Evaluation of the potential for greenhouse gas (CO2 , CH4 ) emissions in the southern São Paulo coastal region, Cananéia-Iguape system
DOI:
https://doi.org/10.1590/Keywords:
Methane, Carbon dioxide, Estuary, GHG, Microportable gas analyzersAbstract
The emissions of CH4
and CO2
, the primary greenhouse gases, have a significant impact on radiative forcing.
This study investigated these gases along the Cananéia-Iguape estuarine system on the southern coast
of the State of São Paulo, Brazil, which is a mangrove region characterized by low anthropogenic impact
and a sparse population. As such, this area provides an ideal location for identifying natural emissions and
background concentrations. The data for this study were collected using a portable gas analyzer (LGRICOSTM GLA131), known for its high sensitivity and precision in detecting gases, mounted on a research
boat. The results obtained were promising for both gases. A small variability in CH4
concentrations was
observed along the route, ranging from 1.84 ppm to 1.95 ppm, while CO2
, showed greater variation in
values obtained during routes, ranging from approximately 411 ppm to 575 ppm. This study underscores
the importance of investigating areas with minimal environmental impact. Together with future analyses, this
research should help improve Greenhouse Gas (GHG) inventories in Brazil by providing valuable baseline
data for comparisons with more impacted areas.
References
ABB Inc. User Manual OA-ICOS. GLA131 Series
Microportable Analyze. Zurique, 2020.
Abril, G. & Iversen, N. 2002. Methane dynamics in a shallow
non-tidal estuary (Randers Fjord, Denmark). Marine
ecology progress series, 230, 171–181. DOI: https://doi.
org/10.3354/meps230171
Araújo, C.O., Souza, F.M., Arzolla, F.A.R.D.P., Franco,
G.A.D.C., Baitello, J.B., Toniato, M.T.Z., Ivanauskas,
N.M., Aguiar, O.T. & Cielo Filho, R. 2005. Módulo
Biodiversidade: Relatório Vegetação. Plano de Manejo
do Parque Estadual da Serra do Mar. São Paulo,
Instituto Florestal do Estado de São Paulo.
Borges, A. V. & Abril, G. 2011. Carbon dioxide and methane
dynamics in estuaries. In: Wolanski, E. & McLusky,
D. (eds.). Treatise on estuarine and coastal science
(pp. 119–161). Amsterdam: Academic Press. DOI:
https://doi.org/10.1016/B978-0-12-374711-2.00504-0
Borges, A. V., Delille, B. & Frankignoulle, M. 2005.
Budgeting sinks and sources of CO2
in the coastal
ocean: Diversity of ecosystems counts. Geophysical
research letters, 32(14), L14601. DOI: https://doi.
org/10.1029/2005GL023053.
Brito, D. D., Milanelli, J. C. C., Riedel, P. S. & Wieczorek, A.
Sensibilidade do litoral paulista a derramamentos
de Petróleo - um atlas em escala de detalhe. Rio Claro,
UNESP.
Burgos, M., Ortega, T. & Forja, J. 2018. Carbon dioxide and
methane dynamics in three coastal systems of Cadiz
Bay (SW Spain). Estuaries and Coasts, 41(4), 1069–
DOI: https://doi.org/10.1007/s12237-017-0330-2
Carlos, A. F. & Harari, J. 2018. Interação da hidrodinâmica
com o gerenciamento costeiro e pesqueiro no
Litoral Sul de São Paulo. In: Sinisgalli, P. A. A. &
Jacobi, P. R. (orgs.). Caminhos do conhecimento
em interdisciplinaridade e meio ambiente (vol. 1;
pp. 15-37). São Paulo: Instituto de Energia e Ambiente
da Universidade de São Paulo.
De Angelis, M. A. & Lilley, M. D. 1987. Methane in surface
waters of Oregon estuaries and rivers. Limnology
and Oceanography, 32(3), 716–722. DOI: https://doi.
org/10.4319/lo.1987.32.3.0716
Ferretti, D. F., Miller, J. B., White, J. W. C., Etheridge,
D. M., Lassey, K. R., Lowe, D. C., Macfarling Meure,
C. M., Dreier, M. F., Trudinger, C. M., van Ommen &
Langenfelds, R. L. 2005. Unexpected changes to
the global methane budget over the past 2000 years.
science, 309(5741), 1714-1717. doi.org/10.1126/
science.1115193
IBGE (Instituto Brasileiro de Geografia e Estatística). 2022.
Censo 2022: Panorama. Indicadores. Available from:
https://censo2022.ibge.gov.br/panorama/indicadores.
html?localidade=3509908. Access date: 2023 Aug 14.
Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley,
P.M. (eds.). 2013. Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. Geneva, IPCC.
IPCC (Intergovernmental Panel on Climate Change).
Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel
on Climate Change. Cambridge, Cambridge University
Press. https://doi.org/10.1017/9781009157896.
Kathleen, A. M., Charlotte, U., Ludmila, W. & Tim, B. 2022.
Beyond CO2 equivalence: The impacts of methane
on climate, ecosystems, and health. Environmental
Science and Policy, 134, 127–136. DOI: https://doi.
org/10.1016/j.envsci.2022.03.027.
Krishnan, R. P., David, I. R., Mark, G. A., Alan, M. G. &
Terence, H. R. 2009. Off-axis integrated cavity output
spectroscopy with a mid-infrared interband cascade
laser for real-time breath ethane measurements.
Applied optics, 48(4), B73–B79. https://doi.org/10.1364/
AO.48.000B73
Lan, X., Thoning, K. W. & Dlugokencky, E. J. 2023. Trends
in globally-averaged CH4, N2O, and SF6. Boulder,
NOAA Global Monitoring Laboratory measurements.
https://doi.org/10.15138/P8XG-AA10
Martens, C. S., Albert, D. B., & Alperin, M. J. 1998.
Biogeochemical processes controlling methane in gassy
coastal sediments—Part 1. A model coupling organic
matter flux to gas production, oxidation and transport.
Continental Shelf Research, 18(14-15), 1741–1770.
https://doi.org/10.1016/S0278-4343(98)00056-9
Middelburg, J. J., Nieuwenhuize, J., Iversen, N., Høgh,
N., De Wilde, H., Helder, W., Seifert, R. & Christof,
O. 2002. Methane distribution in European tidal
estuaries. Biogeochemistry, 59(1), 95–119. https://doi.
org/10.1023/A:1015515130419
MMA (Ministério do Meio Ambiente). 2006. Portaria n. 150,
de 8 de maio de 2006. Brasília, DF, Ministério do Meio
Ambiente.
Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. 2011. NonCO2 greenhouse gases and climate change. Nature,
(7358), 43–50. doi.org/10.1038/nature10322
NOAA (National Oceanic and Atmospheric Administration –
Global Monitoring Laboratory). [2010]. Trends in Global
Carbon Dioxide. Boulder, NOAA. Available from: https://
gml.noaa.gov/ccgg/trends/global.html. Access date:
Aug 14.
Ross, J. L. S. & Moroz, I. C. 1997. Mapa Geomorfológico
do Estado de São Paulo: escala 1:500.000. São Paulo,
FAPESP.
Ross, J. L. S. 2002. A morfogênese da bacia do Ribeira do
Iguape e os sistemas ambientais. GEOUSP – Espaço e
Tempo, 12, 21–46.
Santos K. M. S. & Tatto N. 2008 Agenda Socioambiental
de Comunidades Quilombolas do Vale do Ribeira. São
Paulo, Instituto Socioambiental.
Sebastien, A., Felix, V., Colin, A., Sajjan, H., Emily, K.,
Juliette, L., Christopher, L., Nasrin, M. P., Jaden, L. P. &
Debra, W. 2020. Investigation f the Spatial Distribution
of Methane Sources in the Greater Toronto Area Using
Mobile Gas Monitoring Systems. Environmental Science
and Technology, 54, 15671−15679. DOI: https://doi.
org/10.1021/acs.est.0c05386
Upstill-Goddard, R. C., Barnes, J., Frost, T., Punshon, S. &
Owens, N. J. 2000. Methane in the southern North Sea:
Low-salinity inputs, estuarine removal, and atmospheric
flux. Global Biogeochemical Cycles, 14(4), 1205-1217.