Evaluation of ocean chlorophyll-a remote sensing algorithms using in situ fluorescence data in Southern Brazilian Coastal Waters
DOI:
https://doi.org/10.1590/Keywords:
Ocean color, MODIS, , VIIRS, Southern Brazilian Coastal Water, in situ fluorescence chlorophyll-aAbstract
A performance evaluation of ocean color chlorophyll-a algorithms was conducted based on the in situ fluorescence
chlorophyll concentration (Fchl) measured by a sensor on the buoy SiMCosta-SC01 in coastal waters of South Brazil.
The operational algorithms are used in MODIS and VIIRS sensors to derive satellite chlorophyll concentration (Csat). Fchl
values were successfully corrected for nonphotochemical quenching (NPQ) by an interpolation of sunrise and sunset
daily measurements. A laboratory-derived calibration coefficient was applied to convert the unquenching Fchl values into
chlorophyll concentration (Cflu). Overall, linear regression analysis between Cflu and Csat for both sensors showed good
results, with the coefficient of determination (R²) varying between 0.88 and 0.96, slopes between 0.92 and 1.02 and
intercepts between -0.17 and 0.13. The MODIS algorithm (R² = 0.96, slope = 1.02, RMSE = 0.16 mg m-3, BIAS = 0.16 mg m-3,
for N = 222 and time interval ±1 h) presented slightly better performance than VIIRS (R² = 0.92, slope = 0.96, RMSE = 0.25
mg m-3, BIAS = -0.25 mg m-3, for N = 284 and time interval ±1 h). These results represent the most comprehensive satellite
data analysis for this region, suggesting that the approach may be applicable to other SiMCosta buoys
References
BAILEY, S. W. & WERDELL, P. J. 2006. A multi-sensor approach
for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102(1-2), 12-23, DOI:
https://doi.org/10.1016/j.rse.2006.01.015
BANKS, A. C., PRUNET, P., CHIMOT, J., PINA, P., DONNADILLE, J.,
JEANSOU, E., LUX, M., PETIHAKIS, G., KORRES, G., TRIANTAFYLLOU, G., FONTANA, C., ESTOURNEL, C., ULSES, C. & FERNANDEZ, L. 2012. A satellite ocean color observation operator system for eutrophication assessment in coastal waters.
Journal of Marine Systems, 94(Suppl 1), S2-S15, DOI: https://
doi.org/10.1016/j.jmarsys.2011.11.001
Ocean chlorophyll-a remote sensing algorithms evaluation
Ocean and Coastal Research 2021, v69:e21012 17
Silva & Garcia
BEHRENFELD, M. J., WESTBERRY, T., BOSS, E., O’MALLEY, R., SIEGEL, D., WIGGERT, J. D., FRANZ, B., FELDMAN, G., DONEY, S.,
MOORE, J., DALL’OLMO, G., MILLIGAN, A., LIMA, I. & MAHOWALD, N. 2009. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton [online]. Biogeosciences, 6(5), 779-794. Available at: https://aquila.usm.edu/
fac_pubs/1132 [Accessed: 05 Jun. 2019].
BLONDEAU-PATISSIER, D., GOWER J. F. R., DEKKER, A. G., PHINN, S.
R. & BRANDO, V. E. 2014. A review of ocean color remote sensing methods and statistical techniques for the detection,
mapping and analysis of phytoplankton blooms in coastal
and open oceans. Progress in Oceanography, 123, 123-144,
DOI: https://doi.org/10.1016/j.pocean.2013.12.008
BORDIN, L. H., MACHADO, E. C., CARVALHO, M., FREIRE, A. S. &
FONSECA, A. L. D. O. 2019. Nutrient and carbon dynamics
under the water mass seasonality on the continental shelf
at the South Brazil Bight. Journal of Marine Systems, 189, 22-
, DOI: https://doi.org/10.1016/j.jmarsys.2018.09.006
BRASIL. 1990. Decreto n° 99.142, de 12 de março de 1990. Cria,
no Estado de Santa Catarina, a Reserva Biológica Marinha do
Arvoredo, e dá outras providências. Diário Oficial da União,
Brasília (DF), Seção 1, pp. 5005.
BRIGGS, N., PERRY, M. J., CETINIC, I., LEE, C., D’ASARO, E., GRAY,
A. M. & REHM, E. 2011. High-resolution observations of
aggregate flux during a sub-polar North Atlantic spring
bloom, Deep Sea Research Part I: Oceanographic Research
Papers, 58(10), 1031-1039, DOI: https://doi.org/10.1016/j.
dsr.2011.07.007
CAMPOS, P. C., MÖLLER, O. O., PIOLA, A. R. & PALMA, E. D. 2013.
Seasonal variability and coastal upwelling near Cape Santa Marta (Brazil). Journal of Geophysical Research: Oceans,
(3), 1420-1433, DOI: https://doi.org/10.1002/jgrc.20131
CARBERRY, L., ROESLER, C. & DRAPEU, S. 2019. Correcting in
situ chlorophyll fluorescence time-series observations for
nonphotochemical quenching and tidal variability reveals
nonconservative phytoplankton variability in coastal waters. Limnology and Oceanography: Methods, 17(8), 462-473,
DOI: https://doi.org/10.1002/lom3.10325
CARVALHO, J., SCHETTINI, C. & RIBAS, T. 2010. Estrutura termohalina do litoral centro-norte catarinense. Brazilian Journal
of Aquatic Science and Technology, 2(1), 181-197.
CASTRO FILHO, B. M. & MIRANDA, L. B. 1998. Physical oceanography of the western Atlantic continental shelf located between 4 N and 34 S: Coastal segment (4,W). In: ROBINSON,
A. & BRINK, K. (eds.). The Sea. Oxford: John Wiley & Sons, v.
, pp. 209-211.
CHANG, N. B. & XUAN, Z. M. 2011. Exploring the nutrient inputs
and cycles in Tampa Bay and coastal watersheds using MODIS images and data mining. In: GAO, W. & SHAW, D. R. (eds.).
Remote sensing and modeling of ecosystems for sustainability
VIII, 8156C. Bellingham: SPIE Digital Library (The International Society for Optics and Photonics), v. 5884, DOI: https://
doi.org/10.1117/12.891871
CIOTTI, A. M., GARCIA, C. A. E. & JORGE, D. S. F. 2010. Temporal
and meridional variability of satellite-estimates of surface
chlorophyll concentration over the Brazilian continental shelf. Pan-American Journal of Aquatic Sciences, 5(2),
-253, DOI: https://panamjas.org/pdf_artigos/PANAMJAS_5(2)_236-253.pdf
CLARKE, G. L., EWING, G. C. & LORENZEN, C. J. 1970. Spectra of
backscattered light from the sea obtained from aircraft as
a measure of chlorophyll concentration. American Association for the Advancement of Science, 167(3921), 1119-1121,
DOI: https://www.jstor.org/stable/1728683
CLOERN, J. E., FOSTER, S. Q., KLECKNER, A. E. 2014. Phytoplankton primary production in the world’s estuarine-
-coastal ecosystems. Biogeosciences, 11(9), 2477-2501, DOI:
https://doi.org/10.5194/bg-11-2477-2014
CULLEN, J. J. 1982. The deep chlorophyll maximum: comparing
vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences, 39(5), 791-803, DOI: https://doi.
org/10.1139/f82-108
CULLEN, J. J, CIOTTI, A. M., DAVIS, R. F. & LEWIS, M. R. 1997. Optical detection and assessment of algal blooms. Limnology
and Oceanography, 42(5 Pt 2), 1223-1239, DOI: https://doi.
org/10.4319/lo.1997.42.5_part_2.1223
DALBOSCO, A. L. P., FRANCO, D., BARLETTA, R. C. & TREVISAN,
A. B. 2020. Analysis of currents on the continental shelf off
the Santa Catarina Island through measured data. Revista
Brasileira de Recursos Hídricos, 25, e7, DOI: http://dx.doi.
org/10.1590/2318-0331.252020180175
FALKOWSKI, P. & KIEFER, D. A. 1985. Chlorophyll-a fluorescence
in phytoplankton: relationship to photosynthesis and biomass. Journal of Plankton Research, 7(5), 715-731, DOI: https://doi.org/10.1093/plankt/7.5.715
FENG, L. & HU, C. 2016. Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: a statistical assessment. Remote Sensing of Environment, 174, 301-
, DOI: https://doi.org/10.1016/j.rse.2015.12.020
FIELD, C. B., BAHRENFIELD, M. J., RANDERSON, J. T. & FALKOWSKI,
P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237-240,
DOI: https://science.sciencemag.org/content/281/5374/237
FOCARDI, S., SPECCHIULLI, A., SPAGNOLI, F., FIESOLETTI, F. &
ROSSI, C. 2009. A combinated approach to investigate the
biochemistry and hydrography of a shallow bay in the South Adriatic Sea: The Gulf of Manfredonia (Italy). Environmental Monitoring and Assessment, 153, 209-220, DOI: https://
doi.org/10.1007/s10661-008-0350-2
GARCIA, C. A. E. & GARCIA, V. M. T. 2008. Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region [online]. Continental Shelf Research, 28(13),
-1578. Available at: http://repositorio.furg.br/handle/1/3869 [Accessed: 10 Apr. 2018].
GARCIA C. A. E., GARCIA, V. M. T. & MCCLAIN, C. R. 2005. Evaluation
of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sensing of Environment, 95(1),
-137, DOI: https:doi.org/10.1016/j.rse.2004.12.006
GARCIA, V. M. T., SIGNORINI, S., GARCIA, C. A. E. & MCCLAIN, C. R.
Empirical and semi-analytical chlorophyll algorithms
in the southwestern Atlantic coastal region (25–40 s and 60–
w). International Journal of Remote Sensing, 27(8), 1539-
, DOI: https://doi.org/10.1080/01431160500382857
GIANNINI, M. F., GARCIA, A. E., TAVANO, V. & CIOTTI, A. M. 2013.
Effects of low-salinity and high-turbidity waters on empirical ocean colour algorithms: an example for Southwestern
Atlantic waters. Continental Shelf Research, 59, 84-96, DOI:
https://doi.org/10.1016/j.csr.2013.04.013
Ocean chlorophyll-a remote sensing algorithms evaluation
Ocean and Coastal Research 2021, v69:e21012 18
Silva & Garcia
GIESKES, W. W. & KRAAY, G. W. 1983. Unknown chlorophyll
a derivative in the North Sea and the tropical Atlantic
ocean revealed by HPLC analysis. Limnology and Oceanography, 28(4), 757-766, DOI: https://doi.org/10.4319/
lo.1983.28.4.0757
GORDON, H. R. 2010. Some reflections on thirty-five years of
ocean color remote sensing. In: BARALE, V., GOWER, J. F.
R. & ALBEROTANZA, L. (eds.). Oceanography from space.
New York: Springer-Verlag, pp. 289-306, DOI: https://doi.
org/10.1007/978-90-481-8681-5_17
GOWER, J. & KING, S. 2007. An Antarctic ice-related “superbloom” observed with the MERIS satellite imager.
Geophysical Research Letters, 34(15), DOI: https://doi.
org/10.1029/2007GL029638
GRIMM, A. M. 2009. Variabilidade interanual do clima no Brasil.
In: CAVALCANTI, I. F. A., FERREIRA, N. J., SILVA, M. G. A. J. &
DIAS, M. A. F. S. (orgs.). Tempo e clima no Brasil. São Paulo:
Oficina de Textos, pp. 353-374.
HENSON, S. A., DUNNE, J. P. & SARMIENTO, J. L. 2009. Decadal variability in North Atlantic phytoplankton blooms. Journal of
Geophysical Research: Oceans, 114(C4), C04013, DOI: https://
doi.org/10.1029/2008JC005139
HENSON, S. A., SARMIENTO, J. L., DUNNE, J. P., BOPP, L., LIMA,
I., DONEY, S. C., JOHN, J. & BEAULIEU, C. 2010. Detection of
anthropogenic climate change in satellite records of ocean
chlorophyll and productivity. Biogeoscience, 7(2), 621-640,
DOI: https://doi.org/10.5194/bg-7-621-2010
HOOKER, S. B., ESAIAS, W. E., FELDMAN, G. C., GREGG, W. W. &
MCCLAIN, C. R. 1992. An overview of SeaWiFS and ocean color. NASA Technical Memorandum 104566. Greenbelt: NASA
(National Aeronautics and Space Administration).
HU, C., LEE, Z. & FRANZ, B. 2012. Chlorophyll alpha-algorithms for oligotrophic oceans: a novel approach based on
three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1), C01011, DOI: https://doi.
org/10.1029/2011JC007395
IOCCG (International Ocean-Colour Coordinating Group). 2000.
Remote sensing of ocean colour in Coastal, and other optically-complex, waters. In: SATHYENDRANATH, S. (ed.). Reports number 3 of the International Ocean-Colour Coordenating Group. Dartmouth: IOCCG, pp. 1-140, DOI: http://dx.doi.
org/10.25607/OBP-95
IOCCG (International Ocean-Colour Coordinating Group).
In-flight calibration of satellite ocean-colour sensors.
In: FROUIN, R. (ed.). Reports number 14 of the International
Ocean-Colour Coordinating Group. Darthmouth: IOCCG, pp.
-106, DOI: http://dx.doi.org/10.25607/OBP-105
IOCCG (International Ocean-Colour Coordinating Group). 2017.
Manual for real-time quality control of ocean optics data version 1.1: a guide to quality control and quality assurance of
coastal and oceanic optics observations. Silver Spring: IOCCG, DOI: https://doi.org/10.25923/v9p8-ft24
IWASAKI, N., KAJII, M., TANGE, Y., MIYACHI, Y., TANAKA, T., SATO, R.
& INOUE, K. 1992. Status of ADEOS mission sensors. Acta Astronautica, 28, 139-146, DOI: https://doi.org/10.1016/0094-
-5765(92)90019-F
JIANG, L. & WANG, M. 2013. Identification of pixels with stray
light and cloud shadow contaminations in the satellite
ocean color data processing. Applied Optcis, 52(27), 6757-
, DOI: https://doi.org/10.1364/AO.52.006757
KAHRU, M., BROTAS, V., MANZANO‐SARABIA, M. & MITCHELL,
B. G. 2010. Are phytoplankton blooms occurring earlier in
the Arctic? Global Change Biology, 17(4), 1733-1739, DOI:
https://doi.org/10.1111/j.1365-2486.2010.02312.x
KLEMAS, V. 2011. Remote sensing techniques for studying
coastal ecosystems: an overview. Journal of Coastal Research, 27(1), 2-17, DOI: https://doi.org/10.2112/JCOASTRES-
-D-10-00103.1
KÖPPEN, W. & GEIGER, R. 1954. Klima der Erde (Climate of the earth). Wall Map 1:16 Mill. Gotha: Klett-Perthes.
MAArE (Monitoramento Ambiental da Reserva Biológica Marinha do Arvoredo e Entorno). 2017. Relatório Técnico Final –
Volume 2: Parâmetros Oceanográficos: Análise de parâmetros
ambientais da coluna d ́água, plâncton e sedimentos [online].
Florianópolis: MAArE. Available at: http://www.maare.ufsc.
br/wp-content/uploads/2018/06/Relatorio_Workshop_
MAArE_2015.pdf [Accessed: 11 Oct. 2019].
MÖLLER, O., PIOLA, A. R., FREITAS, A. C. & CAMPOS, E. J. D. 2008.
The effects of river discharge and seasonal winds on the
shelf off southeastern South America. Continental Shelf Research, 28(13), 1607-1624, DOI: https://doi.org/10.1016/j.
csr.2008.03.012
MOREL, A. 1974. Optical properties of pure water and pure sea
water. In: JERLOV, N. G. & STEEMAN-NIELSEN, E. (eds.). Optical aspects of oceanography. London: Academic Press.
MOREL, A. & PRIEUR, L. 1977. Analysis of variations in ocean color. Limnology and Oceanogr, 22(4), 709-722.
O’REILLY, J. E., MARITORENA, S., MITCHELL, B. G., SIEGEL, D. A.
M., CARDER, K. L., GARVER, S. A., KAHRU, M. & MCCLAIN, C.
Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research: Oceans, 103(C11), 24937-24953.
PANDOLFO, C., BRAGA, H. J., SILVA JÚNIOR, V. P., MASSIGNAN, A.
M., PEREIRA, E. S. & THOMÉ, V. M. R. 2002. Atlas climatológico
digital do Estado de Santa Catarina [online]. Florianópolis:
Epagri. Available at: http://www.ciram.epagri.sc.gov.br/index.phpoption=com_contenteview=articleeid=708eItem
id=483 [Accessed: 17 Jul 2016].
PAQUETTE, M. 2016. Spatial patterns of benthic foraminifera as
a support to the oceanographic characterization of Arvoredo biological marine reserve (South Atlantic, Brazil). Marine
Environmental Research, 114, 40-50.
PARK, J. 2010. Variability of seawifs chlorophyll-a in the southwest Atlantic sector of the Southern Ocean: strong topographic effects and weak seasonality. Deep Sea Research
Part I: Oceanographic Research Papers, 57(4), 604-620.
PEÑAFLOR, E. L. 2007. Detection of monsoonal phytoplankton
blooms in Luzon Strait with MODIS data. Remote Sensing of
Environment, 109, 443-450.
PEREIRA, E. S. & GARCIA, C. A. E. 2018. Evaluation of satellite-
-derived MODIS chlorophyll algorithms in the northern Antarctic Peninsula. Deep-Sea Research Part II: Topical Studies in
Oceanography, 149, 124-137, DOI: https://doi.org/10.1016/j.
dsr2.2017.12.018
PIOLA, A. R., MATANO, R. P., PALMA, E. D., MÖLLER JUNIOR, O.
O. & CAMPOS, E. J. D. 2005. The influence of the Plata River discharge on the western South Atlantic shelf. Geophysical Research Letters, 32(1), L01603, DOI: https://doi.
org/10.1029/2004GL021638
PREISENDORFER, R. W. 1976. Hydrologic optics. Honolulu: National Technical Information Service.
Ocean chlorophyll-a remote sensing algorithms evaluation
Ocean and Coastal Research 2021, v69:e21012 19
Silva & Garcia
RAST, M. & BEZY, J. L. 1999. The ESA Medium Resolution Imaging Spectrometer MERIS: a review of the instrument and
its mission. International Journal of Remote Sensing, 20(9),
-1702.
ROESLER, C., UITZ, J., CLAUSTRE, H., BOSS, E., XING, X., ORGANELLI, E., BRIGGS, N., BRICAUD, A., SCHMECHTING, C., POTEAU,
A., D’ORTENZIO, F., RAS, J., DRAPEAU, S., HAËNTJENS, N. &
BARBIDEUX, M. 2017. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: a global analysis of WET Labs ECO sensors. Limnology and Oceanography: Methods, 15(6), 572-585, DOI: https://
doi.org/10.1002/lom3.10185
RÖRIG, L. R. 2018. Phytoplankton patterns and processes in a
tropical-subtropical transition region: Santa Catarina coast,
southern Brazil. Plankton Ecology of the Southwestern Atlantic, 1, 269-288.
SACKMANN, B. S., PERRY, M. J. & ERIKSEN, C. C. 2008. Seaglider observations of variability in daytime fluorescence
quenching of chlorophyll-a in Northeastern Pacific coastal waters. Biogeosciences, 5, 2839-2865, DOI: https://doi.
org/10.5194/bgd-5-2839-2008
SALOMONSON, V. V., BARNES, W. L., MAYMON, P. W., MONTGOMERY, H. E. & OSTROW, H. 1989. MODIS: advanced facility
instrument for studies of the Earth as a system. IEEE Transactions on Geoscience and Remote Sensing, 27(2), 145-
, DOI: https://doi.org/10.1109/36.20292
SCHETTINI, C. A. F., CARVALHO, J. L. B. & JABOR, P. 1996. Comparative hydrology and suspended matter distribution of
four estuaries in Santa Catarina State – Southern Brazil. In:
Proceedings of the Workshop on Comparative Studies of Temperate Coast Estuaries. Bahia Blanca: UNS/IADO/NSF/IAI, pp.
-32.
SEEGERS, B. N., STUMPF, R. P., SCHAEFFER, B. A., LOFTIN, K. A.
& WERDELL, P. J. 2018. Performance metrics for the assessment of satellite data products: an ocean color case
study. Optics Express, 26(6), 7404-7422, DOI: https://doi.
org/10.1364/OE.26.007404
SHI, W. & WANG, M. 2007. Observations of a Hurricane Katrina-
-induced phytoplankton bloom in the Gulf of Mexico. Geophysical Research Letters, 34(11), l21603.
SMITH, C. R. & BAKER, K. S. 1978. The bio-optical state of ocean waters and remote sensing. Limnology and Oceanography, 23(2),
-259, DOI: https://doi.org/10.4319/lo.1978.23.2.0247
SONG, H., JI, R., STOCK, C. & WANG, Z. 2010. Phenology of phytoplankton blooms in the Nova Scotian shelf Gulf of Marine
region: remote sensing and modeling analysis. Journal of
Plankton Research, 32(11), 1485-1499.
STERCKX, S., KNAEPS, E. & RUDDICK, K. 1960. Detection and correction of adjacency effects in hyperspectral airborne data
of coastal and inland waters: The use of the near infrared
similarity spectrum. International Journal of Remote Sensing,
(21), 6479-6505.
STRICKLAND, J. D. H. 1960. Measuring the production of marine
phytoplankton. Virginia: Fisheries Research Board of Canada.
WANG, M., LIU, X., TAN, L., JIANG, L., SON, S., SHI, W., RAUSCH, K. &
VOSS, K. 2013. Impacts of VIIRS SDR performance on ocean color products. Journal of Geophysical Research: Atmospheres,
(18), 10-347, DOI: https://doi.org/10.1002/jgrd.50793
WELSCH, C., SWENSON, H., COTA, S. A., DELUCCIA, F., HAAS, J. M.,
SCHUELER, C., DURHAM, R. M., CLEMENT, J. E. & ARDANUY,
P. E. 2001. “VIIRS (Visible Infrared Imager Radiometer Suite):
a next-generation operational environmental sensor for
NPOESS. In: IEEE 2001 International Geoscience and Remote
Sensing Symposium (IGARSS), 9-13 Jul. 2001, Sydney, NSW,
Australia. Sydney: IGARSS, v. 3, pp. 1020-1022, DOI: https://
doi.org/10.1109/IGARSS.2001.976733
WELSCHMEYER, N. A. 1994. Fluorometric analysis of chlorophyll
a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39(8), 1985-1992.
WERDELL, P. J. & BAILEY, S. W. 2005. An improved bio-optical data
set for ocean color algorithm development and satellite data
product validation. Remote Sensing of Environment, 98, 122-140.
XING, X., BRIGGS, N., BOSS, E. & CLAUSTRE, H. 2018. Improved
correction for non-photochemical quenching of in situ
chlorophyll fluorescence based on a synchronous irradiance profile. Optics Express, 26(19), 24734-24751.
ZHAO, H., TANG, D. & WANG, Y. 2008. Comparison of phytoplankton blooms triggered by two typhoons with different
intensities and translation speeds in the South China Sea.
Marine Ecology Progress Series, 365, 57-65.