Evaluation of the potential for greenhouse gas (CO2 , CH4 ) emissions in the southern São Paulo coastal region, Cananéia-Iguape system

Authors

  • Elaine C. Araujo
  • Thais Correa
  • Izabel da S. Andrade
  • Fernanda de M. Macedo
  • Marcia T. Marques
  • Thais Andrade
  • Carlos Eduardo Souto-Oliveira
  • Elisabete S. Braga
  • Maria de F. Andrade
  • Eduardo Landulfo

DOI:

https://doi.org/10.1590/

Keywords:

Methane, Carbon dioxide, Estuary, GHG, Microportable gas analyzers

Abstract

The emissions of CH4
 and CO2
, the primary greenhouse gases, have a significant impact on radiative forcing.
This study investigated these gases along the Cananéia-Iguape estuarine system on the southern coast
of the State of São Paulo, Brazil, which is a mangrove region characterized by low anthropogenic impact
and a sparse population. As such, this area provides an ideal location for identifying natural emissions and
background concentrations. The data for this study were collected using a portable gas analyzer (LGRICOSTM GLA131), known for its high sensitivity and precision in detecting gases, mounted on a research
boat. The results obtained were promising for both gases. A small variability in CH4
 concentrations was
observed along the route, ranging from 1.84 ppm to 1.95 ppm, while CO2
, showed greater variation in
values obtained during routes, ranging from approximately 411 ppm to 575 ppm. This study underscores
the importance of investigating areas with minimal environmental impact. Together with future analyses, this
research should help improve Greenhouse Gas (GHG) inventories in Brazil by providing valuable baseline
data for comparisons with more impacted areas.

References

ABB Inc. User Manual OA-ICOS. GLA131 Series

Microportable Analyze. Zurique, 2020.

Abril, G. & Iversen, N. 2002. Methane dynamics in a shallow

non-tidal estuary (Randers Fjord, Denmark). Marine

ecology progress series, 230, 171–181. DOI: https://doi.

org/10.3354/meps230171

Araújo, C.O., Souza, F.M., Arzolla, F.A.R.D.P., Franco,

G.A.D.C., Baitello, J.B., Toniato, M.T.Z., Ivanauskas,

N.M., Aguiar, O.T. & Cielo Filho, R. 2005. Módulo

Biodiversidade: Relatório Vegetação. Plano de Manejo

do Parque Estadual da Serra do Mar. São Paulo,

Instituto Florestal do Estado de São Paulo.

Borges, A. V. & Abril, G. 2011. Carbon dioxide and methane

dynamics in estuaries. In: Wolanski, E. & McLusky,

D. (eds.). Treatise on estuarine and coastal science

(pp. 119–161). Amsterdam: Academic Press. DOI:

https://doi.org/10.1016/B978-0-12-374711-2.00504-0

Borges, A. V., Delille, B. & Frankignoulle, M. 2005.

Budgeting sinks and sources of CO2

in the coastal

ocean: Diversity of ecosystems counts. Geophysical

research letters, 32(14), L14601. DOI: https://doi.

org/10.1029/2005GL023053.

Brito, D. D., Milanelli, J. C. C., Riedel, P. S. & Wieczorek, A.

Sensibilidade do litoral paulista a derramamentos

de Petróleo - um atlas em escala de detalhe. Rio Claro,

UNESP.

Burgos, M., Ortega, T. & Forja, J. 2018. Carbon dioxide and

methane dynamics in three coastal systems of Cadiz

Bay (SW Spain). Estuaries and Coasts, 41(4), 1069–

DOI: https://doi.org/10.1007/s12237-017-0330-2

Carlos, A. F. & Harari, J. 2018. Interação da hidrodinâmica

com o gerenciamento costeiro e pesqueiro no

Litoral Sul de São Paulo. In: Sinisgalli, P. A. A. &

Jacobi, P. R. (orgs.). Caminhos do conhecimento

em interdisciplinaridade e meio ambiente (vol. 1;

pp. 15-37). São Paulo: Instituto de Energia e Ambiente

da Universidade de São Paulo.

De Angelis, M. A. & Lilley, M. D. 1987. Methane in surface

waters of Oregon estuaries and rivers. Limnology

and Oceanography, 32(3), 716–722. DOI: https://doi.

org/10.4319/lo.1987.32.3.0716

Ferretti, D. F., Miller, J. B., White, J. W. C., Etheridge,

D. M., Lassey, K. R., Lowe, D. C., Macfarling Meure,

C. M., Dreier, M. F., Trudinger, C. M., van Ommen &

Langenfelds, R. L. 2005. Unexpected changes to

the global methane budget over the past 2000 years.

science, 309(5741), 1714-1717. doi.org/10.1126/

science.1115193

IBGE (Instituto Brasileiro de Geografia e Estatística). 2022.

Censo 2022: Panorama. Indicadores. Available from:

https://censo2022.ibge.gov.br/panorama/indicadores.

html?localidade=3509908. Access date: 2023 Aug 14.

Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K.,

Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley,

P.M. (eds.). 2013. Climate Change 2013: The Physical

Science Basis. Contribution of Working Group I to the

Fifth Assessment Report of the Intergovernmental

Panel on Climate Change. Geneva, IPCC.

IPCC (Intergovernmental Panel on Climate Change).

Climate Change 2021: The Physical Science

Basis. Contribution of Working Group I to the Sixth

Assessment Report of the Intergovernmental Panel

on Climate Change. Cambridge, Cambridge University

Press. https://doi.org/10.1017/9781009157896.

Kathleen, A. M., Charlotte, U., Ludmila, W. & Tim, B. 2022.

Beyond CO2 equivalence: The impacts of methane

on climate, ecosystems, and health. Environmental

Science and Policy, 134, 127–136. DOI: https://doi.

org/10.1016/j.envsci.2022.03.027.

Krishnan, R. P., David, I. R., Mark, G. A., Alan, M. G. &

Terence, H. R. 2009. Off-axis integrated cavity output

spectroscopy with a mid-infrared interband cascade

laser for real-time breath ethane measurements.

Applied optics, 48(4), B73–B79. https://doi.org/10.1364/

AO.48.000B73

Lan, X., Thoning, K. W. & Dlugokencky, E. J. 2023. Trends

in globally-averaged CH4, N2O, and SF6. Boulder,

NOAA Global Monitoring Laboratory measurements.

https://doi.org/10.15138/P8XG-AA10

Martens, C. S., Albert, D. B., & Alperin, M. J. 1998.

Biogeochemical processes controlling methane in gassy

coastal sediments—Part 1. A model coupling organic

matter flux to gas production, oxidation and transport.

Continental Shelf Research, 18(14-15), 1741–1770.

https://doi.org/10.1016/S0278-4343(98)00056-9

Middelburg, J. J., Nieuwenhuize, J., Iversen, N., Høgh,

N., De Wilde, H., Helder, W., Seifert, R. & Christof,

O. 2002. Methane distribution in European tidal

estuaries. Biogeochemistry, 59(1), 95–119. https://doi.

org/10.1023/A:1015515130419

MMA (Ministério do Meio Ambiente). 2006. Portaria n. 150,

de 8 de maio de 2006. Brasília, DF, Ministério do Meio

Ambiente.

Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. 2011. NonCO2 greenhouse gases and climate change. Nature,

(7358), 43–50. doi.org/10.1038/nature10322

NOAA (National Oceanic and Atmospheric Administration –

Global Monitoring Laboratory). [2010]. Trends in Global

Carbon Dioxide. Boulder, NOAA. Available from: https://

gml.noaa.gov/ccgg/trends/global.html. Access date:

Aug 14.

Ross, J. L. S. & Moroz, I. C. 1997. Mapa Geomorfológico

do Estado de São Paulo: escala 1:500.000. São Paulo,

FAPESP.

Ross, J. L. S. 2002. A morfogênese da bacia do Ribeira do

Iguape e os sistemas ambientais. GEOUSP – Espaço e

Tempo, 12, 21–46.

Santos K. M. S. & Tatto N. 2008 Agenda Socioambiental

de Comunidades Quilombolas do Vale do Ribeira. São

Paulo, Instituto Socioambiental.

Sebastien, A., Felix, V., Colin, A., Sajjan, H., Emily, K.,

Juliette, L., Christopher, L., Nasrin, M. P., Jaden, L. P. &

Debra, W. 2020. Investigation f the Spatial Distribution

of Methane Sources in the Greater Toronto Area Using

Mobile Gas Monitoring Systems. Environmental Science

and Technology, 54, 15671−15679. DOI: https://doi.

org/10.1021/acs.est.0c05386

Upstill-Goddard, R. C., Barnes, J., Frost, T., Punshon, S. &

Owens, N. J. 2000. Methane in the southern North Sea:

Low-salinity inputs, estuarine removal, and atmospheric

flux. Global Biogeochemical Cycles, 14(4), 1205-1217.

DOI: https://doi.org/10.1029/1999GB001236

Downloads

Published

13.08.2024

How to Cite

Evaluation of the potential for greenhouse gas (CO2 , CH4 ) emissions in the southern São Paulo coastal region, Cananéia-Iguape system. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/