Microbiome changes in a stranding simulation of the holopelagic macroalgae Sargassum natans and Sargassum fluitans

Authors

  • Inara R. W. Mendonça
  • Tom Theirlynck
  • Erik R. Zettler
  • Linda A. Amaral-Zettler
  • Mariana Cabral Oliveira

DOI:

https://doi.org/10.1590/

Keywords:

Brown tide, Microbial community, Dysbiosis, High-throughput sequencing, Amplicon Sequence Variants

Abstract

Holopelagic Sargassum has been causing massive strandings on tropical Atlantic Ocean shorelines. Describing
the microbiome associated with Sargassum and how it changes after stranding is important to identify potential
microbial introductions to coastal environments, as well as sources of potential biotechnological resources. In this
study, stranding simulation exploratory experiments were conducted for S. fluitans III and S. natans VIII on shipboard
with minimum external influence. Samples for microbiome identification were collected just after removing healthy
Sargassum from the seawater (0 hr) and after 24 and 48 hrs of stranding simulation under environmental conditions.
The bacterial community was identified by sequencing 16S rRNA gene V3-V4 hypervariable regions, generating
a total of 1,565 Amplicon Sequence Variants (ASVs). Of those, 588 were shared between Sargassum species
and only 25 persisted throughout the stranding. Stranding also changed the dominance of Microtrichales and
Rhodobacterales orders at 0 hr to Alteromonadales and Vibrionales after 24 hrs of exposure, the latter representing
up to 92% of the relative abundance in the bacterial community. The increase in Vibrionales reinforces the need
to monitor stranding sites for any potential pathogenic bacteria. At the functional level, phototrophs were the main
group at 0 hr, shifting to chemoheterotrophs and fermentation within the first 24 hrs of Sargassum exposure to
air conditions. The fermentative groups native to Sargassum use stranded biomass as substrate for growth, and
therefore constitute the bacteria with higher biotechnological potential.

References

Ale, M. T. & Meyer, A. S. 2013. Fucoidans from brown

seaweeds: An update on structures, extraction

techniques and use of enzymes as tools for structural

elucidation. RSC Advances, 3(22), 8131–8141. DOI:

https://doi.org/10.1039/c3ra23373a

Amaral-Zettler, L. A., Dragone, N. B., Schell, J., Slikas,

B., Murphy, L. G., Morrall, C. E. & Zettler, E. R. 2017.

Comparative mitochondrial and chloroplast genomics

of a genetically distinct form of Sargassum contributing

to recent “Golden Tides” in the Western Atlantic.

Ecology and Evolution, 7(2), 516–525. DOI: https://doi.

org/10.1002/ece3.2630

Archer, E. J., Baker-Austin, C., Osborn, T. J., Jones, N.

R., Martínez-Urtaza, J., Trinanes, J., Oliver, J. D.,

González, F. J. C. & Lake, I. R. 2023. Climate warming

and increasing Vibrio vulnificus infections in North

America. Scientific Reports, 13(3893). DOI: https://doi.

org/10.1038/s41598-023-28247-2

Baker-Austin, C., Oliver, J. D., Alam, M., Ali, A., Waldor,

M. K., Qadri, F. & Martinez-Urtaza, J. 2018. Vibrio spp.

infections. Nature Reviews Disease Primers, 4(8), 1–19.

DOI: https://doi.org/10.1038/s41572-018-0005-8

Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon,

M., Bolyen, E., Knight, R., Huttley, G. A. & Gregory

Caporaso, J. 2018. Optimizing taxonomic classification

of marker-gene amplicon sequences with QIIME 2’s q2-

feature-classifier plugin. Microbiome, 6(1), 1–17. DOI:

https://doi.org/10.1186/s40168-018-0470-z

Microbiome of stranded Sargassum

Ocean and Coastal Research 2024, v72:e24037 12

Mendonça et al.

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A.,

Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E.

J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E.,

Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T.,

Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J.,

Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C.,

Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson,

C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M.,

Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick,

K., Guo, J., Hillmann, B., Holmes, S., Holste, H.,

Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch,

A. K., Jiang, L., Kaehler, B. D., Kang, K. Bin, Keefe,

C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I.,

Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley,

R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M.,

Marotz, C., Martin, B. D., McDonald, D., McIver, L. J.,

Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J.

T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F.,

Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D.,

Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A.,

Robeson, M. S., Rosenthal, P., Segata, N., Shaffer, M.,

Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford,

A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi,

A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J.

J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von

Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J.,

Weber, K. C., Williamson, C. H. D., Willis, A. D., Xu,

Z. Z., Zaneveld, J. R., Zhang, Y., Zhu, Q., Knight, R.

& Caporaso, J. G. 2019. Reproducible, interactive,

scalable and extensible microbiome data science using

QIIME 2. Nature Biotechnology, 37(8), 852–857. DOI:

https://doi.org/10.1038/s41587-019-0209-9

Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. &

Thomas, T. 2011. Bacterial community assembly based

on functional genes rather than species. Proceedings of

the National Academy of Sciences of the United States

of America, 108(34), 14288–14293. DOI: https://doi.

org/10.1073/pnas.1101591108

Callahan, B. J., McMurdie, P. J. & Holmes, S. P. 2017.

Exact sequence variants should replace operational

taxonomic units in marker-gene data analysis. The

ISME Journal, 11(12), 2639–2643. DOI: https://doi.

org/10.1038/ismej.2017.119

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W.,

Johnson, A. J. A. & Susan P Holmes. 2016. DADA2:

High resolution sample inference from Illumina amplicon

data. Nature Methods, 13(7), 581–583. DOI: https://doi.

org/10.1038/nmeth.3869

Caporaso, J. G., Ackermann, G., Apprill, A., Bauer,

M., Berg-Lyons, D., Betley, J., Fierer, N., Fraser, L.,

Fuhrman, J. A., Gilbert, J. A., Gormley, N., Humphrey,

G., Huntley, J., Jansson, J. K., Knight, R., Lauber, C. L.,

Lozupone, C. A., McNally, S., Needham, D. M., Owens,

S. M., Parada, A. E., Parsons, R., Smith, G., Thompson,

L. R., Thompson, L., Turnbaugh, P. J., Walters, W. A. &

Weber, L. 2018. EMP 16S Illumina Amplicon Protocol.

[S.l.], Earth Microbiome Project. DOI: https://dx.doi.

org/10.17504/protocols.io.nuudeww

Chen, H. 2018. VennDiagram: Generate High-Resolution

Venn and Euler Plots. https://cran.r-project.org/

package=VennDiagram

Coston-Clements, L., Center, L. R., Hoss, D. E. & Cross, F.

A. 1991. Utilization of the Sargassum habitat by marine

invertebrates and vertebrates: a review (NOAA Technical

Memorandum NMFS-SEFSC, n. 296). Beaufort, US

Department of Commerce.

Deeb, R., Tufford, D., Scott, G. I., Moore, J. G. & Dow, K.

Impact of climate change on Vibrio vulnificus

abundance and exposure risk. Estuaries and Coasts,

(8), 2289–2303. DOI: https://doi.org/10.1007/s12237-

-0424-5

Delva, S., Baets, B., Baetens, J. M., Clerck,O. & Stock,

W. 2023. No bacterial-mediated alleviation of thermal

stress in a brown seaweed suggests the absence of

ecological bacterial rescue effects. Science of the

Total Environment, 876, 162532. DOI: https://doi.

org/10.1016/j.scitotenv.2023.162532

Doi, H., Tokura, Y., Mori, Y., Mori, K., Asakura, Y., Usuda, Y.,

Fukuda, H. & Chinen, A. 2017. Identification of enzymes

responsible for extracellular alginate depolymerization

and alginate metabolism in Vibrio algivorus. Applied

Microbiology and Biotechnology, 101, 1581–1592. DOI:

https://doi.org/10.1007/s00253-016-8021-7

Franks, J. S., Johnson, D. R., Ko, D.-S., Sanchez-Rubio,

G., Hendon, J. R. & Lay, M. 2011. Unprecedented

influx of pelagic Sargassum along Caribbean Island

coastlines during summer 2011. In: Proceedings of the

th Gulf and Caribbean Fisheries Institute (pp. 6–8).

Puerto Morales: Gulf and Caribbean Fisheries Institute.

Ghaderiardakani, F., Coates, J. C. & Wichard, T. 2017.

Bacteria-induced morphogenesis of Ulva intestinalis

and Ulva mutabilis (Chlorophyta): a contribution to the

lottery theory. FEMS Microbiology Ecology, 93(8). DOI:

https://doi.org/10.1093/femsec/fix094

Godínez-Ortega, J. L., Cuatlán-Cortés, J. V., López-Bautista,

J. M. & van Tussenbroek, B. I. 2021. A natural history of

floating Sargassum species (Sargasso) from Mexico. In:

Hufnagel, L. (ed.), Natural history and ecology of Mexico

and Central America. London: IntechOpen. DOI: https://

doi.org/10.5772/intechopen.97230

Guiry, M. D. & Guiry, G. 2021. AlgaeBase. World-wide

electronic publication. Galway, National University of

Ireland. Available from: https://www.algaebase.org.

Access date: 12 Apr. 2023.

Herlemann, D. P. R., Labrenz, M., Jürgens, K., Bertilsson,

S., Waniek, J. J. & Andersson, A. F. 2011. Transitions

in bacterial communities along the 2000 km salinity

gradient of the Baltic Sea. The ISME Journal, 5(10),

–1579. DOI: https://doi.org/10.1038/ismej.2011.41

Hervé, V., Lambourdière, J., René-Trouillefou, M., Devault,

D. A. & Lopez, P. J. 2021. Sargassum differentially

shapes the microbiota composition and diversity at

coastal tide sites and inland storage sites on Caribbean

Islands. Frontiers in Microbiology, 12. DOI: https://doi.

org/10.3389/fmicb.2021.701155

Hou, Y., Wang, J., Jin, W., Zhang, H. & Zhang, Q. 2012.

Degradation of Laminaria japonica fucoidan by

hydrogen peroxide and antioxidant activities of the

degradation products of different molecular weights.

Carbohydrate Polymers, 87(1), 153–159. DOI: https://

doi.org/10.1016/j.carbpol.2011.07.031

Hydes, D. J., Aoyama, M., Aminot, A., Bakker, K., Becker, S.,

Coverly, S., Daniel, A., Dickson, G. A., Grosso, O., Kerouel,

R., Ooijen, J. van, Sato, K., Tanhua, T., Woodward, E. M. S.

& Zhang, J. Z. 2010. Determination of dissolved nutrients (N,

Microbiome of stranded Sargassum

Ocean and Coastal Research 2024, v72:e24037 13

Mendonça et al.

P, Si) in seawater with high precision and inter comparability

using gas-segmented continuous flow analysers (GOSHIP Repeat Hydrography Manual: A Collection of Expert

Reports and Guidelines). Paris, UNESCO.

Johns, E. M., Lumpkin, R., Putman, N. F., Smith, R. H.,

Muller-Karger, F. E., Rueda-Roa, D. T., Hu, C., Wang,

M., Brooks, M. T., Gramer, L. J. & Werner, F. E. 2020.

The establishment of a pelagic Sargassum population

in the tropical Atlantic: Biological consequences of a

basin-scale long distance dispersal event. Progress

in Oceanography, 182, 102269. DOI: https://doi.

org/10.1016/j.pocean.2020.102269

Johnson, C. N., Flowers, A. R., Noriea, N. F., Zimmerman,

A. M., Bowers, J. C., DePaola, A. & Grimes, D. J.

Relationships between environmental factors

and pathogenic vibrios in the northern Gulf of Mexico.

Applied and Environmental Microbiology, 76(21), 7076–

DOI: https://doi.org/10.1128/AEM.00697-10

Johnson, D. R., Ko, D. S., Franks, J. S., Moreno, P. &

Sanchez-Rubio, G. 2012. The Sargassum invasion of

the Eastern Caribbean and dynamics of the Equatorial

North Atlantic. In: Proceedings of the 65th Gulf and

Caribbean Fisheries Institute (pp. 101–103). Santa

Marta: Gulf and Caribbean Fisheries Institute.

Laffoley, D. d’A., Roe, H. S. J., Angel, M. V., Ardron,

J., Bates, N. R., Boyd, I. L., Brooke, S., Buck, K. N.,

Carlson, C. A., Causey, B., Conte, M. H., Christiansen,

S., Cleary, J., Donnelly, J., Earle, S. A., Edwards, R.,

Gjerde, K. M., Giovannoni, S. J., Gulick, S., Gollock, M.,

Hallett, J., Halpin, P., Hanel, R., Hemphill, A., Johnson,

R. J., Knap, A. H., Lomas, M. W., McKenna, S. A., Miller,

M. J., Miller, P. I., Ming, F. W., Moffitt, R., Nelson, N. B.,

Parson, L., Peters, A. J., Pitt, J., Rouja, P., Roberts, J.,

Roberts, J., Seigel, D. A., Siuda, A. N. S., Steinberg, D.

K., Stevenson, A., Sumaila, V. R., Swartz, W., Thorrold,

S., Trott, T. M. & Vats, V. 2011. The protection and

management of the Sargasso Sea: The golden floating

rainforest of the Atlantic Ocean (Summary Science and

Supporting Evidence Case. Sargasso Sea Alliance).

Washington DC, The Sargasso Sea Alliance.

Li, H., Li, J., Gao, T., Bi, Y. & Liu, Z. 2022. The influence of host

specificity and temperature on bacterial communities

associated with Sargassum (Phaeophyceae) species.

Journal of Phycology, 58(6), 815–828. DOI: https://doi.

org/10.1111/jpy.13293

Li, M., Li, G., Shang, Q., Chen, X., Liu, W., Pi, X., Zhu, L.,

Yin, Y., Yu, G. & Wang, X. 2016. In vitro fermentation

of alginate and its derivatives by human gut microbiota.

Anaerobe, 39, 19–25. DOI: https://doi.org/10.1016/j.

anaerobe.2016.02.003

Louca, S., Parfrey, L. W. & Doebeli, M. 2016. Decoupling

function and taxonomy in the global ocean microbiome.

Science, 353(6305), 1272–1277. DOI: https://doi.

org/10.1126/science.aaf4507

Mendoza-Becerril, M. A., Serviere-Zaragoza, E.,

Mazariegos-Villarreal, A., Rivera-Perez, C., Calder, D.

R., Vázquez-Delfín, E. F., Freile-Pelegrín, Y., Agüero,

J. & Robledo, D. 2020. Epibiont hydroids on beachcast

Sargassum in the Mexican Caribbean. PeerJ, 8, 1–21.

DOI: https://doi.org/10.7717/peerj.9795

Michotey, V., Blanfuné, A., Chevalier, C., Marc Garel, F.

D., Berline, L., Grand, L. Le, Armougom, F., Guasco,

S., Ruitton, S., Changeux, T., Belloni, B., Blanchot, J.,

Ménard, F., Thibaut, T., Garel, M., Diaz, F., Berline,

L., Le Grand, L., Armougom, F., Guasco, S., Ruitton,

S., Changeux, T., Belloni, B., Blanchot, J., Ménard,

F. & Thibaut, T. 2020. In situ observations and

modelling revealed environmental factors favouring

occurrence of Vibrio in microbiome of the pelagic

Sargassum responsible for strandings. Science of

the Total Environment, 748, 141216. DOI: https://doi.

org/10.1016/j.scitotenv.2020.141216

Milledge, J. J. & Harvey, P. J. 2016. Golden Tides: Problem

or golden opportunity? The valorisation of Sargassum

from beach inundations. Journal of Marine Science

and Engineering, 4(3), 60. DOI: https://doi.org/10.3390/

jmse4030060

Miller, J. J., Weimer, B. C., Timme, R., Lüdeke, C. H. M.,

Pettengill, J. B., Bandoy, D. D., Weis, A. M., Kaufman,

J., Huang, B. C., Payne, J., Strain, E. & Jones, J. L.

Phylogenetic and biogeographic patterns of

Vibrio parahaemolyticus strains from North America

inferred from whole-genome sequence data. Applied

and Environmental Microbiology, 87(12), e01403-20.

DOI: https://doi.org/10.1128/AEM.00693-21

Mincer, T. J., Bos, R. P., Zettler, E. R., Zhao, S., Asbun,

A. A., Orsi, W. D., Guzzetta, V. S. & Amaral-zettler, L.

A. 2023. Sargasso Sea Vibrio bacteria: underexplored

potential pathovars in a perturbed habitat. Water

Research, 242, 120033. DOI: https://doi.org/10.1016/j.

watres.2023.120033

Minich, J. J., Morris, M. M., Brown, M., Doane, M., Edwards,

M. S., Michael, T. P. & Dinsdale, E. A. 2018. Elevated

temperature drives kelp microbiome dysbiosis, while

elevated carbon dioxide induces water microbiome

disruption. PLoS ONE, 13(2), e0192772. DOI: https://

doi.org/10.1371/journal.pone.0192772

Oksanen, A. J., Blanchet, F. G., Friendly, M., Kindt, R.,

Legendre, P., Mcglinn, D., Minchin, P. R., Hara, R. B.

O., Simpson, G. L., Solymos, P., Stevens, M. H. H. &

Szoecs, E. 2012. vegan: Community Ecology Package.

[s.l.: s.n.]. available from: https://cran.r-project.org/

package=vegan. Access date: 2022 Jul 28

Oliver, J. D., Pruzzo, C., Vezzulli, L. & Kaper, J. B. 2012.

Vibrio species. In: Doyle, M. P. & Buchanan, R. L. (eds.),

Food Microbiology: Fundamentals and Frontiers (4th

ed., pp. 401–439). Hoboken: ASM Press. DOI: https://

doi.org/doi:10.1128/9781555818463.ch16

Oviatt, C. A., Huizenga, K., Rogers, C. S. & Miller, W.

J. 2019. What nutrient sources support anomalous

growth and the recent sargassum mass stranding

on Caribbean beaches? A review. Marine Pollution

Bulletin, 145, 517–525. DOI: https://doi.org/10.1016/j.

marpolbul.2019.06.049

Orozco-González, J. G., Amador-Castro, F., GordilloSierra, A. R., García-Cayuela, T., Alper, H. S. & CarrilloNieves, D. 2022. Opportunities surrounding the use of

Sargassum biomass as precursor of biogas, bioethanol,

and biodiesel production. Frontiers in Marine Science, 8,

DOI: https://doi.org/10.3389/fmars.2021.791054

Parr, A. E. 1939. Quantitative observations on the pelagic

Sargassum vegetation of the western North Atlantic.

Peabody Museum of Natural History, Yale University,

New Haven.

Microbiome of stranded Sargassum

Ocean and Coastal Research 2024, v72:e24037 14

Mendonça et al.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay,

É. 2011. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12, 2825–2830.

Percival, S. L. & Williams, D. W. 2013. Vibrio. In: Percival,

S. L., Yates, M. V., Williams, D. W., Chalmers, R.

M., & Gray, N. F. (eds.), Microbiology of waterborne

diseases: microbiological aspects and risks (2 nd, pp.

–248). Amsterdam: Academic Press. DOI: https://

doi.org/10.1016/B978-0-12-415846-7.00012-3

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer,

T., Yarza, P., Peplies, J. & Glöckner, F. O. 2013. The

SILVA ribosomal RNA gene database project: Improved

data processing and web-based tools. Nucleic

Acids Research, 41(D1), 590–596. DOI: https://doi.

org/10.1093/nar/gks1219

Quigley, C. T. C., Capistrant-Fossa, K. A., Morrison, H.

G., Johnson, L. E., Morozov, A., Hertzberg, V. S. &

Brawley, S. H. 2020. Bacterial communities show

algal host (Fucus spp.)/Zone differentiation across

the stress gradient of the intertidal zone. Frontiers in

Microbiology, 11, 563118. DOI: https://doi.org/10.3389/

fmicb.2020.563118

Quigley, C. T. C., Morrison, H. G., Mendonça, I. R. &

Brawley, S. H. 2018. A common garden experiment with

Porphyra umbilicalis (Rhodophyta) evaluates methods to

study spatial differences in the macroalgal microbiome.

Journal of Phycology, 54(5), 653–664. DOI: https://doi.

org/10.1111/jpy.12763

R Core Team. 2021. R: A language and environment for

statistical computing. https://www.r-project.org/

Ramnani, P., Chitarrari, R., Tuohy, K., Grant, J., Hotchkiss,

S., Philp, K., Campbell, R., Gill, C. & Rowland, I. 2012.

In vitro fermentation and prebiotic potential of novel low

molecular weight polysaccharides derived from agar

and alginate seaweeds. Anaerobe, 18(1), 1–6. DOI:

https://doi.org/10.1016/j.anaerobe.2011.08.003

Resiere, D., Valentino, R., Nevière, R., Banydeen, R., Gueye,

P., Florentin, J., Cabié, A., Lebrun, T., Mégarbane, B.,

Guerrier, G. & Mehdaoui, H. 2018. Sargassum seaweed

on Caribbean islands: an international public health

concern. The Lancet, 392(10165), 2691.

Rodríguez-Martínez, R. E., Medina-Valmaseda, A. E.,

Blanchon, P., Monroy-Velázquez, L. V., AlmazánBecerril, A., Delgado-Pech, B., Vásquez-Yeomans,

L., Francisco, V. & García-Rivas, M. C. 2019. Faunal

mortality associated with massive beaching and

decomposition of pelagic Sargassum. Marine Pollution

Bulletin, 146, 201–205. DOI: https://doi.org/10.1016/j.

marpolbul.2019.06.015

Salter, M. A., Rodríguez-Martínez, R. E., Álvarez-Filip,

L., Jordán-Dahlgren, E. & Perry, C. T. 2020. Pelagic

Sargassum as an emerging vector of high rate carbonate

sediment import to tropical Atlantic coastlines. Global

and Planetary Change, 195, 103332. DOI: https://doi.

org/10.1016/j.gloplacha.2020.103332

Sandrini-Neto, L. & Camargo, M. G. 2020. GAD: An R

package for ANOVA desings from general principles.

https://cran.r-project.org/package=GAD

Sawabe, T., Tanaka, R., Iqbal, M. M., Tajima, K., Ezura,

Y., Ivanova, E. P. & Christen, R. 2000. Assignment

of Alteromonas elyakovii KMM 162T and five strains

isolated from spot-wounded fronds of Laminaria

japonica to Pseudoalteromonas elyakovii comb. nov. and

the extended description of the species. International

Journal of Systematic and Evolutionary Microbiology,

, 265–271. DOI: https://doi.org/10.1099/00207713-

-1-265

Serebryakova, A., Aires, T., Viard, F., Serrão, E. A. &

Engelen, A. H. 2018. Summer shifts of bacterial

communities associated with the invasive brown

seaweed Sargassum muticum are location and tissue

dependent. PLoS ONE, 13(12), 1–18. DOI: https://doi.

org/10.1371/journal.pone.0206734

Sichert, A., Corzett, C. H., Schechter, M. S., Unfried, F.,

Markert, S., Becher, D., Fernandez-Guerra, A., Liebeke,

M., Schweder, T., Polz, M. F. & Hehemann, J. H. 2020.

Verrucomicrobia use hundreds of enzymes to digest

the algal polysaccharide fucoidan. Nature Microbiology,

(8), 1026–1039. DOI: https://doi.org/10.1038/s41564-

-0720-2

Sissini, M. N., Barreto, M. B. B. de B., Széchy, M. T. M.,

Lucena, M. B., Oliveira, M. C., Gower, J., Liu, G., Bastos,

E. D. O., Milstein, D., Gusmão, F., Martinelli-Filho, J.

E., Alves-Lima, C., Colepicolo, P., Ameka, G., GraftJohnson, K. de, Gouvena, L., Torrano-Silva, B., Nauer,

F., Nunes, J. M. de C., Barufi, J. B., Rörig, L., RiosmenaRodrigues, R., Mello, T. J., Lotufo, L. V. C. & Horta, P.

A. 2017. The floating Sargassum (Phaeophyceae) of

the South Atlantic Ocean – likely scenarios. Phycologia,

(3), 321–328. DOI: https://doi.org/10.2216/16-92.1

Széchy, M. T. M., Guedes, P. M., Baeta-Neves, M. H. &

Oliveira, E. N. 2012. Verification of Sargassum natans

(Linnaeus) Gaillon (Heterokontophyta: Phaeophyceae)

from the Sargasso Sea off the coast of Brazil, western

Atlantic Ocean. Check List, 8(4), 638–641.

Takeda, H., Yoneyama, F., Kawai, S., Hashimoto, W. &

Murata, K. 2011. Bioethanol production from marine

biomass alginate by metabolically engineered bacteria.

Energy and Environmental Science, 4(7), 2575–2581.

DOI: https://doi.org/10.1039/c1ee01236c

Theirlynck, T., Mendonça, I. R. W., Engelen, A. H., Bolhuis,

H., Collado-Vides, L., van Tussenbroek, B. I., GarcíaSánchez, M., Zettler, E., Muyzer, G. & Amaral-Zettler,

L. 2023. Diversity of the holopelagic Sargassum

microbiome from the Great Atlantic Sargassum Belt to

coastal stranding locations. Harmful Algae, 122(102369),

DOI: https://doi.org/10.1016/j.hal.2022.102369

Thompson, T. M., Young, B. R. & Baroutian, S. 2020.

Pelagic Sargassum for energy and fertiliser production

in the Caribbean: A case study on Barbados. Renewable

and Sustainable Energy Reviews, 118(109564). DOI:

https://doi.org/10.1016/j.rser.2019.109564

Torralba, M. G., Franks, J. S., Gomez, A., Yooseph, S.,

Nelson, K. E. & Grimes, D. J. 2017. Effect of Macondo

Prospect 252 Oil on microbiota associated with pelagic

Sargassum in the Northern Gulf of Mexico. Microbial

Ecology, 73, 91–100. DOI: https://doi.org/10.1007/

s00248-016-0857-y

van Tussenbroek, B. I., Hernández Arana, H. A., RodríguezMartínez, R. E., Espinoza-Avalos, J., Canizales-Flores,

Microbiome of stranded Sargassum

Ocean and Coastal Research 2024, v72:e24037 15

Mendonça et al.

H. M., González-Godoy, C. E., Barba-Santos, M. G.,

Vega-Zepeda, A. & Collado-Vides, L. 2017. Severe

impacts of brown tides caused by Sargassum spp. on

near-shore Caribbean seagrass communities. Marine

Pollution Bulletin, 122(1-2), 272–281. DOI: https://doi.

org/10.1016/j.marpolbul.2017.06.057

Uetake, J., Hill, T. C. J., Moore, K. A., DeMott, P. J.,

Protat, A. & Kreidenweis, S. M. 2020. Airborne

bacteria confirm the pristine nature of the Southern

Ocean boundary layer. Proceedings of the National

Academy of Sciences of the United States of America,

(24), 13275–13282. DOI: https://doi.org/10.1073/

pnas.2000134117

Vezzulli, L., Colwell, R. R. & Pruzzo, C. 2013. Ocean

warming and spread of pathogenic Vibrios in the aquatic

environment. Microbial Ecology, 65, 817–825. DOI:

https://doi.org/10.1007/s00248-012-0163-2

Wang, G., Shuai, L., Li, Y., Lin, W., Zhao, X. & Duan, D.

Phylogenetic analysis of epiphytic marine bacteria

on Hole-Rotten diseased sporophytes of Laminaria

japonica. Journal of Applied Phycology, 20(4), 403–409.

DOI: https://doi.org/10.1007/s10811-007-9274-4

Wang, M., Hu, C., Barnes, B. B., Mitchum, G., Lapointe, B.

& Montoya, J. P. 2019. The great Atlantic Sargassum

belt. Science, 365, 83–87. DOI: https://doi.org/10.1126/

science.aaw7912

Wargacki, A. J., Leonard, E., Win, M. N., Regitsky, D. D.,

Santos, C. N. S., Kim, P. B., Cooper, S. R., Raisner,

R. M., Herman, A., Sivitz, A. B., Lakshmanaswamy,

A., Kashiyama, Y., Baker, D. & Yoshikuni, Y. 2012.

An engineered microbial platform for direct biofuel

production from brown macroalgae. Science, 335(6066),

–313.

Wessel, P. & Smith, W. H. F. 1996. A global, self-consistent,

hierarchical, high-resolution shoreline database. Journal

of Geophysical Researsh Solid Earth, 101(B4), 8741-

DOI: https://doi.org 10.1029/96JB00104

Wickham, H. 2016. ggplot2: Elegant Graphics for Data

Analysis. Springer-Verlag New York, 213 pp. DOI:

https://doi.org/10.1007/978-0-387-98141-3

Winge, Ø. 1923. The Sargasso Sea, its boundaries and

vegetation. Copenhagen, A.F. Høst & søn.

Zhang, W. & Zhang, J. 2018. The alginate fermentation strain

Pantoea sp. F16-PCAi-T3P21 and ethanol production.

Energy Sources, Part A: Recovery, Utilization and

Environmental Effects, 40(4), 394–399. DOI: https://doi.

org/10.1080/15567036.2013.844213

Zhuang, J., Zhang, K., Liu, X., Liu, W., Lyu, Q. & Ji, A.

Characterization of a novel polyM-preferred

alginate lyase from marine Vibrio splendidus OU02.

Marine Drugs, 16(9), 295. DOI: https://doi.org/10.3390/

md16090295

Downloads

Published

2024-06-19

How to Cite

Microbiome changes in a stranding simulation of the holopelagic macroalgae Sargassum natans and Sargassum fluitans. (2024). Ocean and Coastal Research, 72. https://doi.org/10.1590/