The climatology and classification of coastal storms on the Southeastern coast of Rio de Janeiro State, Brazil

Authors

  • Leonardo Klumb-Oliveira

DOI:

https://doi.org/10.1590/

Keywords:

Storm power index, Extratropical cyclones, Coastal orientation, Shallow water energy dissipation

Abstract

The storm risks in coastal regions have drawn attention worldwide in recent decades. Understanding the
characteristics and behavior of these events and their potential damage to coasts has become essential for
decision-making and coastal management. This study aimed to identify and examine the climatology of coastal
storms on the central coast of the state of Rio de Janeiro, proposing a classification and a coastal impact
evaluation that applies Dolan and Davis’ (1992) storm index. For this, 34 years of NOAA/NCEP/NCAR hindcast
wave database were used (1979 - 2013). Secondarily, this study aimed to compare wave data at two locations
(the south-orientated west and the east-northeast-orientated east coasts) to verify the influence of coastal
orientation against storm events. This research found 231 storm events on the west coast and 44 on the east
coast. While mean durations resembled each other (at around 27 hours), the east coast had a 9% lower mean
storm wave height. The storm peak direction from the south predominated on the west coast (52%), whereas a
south-southeast direction dominated the east coast (50%). Storm classification showed 3.4 and 9% of storms
considered Extreme in the west and east, respectively. Extreme storms include those in September 1983, May
1997, May 2001, and April 2010. Coastal storms on the west and east represented 2.39 and 0.57% of all
cyclones identified in the southwestern Atlantic. In shallow waters, the highest amount of energy dissipation
occurred on the east coast, which is sheltered from storms from the south-southwest but is exposed to those
from the south-southeast. Extreme and Severe events greatly impacted the coast, including beach and dune
erosion, overwash, and property damage. However, even coastal storms considered Weak caused considerable
coastal damage.

References

Abreu, E. X., Silva, M. V., Reboita, M. S. & Teodoro, T.

A. 2018. Estudo do ciclo de vida de três ciclones

extratropicais no Oceano Atlântico Sul (Life cycle study

of three extratropical cyclones in the South Atlantic).

Revista Brasileira de Geografia Física, 11(1), 251–275.

Amorim, I. B. S & Bulhões, E. M. R. 2016. Análise das

condições sinóticas de eventos de ondas de tempestade

no litoral norte Fluminense. Boletim do Observatório

Ambiental Alberto Ribeiro Lamego, 10(1), 253-279. DOI:

https://doi.org/10.19180/2177-4560.v10n12016p253-279

Allen, J. R. 1981. Beach erosion as a function of variations

in the sediment budget. Sandy Hook, New Jersey, USA.

Earth Surface and Landforms, 6(2), 139–150. DOI:

https://doi.org/10.1002/esp.3290060207

Barletta, R. C. & Calliari, L. J. 2002. Determinação da

Intensidade das Tempestades que atuam no litoral do Rio

Grande do Sul, Brasil. Pesquisas em Geociências, 28(2),

–124. DOI: https://doi.org/10.22456/1807-9806.20276

Battjes, J. & Groenendijk, H. 2000. Wave height distributions

on shallow foreshores. Coastal Engineering, 40(3),

-182. DOI: https://doi.org/10.1016/S0378-

(00)00007-7

Bruun, P. M. 1962. Sea Level rise as a cause of shore

erosion. Journal of the Waterways and Harbors Division,

, 117130

Bulhões, E. M., Fernandez, G. B. & Rocha, T. B. 2010.

Efeitos morfológicos nas barreiras costeiras do litoral

centro-norte do estado do Rio de Janeiro: resultados

do evento de tempestade de abril de 2010. Revista de

Geografia, (2), 15–29.

Bulhões, E., Fernandez, G. B. Oliveira Filho, S. R., Pereira,

T.G. & Rocha, T.B. 2014. Impactos Costeiros Induzidos

por Ondas de Tempestade entre o Cabo Frio e o

Cabo Búzios, Rio de Janeiro, Brasil. Quaternary and

Environmental Geosciences, 5(2), 155–165.

Bulhões, E., Fernandez, G. B., Oliveira Filho, S. & Pereira,

T. G. 2016. Coastal Impacts Induced by Storm Waves

between Cape Frio and Cape Buzios, Rio de Janeiro,

Brazil. Journal of Coastal Research, 75(sp1), 1047–1051.

Carvalho, B C., Dalbosco, A. L. P. & Guerra, J. V. 2020.

Shoreline position change and the relationship to annual

and interannual meteo-oceanographic conditions in

Southeastern Brazil. Estuarine, Coastal and Shelf

Science, 235, 106582. DOI: https://doi.org/10.1016/j.

ecss.2020.106582

Campos, R. M., Alves, J.-H. & Parente, C. E. 2013.

Modelagem de Ondas Extremas no Oceano Atlântico

Sul. In: X Simpósio sobre Ondas, Marés, Engenharia

Oceânica e Oceanógrafa por Satélite OMAR-SAT

(10th. ed.).

Camus, P., Mendez, F. J. & Medina, R. 2011. A hybrid

efficient method to downscale wave climate to coastal

areas. Coastal Engineering, 58(9), 851–862. DOI:

https://doi.org/10.1016/j.coastaleng.2011.05.007

Collins, J. I. 1970. Probabilities of Breaking Wave

Characteristics. Coastal Engineering, 12 DOI: https://

doi.org/10.9753/icce.v12.25

Dolan, R. & Hayden, B. 1983. Patterns and Prediction

of Shoreline Change. In: Komar, P. D. & Moore, J. R.

Influence of coastal storms climatology and classification

Ocean and Coastal Research 2024, v72:24061 16

Klumb-Oliveira

Handbook of coastal process and erosion (pp. 123-150).

Boca Raton, CRC Press.

Dolan, R. & Davis, R. E. 1992. An intensity scale for Atlantic

coast northeast storms. Journal of Coastal Research,

(3), 840–853.

Durán, R., Guillén, J., Ruiz, A., Jiménez, J. A. & Sagristà,

E. 2016. Morphological changes, beach inundation

and overwash caused by an extreme storm on a lowlying embayed beach bounded by a dune system (NW

Mediterranean). Geomorphology, 274, 129–142. DOI:

https://doi.org/10.1016/j.geomorph.2016.09.012

Earlie, C., Masselink, G. & Russell, P. 2018. The role of

beach morphology on coastal cliff erosion under extreme

waves. Earth Surface Processes and Landforms, 43(6),

–1228. DOI: https://doi.org/10.1002/esp.4308

Fernandez, G. B., Bulhões, E. & Rocha, T. B. 2011. Impacts

of Severe Storm Occurred in April 2010 along Rio de

Janeiro Coast, Brazil. Journal of Coastal Research,

–1854.

Fellowes, T., Vila-Concejo, A., Gallop, S., Harley, M. D.

& Short, A. 2022. Wave shadow zones as a primary

control of storm erosion and recovery on embayed

beaches. Geomorphology, 399, 108072. DOI: https://

doi.org/10.1016/j.geomorph.2021.108072.

Figueiredo Jr, A. G. & Tessler, M. 2004. Topografia e

composição do substrato marinho da região SudesteSul do Brasil. São Paulo: Instituto Oceanográfico.

Figueiredo Jr, A. G., Pacheco, C. E. P., Vasconcelos, S.

C. & Silva, F. T. 2016. Continental shelf geomorphology

and sedimentology. In: Kowsmann, R. O. Geology and

Geomorphology (pp. 13-31). Amsterdam: Elsevier. DOI:

https://doi.org/10.1016/b978-85-352-8444-7.50009-3.

Figueiredo Jr, A., Carneiro, J. C., & Santos Filho, J. R.

D. 2023. Santos Basin continental shelf morphology,

sedimentology, and slope sediment distribution. Ocean

and Coastal Research, 71(Suppl. 3). DOI: https://doi.

org/10.1590/2675-2824071.22064agfj.

Gan, M. A. & Rao, V. B. 1991. Surface cyclogenesis over

South America. Monthly Weather Review, 119(5),

–1303. DOI: https://doi.org/10.1175/1520-

(1991)119<1293:SCOSA>2.0.CO;2

Godoi, V. A, Andrade, F., Durrant, T. H. & Torres Jr, A. 2020.

What happens to the ocean surface gravity waves when

ENSO and MJO phases combine during the extended

boreal winter? Climate Dynamics, 54(3–4), 1407–1424.

DOI: https://doi.org/10.1007/s00382-019-05065-9.

Guimarães, P. V., Farina, L. & Toldo Jr, E. E. 2014. Analysis

of extreme wave events on the southern coast of Brazil.

Natural Hazards and Earth System Sciences, 14(12),

–3205.

Gramcianinov, C. B., Campos, R. M., Guedes, C. &

Camargo, R. 2020. Extreme waves generated by

cyclonic winds in the western portion of the South

Atlantic Ocean. Ocean Engineering, 213, 107745. DOI:

https://doi.org/10.1016/j.oceaneng.2020.107745

Harley, M. 2017. Coastal Storm Definition. In: Ciavola, P.

& Coco, G. Coastal Storms: Processes and Impacts.

Hoboken: John Wiley and Sons.

Hsu, J.R.C. & Evans, C. 1989. Parabolic Bay Shapes and

Applications. Proceedings, institution of civil engineers,

(2), 557–570.

Innocentini, F. A. O. & Prado, S. C. 2003. Modelo de

ondas aplicado ao caso 5-8 de maio de 2001. Revista

Brasileira de Meteorologia, 18(1), 97–104.

Innocentini, V. E. & Caetano Neto, S. 1996. A Case Study

of the 9 August 1988 South Atlantic Storm: Numerical

simulations of the Wave Activity. Weather and

Forecasting, 11(1), 78–88.

Jenks, G. F. 1967. The Data Model Concept in Statistical

Mapping. International Yearbook of Cartography, 7,

–190.

Klumb-Oliveira, L. A., Pereira, N. E. S. & Leão, R. R. 2015.

Multitemporal morphodynamics in reflective beach in

central and Northern coast of RJ in response to regional

wave climate. Revista Brasileira de Geomorfologia,

(1), 19–36.

Kutupoglu, V., Çalişir, E. & Akpinar’, A. 2023.

Characterization and classification of wave storm

events and wave climate on the Sea of Marmara.

Ocean Engineering, 279, 114448. DOI: https://doi.

org/10.1016/j.oceaneng.2023.114448

Law-Chune, S., Aouf, L., Dalphinet, A., Levier, B., Drillet,

Y. & Drevillon, M. 2021. WAVERYS: a CMEMS global

wave reanalysis during the altimetry period. Ocean

Dynamics, 71, 357–378. DOI: https://doi.org/10.1007/

s10236-020-01433-w

Lins-de-Barros, F. M., Klumb-Oliveira, L. A & Lima, R. 2018.

Avaliação histórica da ocorrência de ressacas marinhas

e danos associados entre os anos de 1979 e 2013 no

litoral do estado do Rio de Janeiro (Brasil). Revista de

Gestão Costeira Integrada, 18(2), 85–102. DOI: https://

doi.org/10.5894/rgci-n146

Lins-de-Barros, F. M. 2005. Risco, Vulnerabilidade Física à

Erosão Costeira e Impactos Socioeconômicos na Orla

Urbanizada do Município de Maricá, Rio de Janeiro.

Revista Brasileira de Geomorfologia, 6(2), 83–90. DOI:

https://doi.org/10.20502/rbg.v6i2.54

Mitchell, J. K. 1974. Community Response to Coastal

Erosion: Individual and Collective adjustments to

Hazard on the Atlantic Shore. Chicago, The University

of Chicago.

Muehe, D. & Valentini, E. 1998. O Litoral do Estado do Rio

de Janeiro: uma caracterização físico-ambiental. Rio de

Janeiro, FEMAR.

Muehe, D. 2011. Erosão costeira - Tendência ou eventos

extremos? O litoral entre Rio de Janeiro e Cabo Frio,

Brasil. Revista da Gestão Costeira Integrada, 11(3),

–325.

Muehe, D., Lins-de-Barros, F., Oliveira, J. & Klumb-Oliveira,

L. A. 2015. Pulsos erosivos e resposta morfodinâmica

associada a eventos extremos na costa leste do estado

do Rio de Janeiro. Revista Brasileira de Geomorfologia,

(3). DOI: https://doi.org/10.20502/rbg.v16i3.728

Naiqiang, L. & Guiyang, X. 2020. Grid analysis of land use

based on natural breaks (Jenks) classification. Bulletin

of Surveying and Mapping, (4), 106–110.

Ojeda, E., Appendini, C. M. & Mendoza, E. T. 2017. Stormwave trends in Mexican waters of the Gulf of Mexico

Influence of coastal storms climatology and classification

Ocean and Coastal Research 2024, v72:24061 17

Klumb-Oliveira

and Caribbean Sea. Natural Hazards and Earth

System Sciences, 17(8), 1305–1317. DOI: https://doi.

org/10.5194/nhess-17-1305-2017

Parente, C. E., Nogueira, I. C. M., Martins, R. P. & Ribeiro,

E. O. 2016. Climatologia de Ondas. In: Martins, R. P.,

Grossmann-Matheson, G. S., Falcão, A. P. & CurbeloFernandez, M. P. (eds.). Caracterização Ambiental

Regional da Bacia de Campos, Atlântico Sudoeste:

Meteorologia e Oceanografia (pp. 55-98). Rio de

Janeiro: Elsevier.

Parise, C. K., Calliari, L. J. & Krusche, N. 2009. Extreme

storm surges in the South of Brazil: Atmospheric

conditions and shore erosion. Brazilian Journal of

Oceanography, 57(3), 175–188.

Paula, D. P., Morais, J. O., Ferreira, Ó. & Dias, J. A. 2015.

Análise histórica das ressacas do mar no litoral de

Fortaleza (Ceará, Brasil): origem, características e

impactos. In: Paula, D. P. & Dias, J. A. (orgs.). Ressacas

do Mar, Temporais e Gestão Costeira (pp. 173-201).

Fortaleza: Premius.

Poli, P. 2011. Data Assimilation for Atmospheric Reanalysis. In:

Seminar on Data assimilation for atmosphere and ocean.

Rangel-Buitrago N. & Anfuso, G. 2011. An application of

Dolan and Davis (1992) classification to coastal storms

in SW Spanish littoral. Journal of Coastal Research, 64,

–1895.

Reboita, M. S., Iwabe, C., da Rocha, R. P. & Ambrizzi,

T. 2009. Análise de um ciclone semi-estacionário na

Costa Sul do Brasil associado a bloqueio atmosférico.

Revista Brasileira de Meteorologia, 24(4), 407–422.

Reboita, M. S, da Rocha, R. P., Ambrizzi, T. & Sugahara, S.

South Atlantic Ocean Cyclogenesis Climatology

Simulated by Regional Climate Model (RegCM3).

Climate Dynamics, 35, 1331-1347.

Reboita, M. S., da Rocha, R. P., Ambrizzi, T. & Gouveia,

C. D. 2015. Trend and teleconnection patterns in the

climatology of extratropical cyclones over the Southern

Hemisphere. Climate Dynamics, 45, 1929–1944.

Reis, A. T., Maia, R. M. C., Silva, C. G., Rabineau, M.,

Guerra, J. V., Gorini, C., Ayres, A., Arantes-Oliveira,

R., Benabdellouahed, M., Simões, I. & Tardin, R. 2013.

Origin of step-like and lobate seafloor features along the

continental shelf off Rio de Janeiro State, Santos basinBrazil. Geomorphology, 203, 25–45. DOI: http://dx.doi.

org/10.1016/j.geomorph.2013.04.037.

Rocha, R. P., Sugahara, S. & Silveira, R. B. 2004. Sea

Waves Generated by Extratropical Cyclones in

the South Atlantic Ocean: Hindcast and Validation

against Altimeter Data. Weather and Forecasting,

(2), 398–410. DOI: https://doi.org/10.1175/1520-

(2004)019<0398:SWGBEC>2.0.CO;2

Rudorff, F. M., Bonetti Filho, J., Moreno, D. A., Oliveira, C.

A. F & Murara, P. G. 2014. Maré de tempestade. In:

Herrmann, M. L. P. (org.). Atlas de desastres naturais

do Estado de Santa Catarina: período de 1980 a 2010.

nd. ed. Florianópolis: Cadernos Geográficos.

Saha, S., Moorthi, S., Pan H.-L., Wu, X., Wang, J., Hou,

Y.-T., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R.,

Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M.,

Meng, J., Wei, H., Yang, R., Lord, S., van den Dool,

H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue,

Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R.,

Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu,

Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W.,

Rutledge, G. & Goldberg, M. 2010. The NCEP climate

forecast system reanalysis. Bulletin of the American

Meteorological Society, 91(8), 1015-1058. DOI: https://

doi.org/10.1175/2010BAMS3001.1

Shepard, F. P. 1950. Longshore Bars and Longshore

Troughs. Washington, D.C.: Army Corps of Engineers.

SMC (Sistema de Modelagem Costeira). 2017. Manual

de Referência – Modelo de Propagação de Ondas

Espectrais em Praias. Brasília, DF: Ministério do Meio

Ambiente.

Sondermann, M., Chou, S. C., Souza, C. R. G., Rodrigues,

J. & Caprace, J. D. 2023. Atmospheric patterns favorable

to storm surge events on the coast of São Paulo State,

Brazil. Natural Hazards, 117(1), 93–111. DOI: http://

dx.doi.org/10.1007/s11069-023-05851-z

Souza, T, A; Bulhões, E. & Amorim, I. B. S. 2015. Ondas

de tempestade na costa Norte Fluminense. Quaternary

and Enviromental Geosiences, 6(2),10-17. DOI: http://

dx.doi.org/10.5380/abequa.v6i2.41139

Tolman, H. L. 2009. User Manual and System

Documentation of WAVEWATCHIII version 3.14. Calm

Springs: U. S. Department of Commerce. National

Oceanic and Atmospheric Administration. National

Weather Service. National Centers for Environmental

Prediction. Technical Note.

You, Z. & Lord, D. 2008. Influence of the El Niño–Southern

Oscillation on NSW Coastal Storm Severity. Journal of

Coastal Research, 24(sp2), 203–207. DOI: https://doi.

org/10.2112/06-0690.1

Zhang, K. Q., Douglas, B. C. & Leatherman, S. P. 2000.

Twentieth century storm activity along the U.S. east

coast. Journal of Climate, 13(10), 1748–1761. DOI:

https://doi.org/10.1175/1520-0442(2000)013<1748:TC

SAAT>2.0.CO;2

Downloads

Published

30.09.2024

How to Cite

The climatology and classification of coastal storms on the Southeastern coast of Rio de Janeiro State, Brazil. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/