The effect of extreme climatic events on littorinid snails in two estuarine environments, temperate (NW Spain) and tropical (NE Brazil)
DOI:
https://doi.org/10.1590/Keywords:
Brazil, Climate change, Desiccation, Littoraria, Littorina, SpainAbstract
Extreme weather events (e.g., droughts, excessive precipitation) are expected to increase in frequency and severity in the coming decades due to climate change, causing significant impacts on society and ecosystems. Because these events are rare and complex, they have been studied with manipulative experiments. Littorinidae snails inhabit a complex and variable environment in which they must deal with periodic extreme events and are thus considered excellent ecological models for these studies. Therefore, this study aimed to understand the effects of extreme climatic events on the survival and weight of the species Littorina fabalis and Littorina littorea in Spain and Littoraria angulifera and Littoraria flava in Brazil. Higher mortality rates and greater weight loss were observed in the desiccation resistance treatment compared to the control treatment in both countries. The results showed dependence on the species’ body size. The submergence tolerance treatment indicated that the species from Spain are more susceptible to mortality in response to excessive rainfall and/or coastal flooding. Each species tested for the effect of extreme climatic events using an integrated response strategy with clear latitudinal differences. Understanding the organisms’ responses at different latitudes is essential for conservation biology on a global scale.
References
Boehs, G. & Freitas, L. A. 2022. Population attributes of Littoraria angulifera (Gastropoda: Littorinidae) in mangroves in Bahia State, northeastern Brazil. Brazilian Journal of Biology, 82, e243114. DOI: https://doi.org/10.1590/1519-6984.243114.
Boersma K. S., Nickerson, A., Francis, C. D. & Siepielski, A. M. 2016. Climate extremes are associated with invertebrate taxonomic and functional composition in mountain lakes. Ecology and Evolution, 6, 8094–8106. DOI: https://doi.org/10.1002/ece3.2517.
Bosso, L., Smeraldo, S., Russo, D, Chiusano, M. L., Bertorelle, G., Johanneson, K., Butlin, K., Danovaro, R. & Raffini, F. 2022. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biological Invasions, 24, 3169-3187. DOI: https://doi.org/10.1007/s10530-022-02838-y.
Brahim, A., Mustapha, N. & Marshall, D. J. 2018. Nonreversible and Reversible Heat Tolerance Plasticity in Tropical Intertidal Animals: Responding to Habitat Temperature Heterogeneity. Frontiers in Physiology, 9, 1-11. DOI: https://doi.org/10.3389/fphys.2018.01909.
Britton, J. C. 1992. Evaporative water loss, behaviour during emersion, and upper thermal tolerance limits in seven species of eulittoral fringe Littorinidae (Mollusca: Gastropoda). In: International Symposium on Littorinidae Biology (3 ed, pp. 69–83).
Cacabelos, E., Gestoso, L. & Troncoso, J. S. 2008. Macrobenthic fauna in the Ensenada de San Simón (Galicia, north-western Spain) Journal of the Marine Biological Association of the United Kingdom, 88, 237-245. DOI: https://doi.org/10.1017/S0025315408000660.
Capaldo, P. S. 1983. Tolerance of the common marsh snail Melampus bidentatus to submersion. Estuaries, 6, 176–177.
Chapman, M. G., 1997. Relationships between shell shape, water reserves, survival and growth of highshore Littorinids under experimental conditions in New South Wales, Australia. Journal of Molluscan Studies, 63, 511–529.
Darnell, M. Z. & Darnell, K. M. 2018. Geographic variation in thermal tolerance and morphology in a fiddler crab sister-species pair. Marine Biology, 165, 26. DOI: https://doi.org/10.1007/s00227-017-3282-y.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R. & Mearns, L. O. 2000. Climate Extremes: Observations, modeling, and impacts. Science, 289, 2068-2074. https://doi.org/10.1126/science.289.5487.2068.
FUNCEME (Fundação Cearense De Meteorologia E Recursos Hídricos). 2018. Posto meteorológico de Acaraú. Availablr from: www.funceme.br. Acess date: 2 feb. 2024.
Iacarella, J. C. & Helmuth, B. 2011. Experiencing the salt marsh environment through the foot of Littoraria irrorata: Behavioral responses to thermal and desiccation stresses. Journal of Experimental Marine Biology and Ecology, 409, 143-153. DOI: https://doi.org/10.1016/j.
jembe.2011.08.011.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M. (eds.). 2013. Climate Change: The Physical Science Basis. Cambridge, Cambridge University Press.
Jentsch, A., Kreyling, J. & Beierkuhnlein, C. 2007. A new generation of climate-change experiments: Events, not trends. Frontiers in Ecology and the Environment, 5, 365-374. DOI: https://doi.org/10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2
Leeuwis R., H. J. & Gamperl, A. K. 2022. Adaptations and plastic phenotypic responses of marine animals to the environmental challenges of the high intertidal zone. Oceanography and Marine Biology: An Annual Review, 60, 625-680.
Liao M. L., Zhang, S., Zhang, G. Y., Chu, Y. M., Somero, G. N. & Dong, Y. W. 2017. Heat-resistant cytosolic malate dehydrogenases (cMDHs) of thermophilic intertidal snails (genus Echinolittorina): protein underpinnings of tolerance to body temperatures reaching 55°C. Journal of Experimental Biology, 220, 2066-2075. DOI: https://doi.org/10.1242/jeb.156935.
Maia, R. C. & Coutinho, R. 2012. Structural characteristics of mangrove forest in Brazilian estuaries: A comparative study. Journal of Marine Biology and Oceanography, 47, 87-98.
Maia, R. C. & Troncoso, J. S. 2022. Evaluation of the synergistic effects of climate change on estuarine ecosystems at temperate and tropical latitudes using Littorinids (Mollusca: Gastropoda) as indicators. Brazilian Journal of Animal and Environmental Research, 5, 1642-1660.
Marshall, D. J., Baharuddin, N. & Mcquaid, C. D. 2013. Behavior moderates climate warming vulnerability in high-rocky-shore snails: interactions of habitat use, energy consumption and environmental temperature. Marine Biology, 160, 2525–2530. DOI: https://doi.org/10.1007/s00227-013-2245-1.
Marshall, D. J., Brahim, A., Mustapha, N., Dong, Y. & Sinclair, B. J. 2018. Substantial heat tolerance acclimation capacity in tropical thermophilic snails, but to what benefit? Journal of Experimental Biology, 221, jeb187476. DOI: https://doi.org/10.1242/jeb.187476.
Marshall D. J., Mcquaid, C. D. & Williams, G. A. 2010. Non-climatic thermal adaptation: Implications for species’ responses to climate warming. Biology Climate change impacts on littorinid snails Ocean and Coastal Research 2024, v72(suppl 1):e24017 12.
Maia and Troncoso Letters, 6, 669–673. DOI: https://doi.org/10.1098/rsbl.2010.0233.
Matos, A., Matthews-Cascon, H. & Chaparro, O. 2020. Morphometric analysis of the shell of the intertidal gastropod Echinolittorina lineolata (d’Orbigny, 1840) at different latitudes along the Brazilian coast. Journal of the Marine Biological Association of the United
Kingdom, 100, 725-731. DOI: https://doi.org/10.1017/S0025315420000624.
Mcquaid, C. D. 1996a. Biology of the gastropod Family Littorinidae: I. Evolutionary aspects. Oceanography and Marine Biology: An Annual Review, 34, 233-262.
Mcquaid, C. D. 1996b. Biology of the gastropod Family Littorinidae: II. Role in the ecology of intertidal and shallow marine ecosystems. Oceanography and Marine Biology: An Annual Review, 34, 263-302.
Mcmahon, R. F. 1988. Respiratory Response to Periodic Emergence in Intertidal Molluscs. American Zoologist, 28, 97-114.
Moreno, J. & Møler, A. P. 2011. Extreme climatic events in relation to global change and their impact on life histories. Current Zoology, 57, 375-389. DOI: https://doi.org/10.1093/czoolo/57.3.375.
Monjo, R., Gaitán, E., Pórtoles, J., Ribalaygua, J. & Torres, L. 2016. Changes in extreme precipitation over Spain using statistical downscaling of CMIP5 projections. International Journal of Climatology, 36, 757–776. DOI: https://doi.org/10.1002/joc.4380.
Moutinho, P. R. S. & Alves-Costa, C. P. 2000. Shell size variation and aggregation behavior of Littoraria flava (Gastropoda: Littorinidae) on a Southeastern Brazilian shore. Veliger, 43, 277–281.
Ng, T. P. T., Davies, M. S., Stafford, R. & Williams, G. A. 2011. Mucus trail following a mate-searching strategy in mangrove littorinid snails. Animal Behavior, 82, 459-465. DOI: https://doi.org/10.1111/brv.12023.
Ng, T. P.T., Laua, S. L. Y, Seuront, L., Davies, M. S., Staffordd, R., Marshall, D. J. & Williams, G. A. 2017. Linking behavior and climate change in intertidal ectotherms: insights from littorinid snails. Journal of Experimental Marine Biology and Ecology, 492, 121-131. DOI: https://doi.org/10.1016/j.jembe.2017.01.023.
Parada, J. M., Molares, J. & Otero, X. 2012. Multispecies Mortality Patterns of Commercial Bivalves in Relation to Estuarine Salinity Fluctuation. Estuaries and Coasts, 35, 132-142. DOI: https://doi.org/10.1007/s12237-011-9426-2.
Perez-Arlucea, M., Mendez, G., Clemente, F., Nombela, M., Rubio, B. & Filgueira, M. 2005. Hydrology, sediment yield, erosion and sedimentation rates in the estuarine environment of the Ría de Vigo, Galicia, Spain. Journal of Marine Systems, 369, 79-86. DOI: https://doi.org/10.1016/j.jmarsys.2004.07.013.
Reid, D. G. 1996. Systematics and Evolution of Littorina. London, Ray Society. Reid, D. G., Dyal, P. & Williams, S. T. 2009. Global diversification of mangrove fauna: a molecular phylogeny of Littoraria (Gastropoda: Littorinidae). Molecular Phylogenetics and Evolution, 55, 185–201. DOI: https://doi.org/10.1016/j.ympev.2009.09.036.
Reid, D. G. 1989. Comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philosophical Transactions of the Royal Society of London, Series B, 324(1220), 1-110. DOI: https://doi.org/10.1098/rstb.1989.0040.
Robins, P. E., Skov, M. W., Lewis, M. J., Gimenez, L., Davies, A. G., Malham, S. K., Neill, S. P., Mcdonald, J. E., Whitton, T. A., Jackson, S. E. & Jago, C. F. 2016. Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuarine, Coastal and Shelf Science, 169, 119-135. DOI: https://doi.org/10.1016/j.ecss.2015.12.016.
Rolán-Alvarez, E., Austin, C. J. & Boulding, E. G. 2015. The contribution of the genus Littorina to the field of evolutionary ecology. Oceanography and Marine Biology: An Annual Review, 53, 157-214. DOI: https://doi.org/10.1201/b18733-6.
Scheffers B. R., Edwards, D. P., Stephen, A. D., Williams, E. & Evans, T. A. 2014. Microhabitats reduces animal’s exposure to climate extremes. Global Change Biology, 20, 495-503. DOI: https://doi.org/10.1111/gcb.12439.
Sergio, F., Blas, B. & Hiraldo, F. 2018. Animal responses to natural disturbance and climate extremes: a review. Global and Planetary Change, 161, 28-40. DOI: https://doi.org/10.1016/j.gloplacha.2017.10.009.
Smith, M. D. 2011. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656–663. DOI: https://doi.org/10.1111/j.1365-2745.2011.01798.x.
Sheridan, J. A. & Bickford, D. 2011. Shrinking body size as an ecological response to climate change. Nature climate change, 1, 401-406. DOI: https://doi.org/10.1038/nclimate1259.
Tanaka, M. O. & Maia, R. C. 2006. Shell Morphological Variation of Littoraria angulifera among and within mangroves in NE Brazil. Hydrobiologia, 559, 193-202. Vermeij, G. J. 1972. Intraspecific shore level size gradients in intertidal mollusks. Ecology, 53, 693–700.
Vinagre, C., Leal, I., Mendonça, V., Madeira, D., Narciso, L., Diniz, M. S. & Flores, A. A. V. 2015. Vulnerability to climate warming and acclimation capacity of tropical and temperate coastal organisms. Ecological Indicators, 62, 317-327. DOI: https://doi.org/10.1016/j.
ecolind.2015.11.010.
Vinagre, C., Leal, I., Mendonça, V., Cereja, R., AbreuAfonso, F., Dias, R., Mizrahi, D. & Flores, A. A. V. 2018. Ecological traps in shallow coastal waters - Potential effect of heat-waves in tropical and temperate organisms. Plos one, 13, e0192700. DOI: https://doi.org/10.1371/journal.pone.0192700.
Wernberg, T., Smale, D. A. & Thomsen, M. S. 2012. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Global Change Biology, 18, 1491-1498. DOI: https://doi.org/10.1111/j.1365-2486.2012.02656.x.
Wetz, M. S. & Yoskowitz, D. W. 2013. An ‘extreme’ future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology. Marine Pollution Bulletin, 69, 7-18. DOI: https://doi.org/10.1016/j. marpolbul.2013.01.020.
Zajac, R., Kelly, E., Perry, D. & Espinosa, I. 2017. Population ecology of the snail Melampus bidentatus in changing salt marsh landscapes. Marine Ecology, 38, 1-17. DOI: https://doi.org/10.1111/maec.12420.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ocean and Coastal Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.