Analysis of self-reported discard information in Uruguayan industrial trawl fisheries

Authors

  • Luis Orlando
  • Daniel García

DOI:

https://doi.org/10.1590/

Keywords:

Fishing log, Eco-systemic approach, Best practices, Hairy conger, Brazilian menhaden

Abstract

Discarding unwanted catches is a significant issue arising from marine fishing activities, with far-reaching
socioeconomic and ecological consequences. Uruguayan fishery regulations fail to penalize discarding but
mandate self-reporting, providing an opportunity to analyze the discard from the two Uruguayan industrial bottom
trawl fleets (shelf and coastal). By examining fishing logs, discard was estimated at 3,268 tons/year, accounting
for 6.5% of the total catch (9.1% for the shelf fleet and 3.7% for the coastal fleet), with no discernible temporal
trends for 2016, 2017, 2019, and 2020 nor significant seasonal variations in discard magnitude. Diversity, species
richness, and evenness of the discard varied between fishing seasons and years. The most discarded species
were Bassanago albescens in the shelf fleet and Brevoortia aurea in the coastal fleet. Both species showed
magnitudes indicating a potential for exploitation development. Discard per unit of effort was mapped by fleet,
enhancing the potential for discard information reconstruction for the area and thereby facilitating its inclusion in
ecological and economic assessments. Discard reports have proven to be a valuable source of information that
should be integrated into fisheries conservation and management initiatives.

 

References

Acha, E. M. & Macchi, G. J. 2000. Spawning of Brazilian

menhaden, Brevoortia aurea, in the Río de la Plata

estuary off Argentina and Uruguay. Fishery Bulletin,

(2), 227–235.

Breen, M. & Cook, R. 2002. Inclusion of discard and escape

mortality estimates in stock assessment models and

its likely impact on fisheries management. ICES CM,

(15).

Catchpole, T. L., Frid, C. L. & Gray, T. S. 2005. Discards

in North Sea fisheries: causes, consequences and

solutions. Marine Policy, 29(5), 421–430.

Da Rocha, J. M., García-Cutrín, J., Gutiérrez, M. J.,

Prellezo, R. & Sanchez, E. 2021. Dynamic integrated

model for assessing fisheries: discard bans as an

implicit value-added tax. Environmental and Resource

Economics, 80, 1–20.

Self-reported discard analysis of Uruguayan fisheries

Ocean and Coastal Research 2024, v72:e24070 11

Orlando and García

Damiano, G. & Lercari, D. 2022. Using trophic modeling:

evaluating fisheries discard effect on the Río de la Plata

Estuary and coastal shelf. Latin American Journal of

Aquatic Research, 50(3), 397–416.

Davies, R. W. D., Cripps, S. J., Nickson, A. & Porter, G.

Defining and estimating global marine fisheries

bycatch. Marine Policy, 33(4), 661–672.

Duta, L., Dorcioman, G., & Grumezescu, V. 2021. A review

on biphasic calcium phosphate materials derived from

fish discards. Nanomaterials, 11(11), 2856.

Feekings, J., Lewy, P. & Madsen, N. 2013. The effect of

regulation changes and influential factors on Atlantic

cod discards in the Baltic Sea demersal trawl fishery.

Canadian Journal of Fisheries and Aquatic Sciences,

(4), 534–542.

Gianelli, I. & Defeo, O. 2017. Uruguayan fisheries under an

increasingly globalized scenario: long-term landings and

bioeconomic trends. Fisheries Research, 190, 53–60.

Gianelli, I., Ortega, L., Marín, Y., Piola, A. R. & Defeo, O.

Evidence of ocean warming in Uruguay’s fisheries

landings: the mean temperature of the catch approach.

Marine Ecology Progress Series, 625, 115–125.

Gilman, E., Perez Roda, A., Huntington, T., Kennelly, S. J.,

Suuronen, P., Chaloupka, M. & Medley, P. A. H. 2020.

Benchmarking global fisheries discards. Scientific

reports, 10(1), 14017.

Hammer, Ø., Harper, D. A. & Ryan, P. D. 2001. PAST:

Paleontological statistics software package for education

and data analysis. Palaeontologia Electronica, 4(1), 9.

Heath, M. R., Cook, R. M., Cameron, A. I., Morris, D. J.

& Speirs, D. C. 2014. Cascading ecological effects of

eliminating fishery discards. Nature communications,

(1), 3893.

Hobday, A. J. & Pecl, G. T. 2014. Identification of global

marine hotspots: sentinels for change and vanguards

for adaptation action. Reviews in Fish Biology and

Fisheries, 24, 415–425.

Jiménez, S., Xavier, J. C., Domingo, A., Brazeiro, A., Defeo,

O., Viera, M., Lorenzo, M. I. & Phillips, R. A. 2017. Interspecific niche partitioning and overlap in albatrosses

and petrels: dietary divergence and the role of fishing

discards. Marine Biology, 164, 1–21.

Johnsen, J. P. & Eliasen, S. 2011. Solving complex fisheries

management problems: What the EU can learn from the

Nordic experiences of reduction of discards. Marine

Policy, 35(2), 130–139.

Karkal, S. S. & Kudre, T. G. 2020. Valorization of fish

discards for the sustainable production of renewable

fuels. Journal of Cleaner Production, 275, 122985.

Karp, W. A., Breen, M., Borges, L., Fitzpatrick, M., Kennelly,

S. J., Kolding, J., Nielsen, K. N., Viðarsson, J. R., Cocas

L., & Leadbitter, D. 2019. Strategies used throughout

the world to manage fisheries discards–Lessons for

implementation of the EU Landing Obligation. In:

Uhlmann, S. S., Ulrich, C. & Kennelly S. J. (Eds.).

The European landing obligation: reducing discards in

complex, multi-species and multi-jurisdictional fisheries

(pp. 3-26). Berlin: Springer.

Kelleher, K. (2005). Discards in the world’s marine fisheries:

an update. In: FAO Fisheries Technical Paper 470; FAO:

Rome, Italy, 2005.

Kennelly, S. J. & Broadhurst, M. K. 2002. By‐catch begone:

changes in the philosophy of fishing technology. Fish

and Fisheries, 3(4), 340–355.

Kraan, M., Uhlmann, S., Steenbergen, J., Van Helmond,

A. T. M. & Van Hoof, L. 2013. The optimal process

of self‐sampling in fisheries: lessons learned in the

Netherlands. Journal of Fish Biology, 83(4), 963–973.

Kruse, M., Letschert, J., Cormier, R., Rambo, H., Gee, K.,

Kannen, A., Schaper, J., Möllmann, C. & Stelzenmüller,

V. 2024. Operationalizing a fisheries social-ecological

system through a Bayesian belief network reveals hotspots

for its adaptive capacity in the southern North sea. Journal

of Environmental Management, 357, 120685.

Lorenzo, M. I. & Defeo, O. 2015. The biology and fishery of

hake (Merluccius hubbsi) in the Argentinean–Uruguayan

Common Fishing Zone of the Southwest Atlantic Ocean.

In: Arancibia H. (Ed.). Hakes: biology and exploitation

(pp. 185-210). Hoboken: Wiley Blackwell

Lorenzo, M. I., Defeo, O., Moniri, N. R. & Zylich, K. 2015.

Fisheries catch statistics for Uruguay. Fisheries CentreThe University of British Columbia Working Paper, 25,

-6.

Marín, Y. H., Horta, S., Chocca, J. F. & Defeo, O. 2020. Historical

expansion and diversification of Uruguayan fisheries in

the Río de la Plata and the Atlantic Ocean: The concept

of “métier” and the identification of high-intensity fishing

areas. Ocean & Coastal Management, 184, 104919. DOI:

https://doi.org/10.1016/j.ocecoaman.2019.104919

Mendo, T., Mendo, J., Ransijn, J. M., Gomez, I., GilKodaka, P., Fernández, J., Delgado R., Travezaño A.,

Arroyo R., Loza K., Mccann P., Crowe S., Jones E. L.

& James, M. A. 2022. Assessing discards in an illegal

small-scale fishery using fisher-led reporting. Reviews

in Fish Biology and Fisheries, 32(3), 963-974.

MILITELLI, M. I., MACCHI, G. J., & RODRIGUES, K. A.

(2013). Comparative reproductive biology of Sciaenidae

family species in the Río de la Plata and Buenos Aires

Coastal Zone, Argentina. Journal of the Marine Biological

Association of the United Kingdom, 93(2), 413-423.

Murawski, S. A. 1996. Factors influencing by-catch and

discard rates: analyses from multispecies/multifishery

sea sampling. Journal of Northwest Atlantic Fishery

Science, 19, 31-39.

Pennisi Forell, S. C. 2013. Alternativas tecnológicas que

permitan la elaboración de productos conformados

ricos en ácidos grasos poli-insaturados, a partir de

una especie marina grasa sub-explotada (SARACA,

Brevoortia aurea) (Tesis de Doctorado). La Plata:

Universidad Nacional de La Plata.

Plet-Hansen, K. S., Eliasen, S. Q., Mortensen, L. O.,

Bergsson, H., Olesen, H. J., & Ulrich, C. 2017. Remote

electronic monitoring and the landing obligation–some

insights into fishers’ and fishery inspectors’ opinions.

Marine Policy, 76, 98–106.

Punt, A. E., Smith, D. C., Tuck, G. N. & Methot, R. D. 2006.

Including discard data in fisheries stock assessments:

two case studies from south-eastern Australia.

Fisheries Research, 79(3), 239–250. DOI: https://doi.

org/10.1016/j.marpol.2016.11.028

R Core Team. 2022. R: A language and environment for

statistical computing. R. Foundation for Statistical

Computing. Available from: https://www.R-project.org/

Self-reported discard analysis of Uruguayan fisheries

Ocean and Coastal Research 2024, v72:e24070 12

Orlando and García

Rey M., Lorenzo M. I. & Páez E. 2000 Cálculo indirecto del

descarte costero. Inf. Téc. Nº 48. Montevideo, Instituto

Nacional de Pesca.

Reyes, P. R. 2007. Abyssal fishes of “Triple Union”, join

point of Antarctic, South America and Nazca plates

(northwestern Patagonic archipelago). Revista de

Biologia Marina y Oceanografia, 42(1), 37–47. DOI:

http://dx.doi.org/10.4067/S0718-19572007000100005

Rochet, M. J., Péronnet, I. & Trenkel, V. M. 2002. An

analysis of discards from the French trawler fleet in

the Celtic Sea. ICES Journal of Marine Science, 59(3),

–552. DOI: https://doi.org/10.1006/jmsc.2002.1182

Sigurðardóttir, S., Stefánsdóttir, E. K., Condie, H.,

Margeirsson, S., Catchpole, T. L., Bellido, J. M., Eliasen,

S. Q., Goñi, R., Madsen, N., Palialexis, A., Uhlmann, S.

S., Vassilopoulou, V., Feekings, J. & Rochet, M. J. 2015.

How can discards in European fisheries be mitigated?

Strengths, weaknesses, opportunities and threats of

potential mitigation methods. Marine Policy, 51, 366–

DOI: https://doi.org/10.1016/j.marpol.2014.09.018

Smith, P. J., Mcveagh, S. M. & Steinke, D. 2008. DNA

barcoding for the identification of smoked fish products.

Journal of Fish Biology, 72(2), 464–471.

Soykan, O., Bakir, K. & Kinacigil, H. T. 2019. Demersal

trawl discards with spatial and bathymetric emphasis in

the Turkish coast of the Aegean Sea. Marine Biology

Research, 15(1), 113–123.

Starr, P. 2010. Fisher-collected sampling data: lessons

from the New Zealand experience. Marine and Coastal

Fisheries, 2(1), 47–59. DOI: https://doi.org/10.1577/

C08-030.1

Stergiou, K. I., Politou, C. Y., Christou, E. D. & Petrakis, G.

Selectivity experiments in the NE Mediterranean:

the effect of trawl codend mesh size on species diversity

and discards. ICES Journal of Marine Science, 54(5),

–786. DOI: https://doi.org/10.1006/jmsc.1997.0231

Uruguayan Parliament. 2013. Ley n. 19.175. Montevideo,

Poder legislativo. Available from: http://archivo.

presidencia.gub.uy/sci/leyes/2013/12/cons_min_806.

pdf Access date: 2024 jul. 29

Willette, D. A., Ababouch, L., Barber, P. H., Bunje, P. M.,

Cauzac, J. P., Conchon, A. & Trenkel, V. M. 2023.

Emerging monitoring technologies to reduce illegal

fishing activities at sea and prevent entry of fraudulent

fish into markets. Frontiers in Sustainable Food

Systems, 7, 1166131. DOI: https://doi.org/10.3389/

fsufs.2023.1166131

Zeller, D., Cashion, T., Palomares, M. & Pauly, D. 2018.

Global marine fisheries discards: A synthesis of

reconstructed data. Fish and Fisheries, 19(1), 30–39.

Downloads

Published

25.11.2024

How to Cite

Analysis of self-reported discard information in Uruguayan industrial trawl fisheries. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/