publication/294795262_Satellite_remote_bathymetry_a_new_mechanisms_for_modeling. Access date: 2024 jun. 10.
Ji, Z.-G., Hu, G., Shen, J. & Wan, Y. 2007. Threedimensional modeling of hydrodynamic processes in the st. lucie estuary. Estuarine, Coastal and Shelf Science, 73(1-2), 188–200. DOI: https://doi.org/10.1016/j.ecss.2006.12.016.
Joyce, K. E., Samsonov, S., Levick, S. R., Engelbrecht, J. & Belliss, S. 2014. Mapping and monitoring geological hazards using optical, lidar, and synthetic aperture radar image data. Natural Hazards, 73(2), 137–163. DOI: https://doi.org/10.1007/s11069-014-1122-7.
Khojasteh, D., Glamore, W., Heimhuber, V. & Felder, S. 2021. Sea level rise impacts on estuarine dynamics: A review. Science of The Total Environment, 780, 146470. DOI: https://doi.org/10.1016/j.scitotenv.2021.146470 Scenarios and challenges in responding to sea level rise
Ocean and Coastal Research 2024, v72(suppl 1):e24062 22 Silva et al.
Kirezci, E., Young, I. R., Ranasinghe, R., Muis, S., Nicholls, R. J., Lincke, D. & Hinkel, J. 2020. Projections of globalscale extreme sea levels and resulting episodic coastal flooding over the 21st century. Scientific Reports, 10(1), 11629–11641. DOI: https://doi.org/10.1038/s41598-
-67736-6.
Kizil, U. & Tisor, L. 2011. Evaluation of rtk-gps and total station for applications in land surveying. Journal of Earth System Science, 120, 215–221. DOI: https://doi.org/10.1007/s12040-011-0044-y.
Klein, R. J. T. & Nicholls, R. J. 1999. Assessment of coastal vulnerability to climate change. Ambio, 28(2), 182–187. Available from: https://www.jstor.org/stable/4314873. Access date: 2024 jun. 10.
Kleinherenbrink, M., Riva, R. & Frederikse, T. 2018. A comparison of methods to estimate vertical land motion trends from gnss and altimetry at tide gauge stations. Ocean Science, 14(2), 187–204. DOI: https://doi.org/10.5194/os-14-187-2018.
Klemas, V. 2011. Remote sensing of wetlands: case studies comparing practical techniques. Journal of Coastal Research, 27(3), 418–427. DOI: https://doi.org/10.2112/JCOASTRES-D-10-00174.1
Klingbeil, K., Lemarié, F., Debreu, L. & Burchard, H. 2018. The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives. Ocean Modelling, 125, 80–105. DOI: https://doi.org/10.1016/j.ocemod.2018.01.007.
Kontny, B. & Bogusz, J. 2012. Models of vertical movements of the earth crust surface in the area of poland derived from leveling and gnss data. Acta Geodynamica et Geomaterialia, 9(3), 331–337. Available from: https://www.researchgate.net/publication/256340767_
Models_of_vertical_movements_of_the_earth_crust_surface_in_the_area_of_Poland_derived_from_leveling_and_GNSS_data. Access date: 2024 jun. 10.
Kopp, R. E., Hay, C. C., Little, C. M. & Mitrovica, J. X. 2015. Geographic variability of sea-level change. Current Climate Change Reports, 1, 192–204. DOI: https://doi.org/10.1007/s40641-015-0015-5.
Kucharczyk, M., Hugenholtz, C. H. & Zou, X. 2018. Uav–lidar accuracy in vegetated terrain. Journal of Unmanned Vehicle Systems, 6(4), 212–234. DOI: https://doi.org/10.1139/juvs-2017-0030.
Kumbier, K., Carvalho, R. C., Vafeidis, A. T. & Woodroffe, C. D. 2018. Investigating compound flooding in an estuary using hydrodynamic modelling: a case study from the Shoalhaven River, Australia. Natural Hazards and Earth System Sciences, 18(2), 463–477. DOI: https://doi.org/10.5194/nhess-18-463-2018.
LaCasce, J. H. 2017. The prevalence of oceanic surface modes. Geophysical Research Letters, 44(21), 11–97. DOI: https://doi.org/10.1002/2017GL075430.
Lakshmi, S. E. & Yarrakula, K. 2018. Review and critical analysis on digital elevation models. Geofizika, 35(2), 129–157. DOI: https://doi.org/10.15233/gfz.2018.35.7.
Lamour, M., Angulo, R. & Soares, C. 2007. Bathymetrical evolution of critical shoaling sectors on galheta channel, navigable access to Paranaguá Bay, Brazil. Journal of Coastal Research, 23(1), 49–58. DOI: https://doi.org/10.2112/03-0063.1
Leal-Alves, D. C., Weschenfelder, J., Dominguez Almeida, J. C., Da Guia Albuquerque, M., De Almeida Espinoza, J. M. & Gonzaga, B. A. 2020. Unmanned aerial vehicle and structure from motion approach for flood assessment in coastal channels. Journal of Coastal Research, 95(1), 1162–1166. DOI: https://doi.org/10.2112/SI95-225.1.
Leclercq, P. W., Oerlemans, J. & Cogley, J. G. 2011. Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surveys in Geophysics, 32, 519–535. DOI: https://doi.org/10.1007/s10712-011-9121-7.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S. Zweng, M. M. 2012. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophysical Research Letters, 39(10), L10603. DOI: https://doi.org/10.1029/2012GL051106.
Li, C., Valle-Levinson, A., Atkinson, L. P., Wong, K. C. & Lwiza, K. M. 2004. Estimation of drag coefficient in james river estuary using tidal velocity data from a vessel-towed adcp. Journal of Geophysical Research: Oceans, 109(3), C03034. DOI: https://doi.org/10.1029/2003JC001991.
Lippmann, T. C. & Holman, R. A. 1989. Quantification of sand bar morphology: A video technique based on wave dissipation. Journal of Geophysical Research: Oceans, 94(C1), 995–1011. DOI: https://doi.org/10.1029/JC094iC01p00995.
Liu, H., Arii, M., Sato, S. & Tajima, Y. 2012. Long-term nearshore bathymetry evolution from video imagery: A case study in the miyazaki coast. Coastal Engineering, 1(33), 15. DOI: https://doi.org/10.9753/icce.v33. sediment.60.
Lombard, A., Cazenave, A., Traon, P.-Y. L. & Ishii, M. 2005. Contribution of thermal expansion to presentday sea-level change revisited. Global and Planetary Change, 47(1), 1–16. DOI: https://doi.org/10.1016/j.gloplacha.2004.11.016.
Lyzenga, D. R. 1978. Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17(3), 379–383. DOI: https://doi.org/10.1364/AO.17.000379.
Lyzenga, D. R. 1985. Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 6(1), 115–125. DOI: https://doi.org/10.1080/01431168508948428.
Lyzenga, D. R., Malinas, N. P. & Tanis, F. J. 2006. Multispectral bathymetry using a simple physically based algorithm. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2251–2259. DOI: https://doi.org/10.1109/TGRS.2006.872909.
Magalhães, D. M. D. & Moura, A. C. M. 2021. Use of remotely piloted aircraft to update spatial data in areas of social fragility. In: La Rosa, D. & Privitera, R. (Ed.). International Conference on Innovation in Urban and Regional Planning (vol. 146, pp. 213-220).
Maia, N. Z., Calliari, L. J. & Nicolodi, J. L. 2016. Analytical model of sea level elevation during a storm: Support for Scenarios and challenges in responding to sea level rise Ocean and Coastal Research 2024,v72(suppl 1):e24062 23 Silva et al. coastal flood risk assessment associated with cyclone passage. Continental Shelf Research, 124, 23–34. DOI: https://doi.org/10.1016/j.csr.2016.04.012.
Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S. & Gabbianelli, G. 2013. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12), 6880–6898. DOI: https://doi.org/10.3390/rs5126880.
Mandlburger, G. 2020. A review of airborne laser bathymetry for mapping of inland and coastal waters. Hydraulic Engineering, 116, 6–15. DOI: https://doi.org/10.23784/HN116-01.
Mandlburger, G., Hauer, C., Wieser, M. & Pfeifer, N. 2015a. Topo-bathymetric lidar for monitoring river morphodynamics and instream habitats – A case study at the pielach river. Remote Sensing, 7(5), 6160–6195. DOI: https://doi.org/10.3390/rs70506160.
Mandlburger, G., Pfennigbauer, M., Riegl, U., Haring, A., Wieser, M., Glira, P. & Wini- Warter, L. 2015b. Complementing airborne laser bathymetry with uavbased lidar for capturing alluvial landscapes. In: SPIE Remote Sensing 2015 for Agriculture, Ecosystems, and
Hydrology (vol. 9637, pp. 60-73).
Margulis, S. & Dubeux, C. B. S. 2011. Economia da mudança do clima no Brasil. In: Ipea. Boletim regional, urbano e Ambiental (pp. 7-12). Brasília, DF: Ipea. Available from:https://repositorio.ipea.gov.br/bitstream/11058/5569/1/BRU_n4_economia.pdf. Access date 2024 may 4.
Marone, E., Carneiro, J. C., Cintra, M. M., Ribeiro, A., Cardoso, D. & Stellfeld, C. 2015. Extreme Sea Level Events, Coastal Risks, and Climate Changes: Informing the Players. In: Wyss, M & Peppoloni, S. (Ed.). Geoethics: Ethical Challenges and Case Studies in Earth Sciences (pp. 273-302). Amsterdam: Elsevier.
Marone, E. & Camargo, R. 1995. Efeitos da maré meteorológica na Baía de Paranaguá, PR. Nerítica, 8, 71–81. Available from: https://www.researchgate.net/publication/312625263_Efeitos_da_mare_meteorologica_na_Baia_de_Paranagua_PR. Access date: 2024 jun. 10.
Marone, E., Raicich, F. & Mosetti, R. 2012. Harmonic tidal analysis methods on time and frequency domains: similarities and differences for the Gulf of Trieste, Italy, and Paranaguá Bay, Brazil. Bollettino di Geofisica Teorica ed Applicata, 54(2), 183–204. DOI: https://doi.org/10.4430/bgta0068.
Martínez-Carricondo, P., Agüera-Vega, F., CarvajalRamírez, F., Mesas-Carrascosa, F.-J., García-Ferrer, A. & Pérez-Porras, F.-J. 2018. Assessment of uavphotogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied
Earth Observation and Geoinformation, 72, 1–10. DOI: https://doi.org/10.1016/j.jag.2018.05.015.
Matsuba, Y., Abstract, S. S. & Hadano, K. 2017. Rapid change in coastal morphology due to sand-bypassing captured by UAV-based monitoring system. Coastal Dynamics, (6), 1529–1539. Available from: https://coastaldynamics2017.dk/onewebmedia/006_Matsuba.
pdf. Access date: 2024 jun. 10.
Mcgranahan, G., Balk, D. & Anderson, B. 2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization, 19(1), 17–37. DOI: https://doi.org/10.1177/0956247807076960.
Mckean, J., Tonina, D., Bohn, C. & Wright, C. 2014. Effects of bathymetric lidar errors on flow properties predicted with a multi-dimensional hydraulic model. Journal of Geophysical Research: Earth Surface, 19(3), 644–664. DOI: https://doi.org/10.1002/2013JF002897.
Meehl, G. A., Hu, A., Tebaldi, C., Arblaster, J. M., Washington, W. M., Teng, H., Sanderson, B. M., Ault, T., Strand, W. G. & White III, J. B. 2012. Relative outcomes of climate change mitigation related to global temperature versus sea-level rise. Nature Climate Change, 2(8), 576–580. DOI: https://doi.org/10.1038/nclimate1529.
Mehvar, S., Filatova, T., Sarker, M. H., Dastgheib, A. & Ranasinghe, R. 2019. Climate change- driven losses in ecosystem services of coastal wetlands: A case study in the west coast of Bangladesh. Ocean & Coastal Management, 169, 273–283. DOI: https://doi.org/10.1016/j.ocecoaman.2018.12.009.
Mendonça, R. L. & Portugal, J. L. 2018. Filtragem de dados lidar de Área com relevo acidentado para geração de modelo digital do terreno. Anuário do Instituto de Geociências, 41(3), 568–579. DOI: https://doi.org/10.11137/2018_3_568_579.
Mengel, M., Feldmann, J. & Levermann, A. 2016. Linear sealevel response to abrupt ocean warming of major west antarctic ice basin. Nature Climate Change, 6, 71–74. DOI: https://doi.org/10.1038/nclimate2808.
Mitchum Jr, R. M. 1977. Seismic stratigraphy and global changes of sea level: Part 11. glossary of terms used in seismic stratigraphy: Section 2. application of seismic reflection configuration to stratigraphic interpretation. In: Payton, C. E. (Ed.). Seismic Stratigraphy-Applications to Hydrocarbon Exploration (pp. 205-212). Washington, DC: American Association of Petroleum Geologists.
Mitsova, D., Esnard, A.-M. & Li, Y. 2012. Using enhanced dasymetric mapping techniques to improve the spatial accuracy of sea level rise vulnerability assessments. Journal of Coastal Conservation, 16, 355–372. DOI: https://doi.org/10.1007/s11852-012-0206-3.
Mj, D. & Dutykh, D. 2020. Learning extreme wave run-up conditions. Applied Ocean Research, 105, 102400. DOI: https://doi.org/10.1016/j.apor.2020.102400.
Mudd, S. M., Howell, S. M. & Morris, J. T. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science, 82(3), 377–389. DOI:
https://doi.org/10.1016/j.ecss.2009.01.028.
Muehe, D. 2010. Brazilian coastal vulnerability to climate change. Pan-American Journal of Aquatic Sciences, 5(2), 173–183. Available from: https://panamjas.org/pdf_artigos/PANAMJAS_5(2)_173-183.pdf. Access date: 2024 jun. 10.
Naumenko, M. A. 2020. Lake Ladoga digital bathymetric models: development approaches and insight for Scenarios and challenges in responding to sea level rise Ocean and Coastal Research 2024, v72(suppl 1):e24062 24. Silva et al. limnological investigations. Limnological Review, 20(2), 65–80. DOI: https://doi.org/10.2478/limre-2020-0008.
Nelson, A., Reuter, H. I. & Gessler, P. 2009. Chapter 3 Dem production methods and sources. Developments in Soil Science, 33(1), 65–85. DOI: https://doi.org/10.1016/S0166-2481(08)00003-2.
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D. & Mitchum, G. T. 2018. Climatechange-driven accelerated sea-level rise detected in the altimeter era. Earth, Atmospheric, and Planetary Sciences, 115(9), 2022–2025. DOI: https://doi.org/10.1073/pnas.1717312115.
Nicholls, R. J., Hanson, S. E., Lowe, J. A., Warrick, R. A., Lu, X. & Long, A. J. 2014. Sea-level scenarios for evaluating coastal impacts. Wiley Interdisciplinary Reviews, 5(1), 129–150. DOI: https://doi.org/10.1002/wcc.253.
Nicholls, R. J. & Cazenave, A. 2010. Sea-level rise and its impact on coastal zones. Science, 328(5985), 1517–1520. DOI: https://doi.org/10.1126/science.1185782.
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L. & Fang, J. 2021. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338–342. DOI: https://doi.org/10.1038/s41558-021-00993-z.
Nikolakopoulos, K. G. 2020. Accuracy assessment of alos aw3d30 dsm and comparison to alos prism dsm created with classical photogrammetric techniques. European Journal of Remote Sensing, 53, 39–52. DOI: https://doi.org/10.1080/22797254.2020.1774424.
Noernberg, M. D. A. 2001. Processos morfodinâmicos no complexo estuarino de Paranaguá-Paraná-Brasil: Um estudo a partir de dados in-situ de LANDSATTM (Doutorado em Geologia Ambiental). Curitiba: Universidade Federal do Paraná.
Noernberg, M. D. A., Lautert, L., Araújo, A., Marone, E., R., A., Netto, J. & Krug, L. 2006. Remote sensing and GIS integration for modelling the Paranaguá Estuarine Complex -Brazil. Journal of Coastal Research, 1627–1631. Available from: https://www.jstor.org/stable/25743033. Access date: 2024 jun. 10.
Noernberg, M. D. A., Marone, E. & Angulo, R. 2007. Coastal currents and sediment transport in paranaguá estuary complex navigation channel. Boletim Paranaense de Geociências, 60(61), 45–54. Available from: https://www.researchgate.net/publication/286680517_Coastal_currents_and_sediment_transport_in_Paranagua_estuary_complex_navigation_channel. Access date: 2024 jun. 10.
Odreski, L. L. R., Soares, C. R., Angulo, R. J. & Zem, R. C. 2003. Taxas de assoreamento e a influência antrópica no controle da sedimentação da baía de AntoninaParaná. Boletim Paranaense de Geociências, 53, 7–12. DOI: https://doi.org/10.5380/geo.v53i0.4217.
Oh, J., Kim, D.-J. & Lee, H. 2019. Topographic information extraction of tidal flats using remote multi-sensory data. Journal of Coastal Research, 91(1), 371–375. DOI: https://doi.org/10.2112/SI91-075.1.
Olsen, W. S., De Figueiredo, S. A. & Calliari, L. J. 2022. Geomorphological controls on the coastal response under projected sea level rise: A case study at an oceanic island (Trindade, Brazil). Journal of South American Earth Sciences, 116, 103837. DOI: https://doi.org/10.1016/j.jsames.2022.103837.
Oppenheimer, M. & Alley, R. B. 2016. How high will the seas rise. Science, 354(6318), 1375–1377. DOI: https://doi.org/10.1126/science.aak9460.
Pacheco, A. D. P., Centeno, J. A. S. & Silva, C. R. 2022. Evaluation of lidar point clouds density in the interpolation of digital terrain models for power line planning in northeast Brazil. Anuário do Instituto de Geociências, 45, 1–15. DOI: https://doi.org/10.11137/1982-3908_2022_45_40773.
PAF-ZC – IV. 2017. Plano de Ação Federal para a Zona Costeira. Ministério do Meio Ambiente. Brasília, DF. 37p. Available from: https://www.marinha.mil.br/secirm/sites/www.marinha.mil.br.secirm/files/documentos/atas/resolucao-2-2017-anexo.pdf Access date: 2024 jul. 30.
Paladino, I. M., Mengatto, M. F., Mahiques, M. M., Noernberg, M. A. & Nagai, R. H. 2022. End-member modeling and sediment trend analysis as tools for sedimentary processes inference in a subtropical estuary. Estuarine, Coastal and Shelf Science, 278, 108126. DOI:
https://doi.org/10.1016/j.ecss.2022.108126.
Passos, A. D. S., Dias, F. F., Dos Santos, P. R. A., Da Silveira Barros, S. R., De Gouveia Souza, C. R., Bernardino, D., Araujo, J. C., Vargas, R. & Dos Santos, C. A. 2019. Evaluation of the effects of a possible sea-level rise in Mangaratiba-RJ. Journal of Coastal Conservation, 23,
–366. DOI: https://doi.org/10.1007/s11852-018-0665-2.
Peltier, W. R. 2004. Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Repository Geology Science, 32(C1), 111–149. DOI: https://doi.org/10.1146/annurev.earth.32.082503.144359.
Peltier, W. R., Argus, D. F. & Drummond, R. 2015. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5A) model. Journal of Geophysical Research: Solid Earth, 120(1), 450–487. DOI: https://doi.org/10.1002/2014JB011176.
Pezzoli, A., D.L., C., Arasaki, E., Alfredini, P. & R.O., S. 2013. Extreme events assessment methodology coupling rainfall and tidal levels in the coastal flood plain of the Sao Paulo North Coast (Brazil) for engineering projects purposes. Journal of Climatology and Weather
Forecasting, 1(103), 1–5. DOI: https://doi.org/10.4172/jcwf.1000103.
Pfeffer, J. & Allemand, P. 2016. The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth and Planetary Science Letters, 439, 39–47. DOI: https://doi.org/10.1016/j.
epsl.2016.01.027.
Pirazzoli, P. A. 1986. Secular trends of relative sea-level (RSL) changes indicated by tide-gauge records. Journal of Coastal Research, 1, 1-26. Available from: https://www.jstor.org/stable/44863318. Access date: 2024 jun. 10.
Polidori, L., Hage, M. E. & Valeriano, M. D. M. 2014. Digital elevation model validation with no ground control: application to the topodata dem in Brazil. Boletim de Scenarios and challenges in responding to sea level rise Ocean and Coastal Research 2024,v72(suppl 1):e24062 25 Silva et al. Ciências Geodésicas, 20, 467–479. DOI: https://doi.org/10.1590/S1982-21702014000200027.
Polli, B. A., Cunha, C. D. L. D. N. & Ricardo Carvalhode Almeida, M. G. 2021. Evaluation of the impacts caused by wind field and freshwater flow variations due to climate change on the circulation of the Paranaguá Estuarine Complex, Brazil. Regional Studies in Marine Science, 47, 101933. DOI: https://doi.org/10.1016/j.rsma.2021.101933.
Posarnentier, H. W. & Allen, G. P. 1999. Siliciclastic sequence stratigraphy—concepts and applications. Oklahome, Society for Sedimentary Geology.
Prahl, B. F., Boettle, M., Costa, L., Kropp, J. P. & Rybski, D. 2018. Damage and protection cost curves for coastal floods within the 600 largest european cities. Scientific Data, 5, 180034. DOI: https://doi.org/10.1038/sdata.2018.34.
Prunzel, J. 2022. Contribuições para implantação de rede vertical de referência no litoral do paraná baseada em número geopotencial (Mestrado em Ciências Geodésicas). Curtiba:Universidade Federal do Paraná. Available from:https://acervodigital.ufpr.br/xmlui/handle/1884/81385. Access date: 2023 oct 10.
PSMSL (Permanent Service for Mean Sea Level). 2022. Permanent service for mean sea level. Available from: https://www.psmsl.org/. Liverpool. Access date: 2023 sep. 29.
Puente, I., González-Jorge, H., Martínez-Sánchez, J. & Arias, P. 2013. Review of mobile mapping and surveying technologies. Measurement, 46(7), 2127–2145. DOI: https://doi.org/10.1016/j.measurement.2013.03.006.
Quetzalcóatl, O., González, M., Cánovas, V., Medina, R., Espejo, A., Klein, A., Tessler, M., Almeida, L., Jaramillo, C., Garnier, R., Kakeh, N. & González-Ondina, J. 2019. Smcε, a coastal modeling system for assessing beach processes and coastal interventions: Application to the brazilian coast. Environmental Modelling & Software, 116, 131–152. DOI: https://doi.org/10.1016/j.envsoft.2019.03.001.
Rabus, B., Eineder, M., R. & Bamler, R. 2003. The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241–262. DOI: https://doi.org/10.1016/S0924-2716(02)00124-7.
Rahman, M. S. & Di, L. 2017. The state of the art of spaceborne remote sensing in flood management. Natural Hazards, 85(1), 1223–1248. DOI: https://doi.org/10.1007/s11069-016-2601-9.
Ramirez, J. A., Lichter, M., Coulthard, T. J. & Skinner, C. 2016. Hyper-resolution mapping of regional storm surge and tide flooding: comparison of static and dynamic models. Natural Hazards, 82(1), 571–590. DOI: https://doi.org/10.1007/s11069-016-2198-z.
Raper, S. C. B. & Braithwaite, R. J. 2006. Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature, 439, 311–313. DOI: https://doi.org/10.1038/nature04448.
Ribeiro, S. C. L., Rychard, M. J., Cintra, J. P. & Maas, H. G. 2016. Describing the vertical structure of informal settlements on the basis of lidar data – a case study for favelas (slums) in São Paulo City. Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 437–444. DOI: https://doi.org/10.5194/isprs-annals-IV2-W5-437-2019.
Rodriguez, E., Morris, C., Belz, J., Chapin, E., Martin, J., Daffer, W. & Hensley, S. 2005. An assessment of the SRTM topographic products, Technical report, Technical Report JPL D-31639. California, Jet Propulsion Laboratory.
Rovere, A., Stocchi, P. & Vacchi, M. 2016. Eustatic and relative sea level changes. Current Climate Change Reports, 2, 221–231. DOI: https://doi.org/10.1007/s40641-016-0045-7.
Rutyna, B. B., Soares, C. R., Wroblewski, C. A. & Paula, E. 2021. Assoreamento nas baías de Antonina E De Paranaguá–PR: análise integrada das áreas fontes de sedimentação e obras de dragagem. Revista Brasileira de Geografia Física, 14(2), 676–693. DOI: https://doi.org/10.26848/rbgf.v14.2.p676-693.
Samboko, H. T., Schurer, S., Savenjie, H. H. G., Makurira, H., Banda, K. & Winsemius, H. 2022. Evaluating low-cost topographic surveys for computations of conveyance. Geoscientific Instrumentation, Methods and Data Systems, 11(1), 1–23. DOI: https://doi.org/ 10.5194/gi11-1-2022.
Sande, B. V. D., Lansen, J. & Hoyng, C. 2012. Sensitivity of coastal flood risk assessments to digital elevation models. Water, 4(3), 568–579. DOI: https://doi.org/10.3390/w4030568.
Santamaría-Gómez, A., Bouin, M.-N., Collilieux, X. & Woppelmann, G. 2011. Correlated errors in gps position time series: Implications for velocity estimates. Journal of Geophysical Research: Solid Earth, 116(B1), B01405. DOI: https://doi.org/10.1029/2010JB007701.
Santillan, J. & Makinano-Santillan, M. 2016. Vertical accuracy assessment of 30-m resolution alos, aster, and srtm global dems over northeastern Mindanao, Philippines. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41(1), 149–156. DOI: https://doi.org/10.5194/isprsarchives-XLI-B4-149-2016.
Santos, M. S. T., Amaro, V. E., Ferreira, A. T. D. S., Barboza, A. D. A., Figueiredo, M. C. & Araújo, A. G. 2015. Methodology to coastal vulnerability mapping to mean sea level rise in local scale. Boletim de Ciências Geodésicas, 21, 691–705. DOI: https://doi.org/10.1590/S1982-21702015000400040.
Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R., Porter, C. & Morin, P. 2016. An automated, open-source pipeline for mass production of digital eleva- tion models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS Journal of
Photogrammetry and Remote Sensing, 116, 101–117. DOI: https://doi.org/10.1016/j.isprsjprs.2016.03.012.
Silva, J. F., Miranda, R. D. Q. & Bezerra, A. L. C. 2022. Análise dos modelos digitais de elevação (PE3D, SRTM-30, SRTM-90, ASTER GDEM, TOPODATA, TANDEM-X, ALOS PALSAR e ALOS AW3D30) e a necessidade da produção de dados altimétricos em excelência no Brasil. Revista Brasileira de Geografia Scenarios and challenges in responding to sea level rise Ocean and Coastal Research 2024, v72(suppl 1):e24062 26 Silva et al. Física, 15(3), 1543–555. DOI: https://doi.org/10.26848/rbgf.v15.3.p1543-1555.
Silva, P. G. D., Dalinghaus, C., González, M., Gutiérrez, O., Espejo, A., Abascal, A. J. & Klein, A. H. 2016. Estimating flooding level through the brazilian coast using reanalysis data, Journal of Coastal Research 75(10075), 1092–1096.
Silva, R. M., Moreira, V. S., Lopes, A. B., Do Nascimento Araújo, P. V. & Cortes, A. F. 2020. Proposta metodológica de alta acurácia para delimitação de Áreas de inundação urbana: Um estudo de caso em Itaqui-RS, Brasil. Anuário do Instituto de Geociências, 43(2), 263–
DOI: https://doi.org/10.11137/2020_2_263_276.
Simmons, M., Gradstein, F., Ogg, J., Schmitz, M. & Ogg, G. 2012. Sequence stratigraphy and sea-level change. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (Ed.). The Geologic Time Scale (pp. 239-267). [S. l.: s. n.]
Smith, B. & Sandwell, D. 2003. Accuracy and resolution of shuttle radar topography mission data. Geophysical Research Letters, 30(9). DOI: https://doi.org/10.1029/2002GL016643.
Spier, D., Gerum, H. L., Noernberg, M. A. & Lana, P. C. 2016. Flood regime as a driver of the distribution of mangrove and salt marsh. Journal of Marine Systems, 161, 11–25. DOI: https://doi.org/10.1016/j.jmarsys.2016.05.004.
Spitzer, D. & Dirks, R. W. J. 1986. Classification of bottom composition and bathymetry of shallow waters by passive remote sensing, Remote sensing for resources development and environmental management. In: Proceedings of the Seventh International Symposium
(2, pp. 775-777).
Stammer, D., Cazenave, A., Ponte, R. M. & Tamisiea, M. E. 2013. Causes For Contemporary Regional Sea Level Changes, Annual Review Of Marine Science 5, 21–46.
Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, T. M., Fisher, T. G., Gyllencreutz, R., Hättestrand, C., Heyman, J., Hindmarsh, R. C., Hughes, A. L., Jakobsson, M., Kirchner, N., Livingstone, S. J., Margold, M., Murton, J. B., Noormets, R., Peltier, W. R., Peteet, D. M., Piper, D. J., Preusser, F., Renssen, H., Roberts, D. H., Roche, D. M., Saint-Ange, F., Stroeven, A. P. & Teller, J. T. 2015. On the reconstruction of palaeo-ice sheets: recent advances and future challenges. Quaternary Science Review, 125, 15–49. DOI: https://doi.org/10.1016/j. quascirev.2015.07.016.
Strauss, B. H., Orton, P. M., Bittermann, K., Buchanan, M. K., Gilford, D. M., Kopp, R. E., Kulp, S., Massey, C., Moel, H. & Vinogradov, S. 2021. Economic damages from hurricane sandy attributable to sea level rise caused by anthropogenic climate change. Nature Communications, 12(1), 1–9. DOI: https://doi.org/10.1038/s41467-021-22838-1.
Sweet, W. V., Kopp, R. E., Weaver, C. P., Obeysekera, J., Horton, R. M., Thieler, E. R. & Zervas, C. 2017. Global and regional sea level rise scenarios for the United States. Washington, DC, National Oceanic and Atmospheric Administration. Available from: https://ntrs.nasa.gov/citations/20180001857. Access date: 2024 may 3.
Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. 2011. Characteristics of aster gdem version 2. In: IEEE International Geoscience and Remote Sensing Symposium (1, pp. 3657-3660).
Tadono, T., Takaku, J., Tsutsui, K., Oda, F. & Nagai, H. 2015. Status of “ALOS world 3d (AW3D)” global DSM generation. In: IEEE International Symposium on Geoscience and Remote Sensing (IGARSS) (pp. 3822-3825).
Tang, L., Titov, V. V. & Chamberlin, C. D. 2009. Development, testing, and applications of site- specific tsunami inundation models for real-time forecasting. Journal of Geophysical Research: Oceans, 114(C12). DOI: https://doi.org/10.1029/2009JC005476.
Tate, E., Munoz, C. & Suchan, J. 2015. Uncertainty and sensitivity analysis of the hazus-mh flood model. Natural Hazards Review, 16(3), 04014030. DOI: https://doi.org/10.1061/(ASCE)NH.1527-6996.0000167.
Tebaldi, C., Ranasinghe, R., Vousdoukas, M., Rasmussen, D. J., Vega-Westhoff, B., Kirezci, E., Kopp, R. E., Sriver, R. & Mentaschi, L . 2021. Extreme sea levels at different global warming levels. Nature Climate Change, 11, 746–751. DOI: https://doi.org/10.1038/s41558-021-01127-1.
TEFERLE, F. N., BINGLEY, R. M., ORLIAC, E. J., WILLIAMS S. D. P., WOODWORTH, P. L., MCLAUGHLIN, D., BAKER, T. F., SHENNAN, I., MILNE G. A., BRADLEY, S. L. & HANSEN D. N. 2009. Crustal motions in great britain: evidence from continuous gps, absolute gravity and holocene sea level data. Geophysical Journal International, 178(1), 23–46. DOI https://doi.org/10.1111/j.1365-246X.2009.04185.x.
TOTH, C. & JÓZKÓW, G. 2016. Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22–36. DOI: https://doi.org/10.1016/j.isprsjprs.2015.10.004.
TSATSARIS, A., KALOGERPOULOS, K., STATHOPOULOS, N., LOUKA, P., TSANAKAS, K., TSESMELIS, D. E., KRASSANAKIS, V., PETROPOULOS, G. P., PAPPAS, V., CHALKIAS, CHRISTOS. 2021. Geoinformation technologies in support of environmental hazards monitoring under climate change: An extensive review. ISPRS International Journal of Geo-Information, 10(2), 94–126. DOI: https://doi.org/10.3390/ijgi10020094.
VAIL, P., MITCHUM JR, R. & THOMPSON III, S. 1977. Seismic stratigraphy and global changes of sea level, Part 3: Relative changes of sea level from coastal onlap. In: PAYTON, C. E. Seismic stratigraphy: applications to hydrocarbon exploration. American Association of
Petroleum Geologists.
VALERIANO, M. D. M. & ROSSETTI, D. D. F. 2012. Topodata: Brazilian full coverage refinement of srtm data, Applied Geography, 32(2), 300–309. DOI: https://doi.org/10.1016/j.apgeog.2011.05.004.
VAN DONGEREN, A., CIAVOLA, P., MARTINEZ, G., VIAVATTENE, C., BOGAARD, T., FERREIRA, O., HIGGINS, R. & MCCALL, R. 2018. Introduction to risckit: Resilience-increasing strategies for coasts. Coastal Engineering, 134, 2–9. DOI: https://doi.org/10.1016/j. coastaleng.2017.10.007.
DE VARGAS, R. R., MARTINS, L. D. D. N., LOPES, A. B., DA SILVA, R. M., FREDDO NETO, R. & DEMARQUI JUNIOR, H. 2020. Desenvolvimento de um sistema de gerenciamento e acesso a informações de redes Scenarios and challenges in responding to sea level rise Ocean and Coastal Research 2024,v72(suppl 1):e24062 27 Silva et al. geodésicas eficiente. Revista Brasileira de Geomática, 8(1), 26–39. DOI: 10.3895/rbgeo.v8n1.10322.
VIGNUDELLI, S., BIROL, F., BENVENISTE, J., FU, L.-L., PICOT, N., RAYNAL, M. & ROINARD, H. 2019. Satellite altimetry measurements of sea level in the coastal zone. Surveys in Geophysics, 40, 1319–1349. DOI: https://doi.org/10.1007/s10712-019-09569-1.
VIGNUDELLI, S., CIPOLLINI, P., GOMMENGINGER, C., GLEASON, S., SNAITH, H. M., COELHO, H., FERNANDES, M. J., LÁZARO, C., NUNES, A. L., GÓMEZ-ENRI, J., MARTIN-PUIG, C., WOODWORTH, P., DINARDO, D. & BENVENISTE, J. 2011. Satellite altimetry: sailing closer to the coast. In: TANG, D (Ed.). Remote Sensing of the Changing Oceans (pp. 217–238). Berlin: Springer Berlin.
VITAL, H., FURTADO, S. F. L. & GOMES, M. P. 2010. Response of the apodi-mossoró estuary-incised valley system (ne brazil) to sea-level fluctuations. Brazilian journal of Oceanography, 58(spe2), 13–24. DOI: https://doi.org/10.1590/S1679-87592010000600003.
VOUSDOUKAS, M. I., VOUKOUVALAS, E., ANNUNZIATO, A., GIARDINO, A. & FEYEN, L. 2016. Projections of extreme storm surge levels along europe. Climate Dynamics, 47, 3171–3190. DOI: https://doi.org/10.1007/s00382-016-3019-5.
WANG, B., FRINGER, O. B., GIDDINGS, S. N. & FONG, D. A. 2009. High-resolution simulations of a macrotidal estuary using suntans. Ocean Modelling, 26(1–3), 60–85. DOI: https://doi.org/10.1016/j.ocemod.2008.08.008.
WERBROUCK, I., ANTROP, M., EETVELDE, V.V., STAL, C., MAEYER, P.D., BATS, M., BOURGEOIS, J.,COURT‐PICON, M., CROMBÉ, P., REU, J.D., SMEDT, P.D., FINKE, P., MEIRVENNE, M.V., VERNIERS, J., & ZWERTVAEGHER, A. 2011. Digital elevation model generation for historical landscape analysis based on lidar data, a case study in flanders (Belgium). Expert Systems with Applications, 38(7), 8178–8185. DOI:
https://doi.org/10.1016/j.eswa.2010.12.162.
WESTON, N. B. 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries and Coasts, 37(1), 1–23. DOI: https://doi.org/10.1007/s12237-013-9654-8.
WIDLANSKY, M. J., LONG, X. & SCHLOESSER, F. 2020. Increase in sea level variability with ocean warming associated with the nonlinear thermal expansion of seawater. Communications Earth & Environment, 1(9). DOI: https://doi.org/10.1038/s43247-020-0008-8.
WIGLEY, T. M. L. & RAPER, S. C. B. 1987. Thermal expansion of sea water associated with global warming. Nature, 330, 127–131. DOI: https://doi.org/10.1038/330127a0.
WOODWORTH, P. L., HUNTER, J. R., MARCOS, M., CALDWELL, P., MENÉNDEZ, M. & HAIGH, I. 2016. Towards a global higher-frequency sea level dataset.Geoscience Data Journal, 3(2), 50–59. DOI: https://doi.org/10.1002/gdj3.42.
WOODWORTH, P. L., WÖPPELMANN, G., MARCOS, M., GRAVELLE, M. & BINGLEY, R. M. 2017. Why we must tie satellite positioning to tide gauge data, EOS 98(12), 13–15.
WÖPPELMANN, G. & MARCOS, M. 2016. Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54(1), 64–92. DOI: https://doi.org/10.1002/2015RG000502.
WÖPPELMANN, G., MIGUEZ, B. M., BOUIN, M.-N. & ALTAMIMI, Z. 2007. Geocentric sea-level trend estimates from gps analyses at relevant tide gauges world-wide. Global and Planetary Change, 57(3–4), 396–406. DOI: https://doi.org/10.1016/j.gloplacha.2007.02.002.
XIAOYE, L. 2011. Accuracy assessment of lidar elevation data using survey marks. Survey Review, 43(319), 80–93. DOI: https://doi.org/10.1179/003962611X12894696204704.
XU, K., FANG, J., FANG, Y., SUN, Q., WU, C. & LIU, M. 2021. The importance of digital elevation model selection in flood simulation and a proposed method to reduce dem errors: A case study in shanghai, International Journal of Disaster Risk Science, 12, 890–902.
YAMAZAKI, D., IKESHIMA, D., TAWATARI, R., YAMAGUCHI, T., O’LOUGHLIN, F., NEAL, J. C., SAMPSON, C. C., KANAE, S. & BATES, P. D. 2017.
A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44(11), 5844–5853. DOI: https://doi.org/10.1002/2017GL072874.
YAMAZAKI, D., SATO, T., HIRABAYASHI, Y. & BATES, P. D. 2014. Regional flood dynamics in a bifurcating mega delta simulated in a global river model. Geophysical Research Letters, 41(9), 3127–3135. DOI: https://doi.org/10.1002/2014GL059744.
ZHOU, G. 2009. Coastal 3d change pattern analysis using lidar series data. In: WANG, Y. Remote sensing of coastal environments (pp. 103–120). Boca Raton: CRC Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ocean and Coastal Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.