The climatology and classification of coastal storms on the Southeastern coast of Rio de Janeiro State, Brazil
DOI:
https://doi.org/10.1590/Keywords:
Storm power index, Extratropical cyclones, Coastal orientation, Shallow water energy dissipationAbstract
The storm risks in coastal regions have drawn attention worldwide in recent decades. Understanding the
characteristics and behavior of these events and their potential damage to coasts has become essential for
decision-making and coastal management. This study aimed to identify and examine the climatology of coastal
storms on the central coast of the state of Rio de Janeiro, proposing a classification and a coastal impact
evaluation that applies Dolan and Davis’ (1992) storm index. For this, 34 years of NOAA/NCEP/NCAR hindcast
wave database were used (1979 - 2013). Secondarily, this study aimed to compare wave data at two locations
(the south-orientated west and the east-northeast-orientated east coasts) to verify the influence of coastal
orientation against storm events. This research found 231 storm events on the west coast and 44 on the east
coast. While mean durations resembled each other (at around 27 hours), the east coast had a 9% lower mean
storm wave height. The storm peak direction from the south predominated on the west coast (52%), whereas a
south-southeast direction dominated the east coast (50%). Storm classification showed 3.4 and 9% of storms
considered Extreme in the west and east, respectively. Extreme storms include those in September 1983, May
1997, May 2001, and April 2010. Coastal storms on the west and east represented 2.39 and 0.57% of all
cyclones identified in the southwestern Atlantic. In shallow waters, the highest amount of energy dissipation
occurred on the east coast, which is sheltered from storms from the south-southwest but is exposed to those
from the south-southeast. Extreme and Severe events greatly impacted the coast, including beach and dune
erosion, overwash, and property damage. However, even coastal storms considered Weak caused considerable
coastal damage.
References
Abreu, E. X., Silva, M. V., Reboita, M. S. & Teodoro, T.
A. 2018. Estudo do ciclo de vida de três ciclones
extratropicais no Oceano Atlântico Sul (Life cycle study
of three extratropical cyclones in the South Atlantic).
Revista Brasileira de Geografia Física, 11(1), 251–275.
Amorim, I. B. S & Bulhões, E. M. R. 2016. Análise das
condições sinóticas de eventos de ondas de tempestade
no litoral norte Fluminense. Boletim do Observatório
Ambiental Alberto Ribeiro Lamego, 10(1), 253-279. DOI:
https://doi.org/10.19180/2177-4560.v10n12016p253-279
Allen, J. R. 1981. Beach erosion as a function of variations
in the sediment budget. Sandy Hook, New Jersey, USA.
Earth Surface and Landforms, 6(2), 139–150. DOI:
https://doi.org/10.1002/esp.3290060207
Barletta, R. C. & Calliari, L. J. 2002. Determinação da
Intensidade das Tempestades que atuam no litoral do Rio
Grande do Sul, Brasil. Pesquisas em Geociências, 28(2),
–124. DOI: https://doi.org/10.22456/1807-9806.20276
Battjes, J. & Groenendijk, H. 2000. Wave height distributions
on shallow foreshores. Coastal Engineering, 40(3),
-182. DOI: https://doi.org/10.1016/S0378-
(00)00007-7
Bruun, P. M. 1962. Sea Level rise as a cause of shore
erosion. Journal of the Waterways and Harbors Division,
, 117130
Bulhões, E. M., Fernandez, G. B. & Rocha, T. B. 2010.
Efeitos morfológicos nas barreiras costeiras do litoral
centro-norte do estado do Rio de Janeiro: resultados
do evento de tempestade de abril de 2010. Revista de
Geografia, (2), 15–29.
Bulhões, E., Fernandez, G. B. Oliveira Filho, S. R., Pereira,
T.G. & Rocha, T.B. 2014. Impactos Costeiros Induzidos
por Ondas de Tempestade entre o Cabo Frio e o
Cabo Búzios, Rio de Janeiro, Brasil. Quaternary and
Environmental Geosciences, 5(2), 155–165.
Bulhões, E., Fernandez, G. B., Oliveira Filho, S. & Pereira,
T. G. 2016. Coastal Impacts Induced by Storm Waves
between Cape Frio and Cape Buzios, Rio de Janeiro,
Brazil. Journal of Coastal Research, 75(sp1), 1047–1051.
Carvalho, B C., Dalbosco, A. L. P. & Guerra, J. V. 2020.
Shoreline position change and the relationship to annual
and interannual meteo-oceanographic conditions in
Southeastern Brazil. Estuarine, Coastal and Shelf
Science, 235, 106582. DOI: https://doi.org/10.1016/j.
ecss.2020.106582
Campos, R. M., Alves, J.-H. & Parente, C. E. 2013.
Modelagem de Ondas Extremas no Oceano Atlântico
Sul. In: X Simpósio sobre Ondas, Marés, Engenharia
Oceânica e Oceanógrafa por Satélite OMAR-SAT
(10th. ed.).
Camus, P., Mendez, F. J. & Medina, R. 2011. A hybrid
efficient method to downscale wave climate to coastal
areas. Coastal Engineering, 58(9), 851–862. DOI:
https://doi.org/10.1016/j.coastaleng.2011.05.007
Collins, J. I. 1970. Probabilities of Breaking Wave
Characteristics. Coastal Engineering, 12 DOI: https://
doi.org/10.9753/icce.v12.25
Dolan, R. & Hayden, B. 1983. Patterns and Prediction
of Shoreline Change. In: Komar, P. D. & Moore, J. R.
Influence of coastal storms climatology and classification
Ocean and Coastal Research 2024, v72:24061 16
Klumb-Oliveira
Handbook of coastal process and erosion (pp. 123-150).
Boca Raton, CRC Press.
Dolan, R. & Davis, R. E. 1992. An intensity scale for Atlantic
coast northeast storms. Journal of Coastal Research,
(3), 840–853.
Durán, R., Guillén, J., Ruiz, A., Jiménez, J. A. & Sagristà,
E. 2016. Morphological changes, beach inundation
and overwash caused by an extreme storm on a lowlying embayed beach bounded by a dune system (NW
Mediterranean). Geomorphology, 274, 129–142. DOI:
https://doi.org/10.1016/j.geomorph.2016.09.012
Earlie, C., Masselink, G. & Russell, P. 2018. The role of
beach morphology on coastal cliff erosion under extreme
waves. Earth Surface Processes and Landforms, 43(6),
–1228. DOI: https://doi.org/10.1002/esp.4308
Fernandez, G. B., Bulhões, E. & Rocha, T. B. 2011. Impacts
of Severe Storm Occurred in April 2010 along Rio de
Janeiro Coast, Brazil. Journal of Coastal Research,
–1854.
Fellowes, T., Vila-Concejo, A., Gallop, S., Harley, M. D.
& Short, A. 2022. Wave shadow zones as a primary
control of storm erosion and recovery on embayed
beaches. Geomorphology, 399, 108072. DOI: https://
doi.org/10.1016/j.geomorph.2021.108072.
Figueiredo Jr, A. G. & Tessler, M. 2004. Topografia e
composição do substrato marinho da região SudesteSul do Brasil. São Paulo: Instituto Oceanográfico.
Figueiredo Jr, A. G., Pacheco, C. E. P., Vasconcelos, S.
C. & Silva, F. T. 2016. Continental shelf geomorphology
and sedimentology. In: Kowsmann, R. O. Geology and
Geomorphology (pp. 13-31). Amsterdam: Elsevier. DOI:
https://doi.org/10.1016/b978-85-352-8444-7.50009-3.
Figueiredo Jr, A., Carneiro, J. C., & Santos Filho, J. R.
D. 2023. Santos Basin continental shelf morphology,
sedimentology, and slope sediment distribution. Ocean
and Coastal Research, 71(Suppl. 3). DOI: https://doi.
org/10.1590/2675-2824071.22064agfj.
Gan, M. A. & Rao, V. B. 1991. Surface cyclogenesis over
South America. Monthly Weather Review, 119(5),
–1303. DOI: https://doi.org/10.1175/1520-
(1991)119<1293:SCOSA>2.0.CO;2
Godoi, V. A, Andrade, F., Durrant, T. H. & Torres Jr, A. 2020.
What happens to the ocean surface gravity waves when
ENSO and MJO phases combine during the extended
boreal winter? Climate Dynamics, 54(3–4), 1407–1424.
DOI: https://doi.org/10.1007/s00382-019-05065-9.
Guimarães, P. V., Farina, L. & Toldo Jr, E. E. 2014. Analysis
of extreme wave events on the southern coast of Brazil.
Natural Hazards and Earth System Sciences, 14(12),
–3205.
Gramcianinov, C. B., Campos, R. M., Guedes, C. &
Camargo, R. 2020. Extreme waves generated by
cyclonic winds in the western portion of the South
Atlantic Ocean. Ocean Engineering, 213, 107745. DOI:
https://doi.org/10.1016/j.oceaneng.2020.107745
Harley, M. 2017. Coastal Storm Definition. In: Ciavola, P.
& Coco, G. Coastal Storms: Processes and Impacts.
Hoboken: John Wiley and Sons.
Hsu, J.R.C. & Evans, C. 1989. Parabolic Bay Shapes and
Applications. Proceedings, institution of civil engineers,
(2), 557–570.
Innocentini, F. A. O. & Prado, S. C. 2003. Modelo de
ondas aplicado ao caso 5-8 de maio de 2001. Revista
Brasileira de Meteorologia, 18(1), 97–104.
Innocentini, V. E. & Caetano Neto, S. 1996. A Case Study
of the 9 August 1988 South Atlantic Storm: Numerical
simulations of the Wave Activity. Weather and
Forecasting, 11(1), 78–88.
Jenks, G. F. 1967. The Data Model Concept in Statistical
Mapping. International Yearbook of Cartography, 7,
–190.
Klumb-Oliveira, L. A., Pereira, N. E. S. & Leão, R. R. 2015.
Multitemporal morphodynamics in reflective beach in
central and Northern coast of RJ in response to regional
wave climate. Revista Brasileira de Geomorfologia,
(1), 19–36.
Kutupoglu, V., Çalişir, E. & Akpinar’, A. 2023.
Characterization and classification of wave storm
events and wave climate on the Sea of Marmara.
Ocean Engineering, 279, 114448. DOI: https://doi.
org/10.1016/j.oceaneng.2023.114448
Law-Chune, S., Aouf, L., Dalphinet, A., Levier, B., Drillet,
Y. & Drevillon, M. 2021. WAVERYS: a CMEMS global
wave reanalysis during the altimetry period. Ocean
Dynamics, 71, 357–378. DOI: https://doi.org/10.1007/
s10236-020-01433-w
Lins-de-Barros, F. M., Klumb-Oliveira, L. A & Lima, R. 2018.
Avaliação histórica da ocorrência de ressacas marinhas
e danos associados entre os anos de 1979 e 2013 no
litoral do estado do Rio de Janeiro (Brasil). Revista de
Gestão Costeira Integrada, 18(2), 85–102. DOI: https://
doi.org/10.5894/rgci-n146
Lins-de-Barros, F. M. 2005. Risco, Vulnerabilidade Física à
Erosão Costeira e Impactos Socioeconômicos na Orla
Urbanizada do Município de Maricá, Rio de Janeiro.
Revista Brasileira de Geomorfologia, 6(2), 83–90. DOI:
https://doi.org/10.20502/rbg.v6i2.54
Mitchell, J. K. 1974. Community Response to Coastal
Erosion: Individual and Collective adjustments to
Hazard on the Atlantic Shore. Chicago, The University
of Chicago.
Muehe, D. & Valentini, E. 1998. O Litoral do Estado do Rio
de Janeiro: uma caracterização físico-ambiental. Rio de
Janeiro, FEMAR.
Muehe, D. 2011. Erosão costeira - Tendência ou eventos
extremos? O litoral entre Rio de Janeiro e Cabo Frio,
Brasil. Revista da Gestão Costeira Integrada, 11(3),
–325.
Muehe, D., Lins-de-Barros, F., Oliveira, J. & Klumb-Oliveira,
L. A. 2015. Pulsos erosivos e resposta morfodinâmica
associada a eventos extremos na costa leste do estado
do Rio de Janeiro. Revista Brasileira de Geomorfologia,
(3). DOI: https://doi.org/10.20502/rbg.v16i3.728
Naiqiang, L. & Guiyang, X. 2020. Grid analysis of land use
based on natural breaks (Jenks) classification. Bulletin
of Surveying and Mapping, (4), 106–110.
Ojeda, E., Appendini, C. M. & Mendoza, E. T. 2017. Stormwave trends in Mexican waters of the Gulf of Mexico
Influence of coastal storms climatology and classification
Ocean and Coastal Research 2024, v72:24061 17
Klumb-Oliveira
and Caribbean Sea. Natural Hazards and Earth
System Sciences, 17(8), 1305–1317. DOI: https://doi.
org/10.5194/nhess-17-1305-2017
Parente, C. E., Nogueira, I. C. M., Martins, R. P. & Ribeiro,
E. O. 2016. Climatologia de Ondas. In: Martins, R. P.,
Grossmann-Matheson, G. S., Falcão, A. P. & CurbeloFernandez, M. P. (eds.). Caracterização Ambiental
Regional da Bacia de Campos, Atlântico Sudoeste:
Meteorologia e Oceanografia (pp. 55-98). Rio de
Janeiro: Elsevier.
Parise, C. K., Calliari, L. J. & Krusche, N. 2009. Extreme
storm surges in the South of Brazil: Atmospheric
conditions and shore erosion. Brazilian Journal of
Oceanography, 57(3), 175–188.
Paula, D. P., Morais, J. O., Ferreira, Ó. & Dias, J. A. 2015.
Análise histórica das ressacas do mar no litoral de
Fortaleza (Ceará, Brasil): origem, características e
impactos. In: Paula, D. P. & Dias, J. A. (orgs.). Ressacas
do Mar, Temporais e Gestão Costeira (pp. 173-201).
Fortaleza: Premius.
Poli, P. 2011. Data Assimilation for Atmospheric Reanalysis. In:
Seminar on Data assimilation for atmosphere and ocean.
Rangel-Buitrago N. & Anfuso, G. 2011. An application of
Dolan and Davis (1992) classification to coastal storms
in SW Spanish littoral. Journal of Coastal Research, 64,
–1895.
Reboita, M. S., Iwabe, C., da Rocha, R. P. & Ambrizzi,
T. 2009. Análise de um ciclone semi-estacionário na
Costa Sul do Brasil associado a bloqueio atmosférico.
Revista Brasileira de Meteorologia, 24(4), 407–422.
Reboita, M. S, da Rocha, R. P., Ambrizzi, T. & Sugahara, S.
South Atlantic Ocean Cyclogenesis Climatology
Simulated by Regional Climate Model (RegCM3).
Climate Dynamics, 35, 1331-1347.
Reboita, M. S., da Rocha, R. P., Ambrizzi, T. & Gouveia,
C. D. 2015. Trend and teleconnection patterns in the
climatology of extratropical cyclones over the Southern
Hemisphere. Climate Dynamics, 45, 1929–1944.
Reis, A. T., Maia, R. M. C., Silva, C. G., Rabineau, M.,
Guerra, J. V., Gorini, C., Ayres, A., Arantes-Oliveira,
R., Benabdellouahed, M., Simões, I. & Tardin, R. 2013.
Origin of step-like and lobate seafloor features along the
continental shelf off Rio de Janeiro State, Santos basinBrazil. Geomorphology, 203, 25–45. DOI: http://dx.doi.
org/10.1016/j.geomorph.2013.04.037.
Rocha, R. P., Sugahara, S. & Silveira, R. B. 2004. Sea
Waves Generated by Extratropical Cyclones in
the South Atlantic Ocean: Hindcast and Validation
against Altimeter Data. Weather and Forecasting,
(2), 398–410. DOI: https://doi.org/10.1175/1520-
(2004)019<0398:SWGBEC>2.0.CO;2
Rudorff, F. M., Bonetti Filho, J., Moreno, D. A., Oliveira, C.
A. F & Murara, P. G. 2014. Maré de tempestade. In:
Herrmann, M. L. P. (org.). Atlas de desastres naturais
do Estado de Santa Catarina: período de 1980 a 2010.
nd. ed. Florianópolis: Cadernos Geográficos.
Saha, S., Moorthi, S., Pan H.-L., Wu, X., Wang, J., Hou,
Y.-T., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R.,
Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M.,
Meng, J., Wei, H., Yang, R., Lord, S., van den Dool,
H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue,
Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R.,
Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu,
Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W.,
Rutledge, G. & Goldberg, M. 2010. The NCEP climate
forecast system reanalysis. Bulletin of the American
Meteorological Society, 91(8), 1015-1058. DOI: https://
doi.org/10.1175/2010BAMS3001.1
Shepard, F. P. 1950. Longshore Bars and Longshore
Troughs. Washington, D.C.: Army Corps of Engineers.
SMC (Sistema de Modelagem Costeira). 2017. Manual
de Referência – Modelo de Propagação de Ondas
Espectrais em Praias. Brasília, DF: Ministério do Meio
Ambiente.
Sondermann, M., Chou, S. C., Souza, C. R. G., Rodrigues,
J. & Caprace, J. D. 2023. Atmospheric patterns favorable
to storm surge events on the coast of São Paulo State,
Brazil. Natural Hazards, 117(1), 93–111. DOI: http://
dx.doi.org/10.1007/s11069-023-05851-z
Souza, T, A; Bulhões, E. & Amorim, I. B. S. 2015. Ondas
de tempestade na costa Norte Fluminense. Quaternary
and Enviromental Geosiences, 6(2),10-17. DOI: http://
dx.doi.org/10.5380/abequa.v6i2.41139
Tolman, H. L. 2009. User Manual and System
Documentation of WAVEWATCHIII version 3.14. Calm
Springs: U. S. Department of Commerce. National
Oceanic and Atmospheric Administration. National
Weather Service. National Centers for Environmental
Prediction. Technical Note.
You, Z. & Lord, D. 2008. Influence of the El Niño–Southern
Oscillation on NSW Coastal Storm Severity. Journal of
Coastal Research, 24(sp2), 203–207. DOI: https://doi.
org/10.2112/06-0690.1
Zhang, K. Q., Douglas, B. C. & Leatherman, S. P. 2000.
Twentieth century storm activity along the U.S. east
coast. Journal of Climate, 13(10), 1748–1761. DOI:
https://doi.org/10.1175/1520-0442(2000)013<1748:TC
SAAT>2.0.CO;2