Evaluation of ocean chlorophyll-a remote sensing algorithms using in situ fluorescence data in Southern Brazilian Coastal Waters

Authors

  • Gabriel Serrato de Mendonça Silva
  • Carlos Alberto Eiras Garcia

DOI:

https://doi.org/10.1590/

Keywords:

Ocean color, MODIS, , VIIRS, Southern Brazilian Coastal Water, in situ fluorescence chlorophyll-a

Abstract

A performance evaluation of ocean color chlorophyll-a algorithms was conducted based on the in situ fluorescence
chlorophyll concentration (Fchl) measured by a sensor on the buoy SiMCosta-SC01 in coastal waters of South Brazil.
The operational algorithms are used in MODIS and VIIRS sensors to derive satellite chlorophyll concentration (Csat). Fchl
values were successfully corrected for nonphotochemical quenching (NPQ) by an interpolation of sunrise and sunset
daily measurements. A laboratory-derived calibration coefficient was applied to convert the unquenching Fchl values into
chlorophyll concentration (Cflu). Overall, linear regression analysis between Cflu and Csat for both sensors showed good
results, with the coefficient of determination (R²) varying between 0.88 and 0.96, slopes between 0.92 and 1.02 and
intercepts between -0.17 and 0.13. The MODIS algorithm (R² = 0.96, slope = 1.02, RMSE = 0.16 mg m-3, BIAS = 0.16 mg m-3,
for N = 222 and time interval ±1 h) presented slightly better performance than VIIRS (R² = 0.92, slope = 0.96, RMSE = 0.25
mg m-3, BIAS = -0.25 mg m-3, for N = 284 and time interval ±1 h). These results represent the most comprehensive satellite
data analysis for this region, suggesting that the approach may be applicable to other SiMCosta buoys

References

BAILEY, S. W. & WERDELL, P. J. 2006. A multi-sensor approach

for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102(1-2), 12-23, DOI:

https://doi.org/10.1016/j.rse.2006.01.015

BANKS, A. C., PRUNET, P., CHIMOT, J., PINA, P., DONNADILLE, J.,

JEANSOU, E., LUX, M., PETIHAKIS, G., KORRES, G., TRIANTAFYLLOU, G., FONTANA, C., ESTOURNEL, C., ULSES, C. & FERNANDEZ, L. 2012. A satellite ocean color observation operator system for eutrophication assessment in coastal waters.

Journal of Marine Systems, 94(Suppl 1), S2-S15, DOI: https://

doi.org/10.1016/j.jmarsys.2011.11.001

Ocean chlorophyll-a remote sensing algorithms evaluation

Ocean and Coastal Research 2021, v69:e21012 17

Silva & Garcia

BEHRENFELD, M. J., WESTBERRY, T., BOSS, E., O’MALLEY, R., SIEGEL, D., WIGGERT, J. D., FRANZ, B., FELDMAN, G., DONEY, S.,

MOORE, J., DALL’OLMO, G., MILLIGAN, A., LIMA, I. & MAHOWALD, N. 2009. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton [online]. Biogeosciences, 6(5), 779-794. Available at: https://aquila.usm.edu/

fac_pubs/1132 [Accessed: 05 Jun. 2019].

BLONDEAU-PATISSIER, D., GOWER J. F. R., DEKKER, A. G., PHINN, S.

R. & BRANDO, V. E. 2014. A review of ocean color remote sensing methods and statistical techniques for the detection,

mapping and analysis of phytoplankton blooms in coastal

and open oceans. Progress in Oceanography, 123, 123-144,

DOI: https://doi.org/10.1016/j.pocean.2013.12.008

BORDIN, L. H., MACHADO, E. C., CARVALHO, M., FREIRE, A. S. &

FONSECA, A. L. D. O. 2019. Nutrient and carbon dynamics

under the water mass seasonality on the continental shelf

at the South Brazil Bight. Journal of Marine Systems, 189, 22-

, DOI: https://doi.org/10.1016/j.jmarsys.2018.09.006

BRASIL. 1990. Decreto n° 99.142, de 12 de março de 1990. Cria,

no Estado de Santa Catarina, a Reserva Biológica Marinha do

Arvoredo, e dá outras providências. Diário Oficial da União,

Brasília (DF), Seção 1, pp. 5005.

BRIGGS, N., PERRY, M. J., CETINIC, I., LEE, C., D’ASARO, E., GRAY,

A. M. & REHM, E. 2011. High-resolution observations of

aggregate flux during a sub-polar North Atlantic spring

bloom, Deep Sea Research Part I: Oceanographic Research

Papers, 58(10), 1031-1039, DOI: https://doi.org/10.1016/j.

dsr.2011.07.007

CAMPOS, P. C., MÖLLER, O. O., PIOLA, A. R. & PALMA, E. D. 2013.

Seasonal variability and coastal upwelling near Cape Santa Marta (Brazil). Journal of Geophysical Research: Oceans,

(3), 1420-1433, DOI: https://doi.org/10.1002/jgrc.20131

CARBERRY, L., ROESLER, C. & DRAPEU, S. 2019. Correcting in

situ chlorophyll fluorescence time-series observations for

nonphotochemical quenching and tidal variability reveals

nonconservative phytoplankton variability in coastal waters. Limnology and Oceanography: Methods, 17(8), 462-473,

DOI: https://doi.org/10.1002/lom3.10325

CARVALHO, J., SCHETTINI, C. & RIBAS, T. 2010. Estrutura termohalina do litoral centro-norte catarinense. Brazilian Journal

of Aquatic Science and Technology, 2(1), 181-197.

CASTRO FILHO, B. M. & MIRANDA, L. B. 1998. Physical oceanography of the western Atlantic continental shelf located between 4 N and 34 S: Coastal segment (4,W). In: ROBINSON,

A. & BRINK, K. (eds.). The Sea. Oxford: John Wiley & Sons, v.

, pp. 209-211.

CHANG, N. B. & XUAN, Z. M. 2011. Exploring the nutrient inputs

and cycles in Tampa Bay and coastal watersheds using MODIS images and data mining. In: GAO, W. & SHAW, D. R. (eds.).

Remote sensing and modeling of ecosystems for sustainability

VIII, 8156C. Bellingham: SPIE Digital Library (The International Society for Optics and Photonics), v. 5884, DOI: https://

doi.org/10.1117/12.891871

CIOTTI, A. M., GARCIA, C. A. E. & JORGE, D. S. F. 2010. Temporal

and meridional variability of satellite-estimates of surface

chlorophyll concentration over the Brazilian continental shelf. Pan-American Journal of Aquatic Sciences, 5(2),

-253, DOI: https://panamjas.org/pdf_artigos/PANAMJAS_5(2)_236-253.pdf

CLARKE, G. L., EWING, G. C. & LORENZEN, C. J. 1970. Spectra of

backscattered light from the sea obtained from aircraft as

a measure of chlorophyll concentration. American Association for the Advancement of Science, 167(3921), 1119-1121,

DOI: https://www.jstor.org/stable/1728683

CLOERN, J. E., FOSTER, S. Q., KLECKNER, A. E. 2014. Phytoplankton primary production in the world’s estuarine-

-coastal ecosystems. Biogeosciences, 11(9), 2477-2501, DOI:

https://doi.org/10.5194/bg-11-2477-2014

CULLEN, J. J. 1982. The deep chlorophyll maximum: comparing

vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences, 39(5), 791-803, DOI: https://doi.

org/10.1139/f82-108

CULLEN, J. J, CIOTTI, A. M., DAVIS, R. F. & LEWIS, M. R. 1997. Optical detection and assessment of algal blooms. Limnology

and Oceanography, 42(5 Pt 2), 1223-1239, DOI: https://doi.

org/10.4319/lo.1997.42.5_part_2.1223

DALBOSCO, A. L. P., FRANCO, D., BARLETTA, R. C. & TREVISAN,

A. B. 2020. Analysis of currents on the continental shelf off

the Santa Catarina Island through measured data. Revista

Brasileira de Recursos Hídricos, 25, e7, DOI: http://dx.doi.

org/10.1590/2318-0331.252020180175

FALKOWSKI, P. & KIEFER, D. A. 1985. Chlorophyll-a fluorescence

in phytoplankton: relationship to photosynthesis and biomass. Journal of Plankton Research, 7(5), 715-731, DOI: https://doi.org/10.1093/plankt/7.5.715

FENG, L. & HU, C. 2016. Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: a statistical assessment. Remote Sensing of Environment, 174, 301-

, DOI: https://doi.org/10.1016/j.rse.2015.12.020

FIELD, C. B., BAHRENFIELD, M. J., RANDERSON, J. T. & FALKOWSKI,

P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237-240,

DOI: https://science.sciencemag.org/content/281/5374/237

FOCARDI, S., SPECCHIULLI, A., SPAGNOLI, F., FIESOLETTI, F. &

ROSSI, C. 2009. A combinated approach to investigate the

biochemistry and hydrography of a shallow bay in the South Adriatic Sea: The Gulf of Manfredonia (Italy). Environmental Monitoring and Assessment, 153, 209-220, DOI: https://

doi.org/10.1007/s10661-008-0350-2

GARCIA, C. A. E. & GARCIA, V. M. T. 2008. Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region [online]. Continental Shelf Research, 28(13),

-1578. Available at: http://repositorio.furg.br/handle/1/3869 [Accessed: 10 Apr. 2018].

GARCIA C. A. E., GARCIA, V. M. T. & MCCLAIN, C. R. 2005. Evaluation

of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sensing of Environment, 95(1),

-137, DOI: https:doi.org/10.1016/j.rse.2004.12.006

GARCIA, V. M. T., SIGNORINI, S., GARCIA, C. A. E. & MCCLAIN, C. R.

Empirical and semi-analytical chlorophyll algorithms

in the southwestern Atlantic coastal region (25–40 s and 60–

w). International Journal of Remote Sensing, 27(8), 1539-

, DOI: https://doi.org/10.1080/01431160500382857

GIANNINI, M. F., GARCIA, A. E., TAVANO, V. & CIOTTI, A. M. 2013.

Effects of low-salinity and high-turbidity waters on empirical ocean colour algorithms: an example for Southwestern

Atlantic waters. Continental Shelf Research, 59, 84-96, DOI:

https://doi.org/10.1016/j.csr.2013.04.013

Ocean chlorophyll-a remote sensing algorithms evaluation

Ocean and Coastal Research 2021, v69:e21012 18

Silva & Garcia

GIESKES, W. W. & KRAAY, G. W. 1983. Unknown chlorophyll

a derivative in the North Sea and the tropical Atlantic

ocean revealed by HPLC analysis. Limnology and Oceanography, 28(4), 757-766, DOI: https://doi.org/10.4319/

lo.1983.28.4.0757

GORDON, H. R. 2010. Some reflections on thirty-five years of

ocean color remote sensing. In: BARALE, V., GOWER, J. F.

R. & ALBEROTANZA, L. (eds.). Oceanography from space.

New York: Springer-Verlag, pp. 289-306, DOI: https://doi.

org/10.1007/978-90-481-8681-5_17

GOWER, J. & KING, S. 2007. An Antarctic ice-related “superbloom” observed with the MERIS satellite imager.

Geophysical Research Letters, 34(15), DOI: https://doi.

org/10.1029/2007GL029638

GRIMM, A. M. 2009. Variabilidade interanual do clima no Brasil.

In: CAVALCANTI, I. F. A., FERREIRA, N. J., SILVA, M. G. A. J. &

DIAS, M. A. F. S. (orgs.). Tempo e clima no Brasil. São Paulo:

Oficina de Textos, pp. 353-374.

HENSON, S. A., DUNNE, J. P. & SARMIENTO, J. L. 2009. Decadal variability in North Atlantic phytoplankton blooms. Journal of

Geophysical Research: Oceans, 114(C4), C04013, DOI: https://

doi.org/10.1029/2008JC005139

HENSON, S. A., SARMIENTO, J. L., DUNNE, J. P., BOPP, L., LIMA,

I., DONEY, S. C., JOHN, J. & BEAULIEU, C. 2010. Detection of

anthropogenic climate change in satellite records of ocean

chlorophyll and productivity. Biogeoscience, 7(2), 621-640,

DOI: https://doi.org/10.5194/bg-7-621-2010

HOOKER, S. B., ESAIAS, W. E., FELDMAN, G. C., GREGG, W. W. &

MCCLAIN, C. R. 1992. An overview of SeaWiFS and ocean color. NASA Technical Memorandum 104566. Greenbelt: NASA

(National Aeronautics and Space Administration).

HU, C., LEE, Z. & FRANZ, B. 2012. Chlorophyll alpha-algorithms for oligotrophic oceans: a novel approach based on

three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1), C01011, DOI: https://doi.

org/10.1029/2011JC007395

IOCCG (International Ocean-Colour Coordinating Group). 2000.

Remote sensing of ocean colour in Coastal, and other optically-complex, waters. In: SATHYENDRANATH, S. (ed.). Reports number 3 of the International Ocean-Colour Coordenating Group. Dartmouth: IOCCG, pp. 1-140, DOI: http://dx.doi.

org/10.25607/OBP-95

IOCCG (International Ocean-Colour Coordinating Group).

In-flight calibration of satellite ocean-colour sensors.

In: FROUIN, R. (ed.). Reports number 14 of the International

Ocean-Colour Coordinating Group. Darthmouth: IOCCG, pp.

-106, DOI: http://dx.doi.org/10.25607/OBP-105

IOCCG (International Ocean-Colour Coordinating Group). 2017.

Manual for real-time quality control of ocean optics data version 1.1: a guide to quality control and quality assurance of

coastal and oceanic optics observations. Silver Spring: IOCCG, DOI: https://doi.org/10.25923/v9p8-ft24

IWASAKI, N., KAJII, M., TANGE, Y., MIYACHI, Y., TANAKA, T., SATO, R.

& INOUE, K. 1992. Status of ADEOS mission sensors. Acta Astronautica, 28, 139-146, DOI: https://doi.org/10.1016/0094-

-5765(92)90019-F

JIANG, L. & WANG, M. 2013. Identification of pixels with stray

light and cloud shadow contaminations in the satellite

ocean color data processing. Applied Optcis, 52(27), 6757-

, DOI: https://doi.org/10.1364/AO.52.006757

KAHRU, M., BROTAS, V., MANZANO‐SARABIA, M. & MITCHELL,

B. G. 2010. Are phytoplankton blooms occurring earlier in

the Arctic? Global Change Biology, 17(4), 1733-1739, DOI:

https://doi.org/10.1111/j.1365-2486.2010.02312.x

KLEMAS, V. 2011. Remote sensing techniques for studying

coastal ecosystems: an overview. Journal of Coastal Research, 27(1), 2-17, DOI: https://doi.org/10.2112/JCOASTRES-

-D-10-00103.1

KÖPPEN, W. & GEIGER, R. 1954. Klima der Erde (Climate of the earth). Wall Map 1:16 Mill. Gotha: Klett-Perthes.

MAArE (Monitoramento Ambiental da Reserva Biológica Marinha do Arvoredo e Entorno). 2017. Relatório Técnico Final –

Volume 2: Parâmetros Oceanográficos: Análise de parâmetros

ambientais da coluna d ́água, plâncton e sedimentos [online].

Florianópolis: MAArE. Available at: http://www.maare.ufsc.

br/wp-content/uploads/2018/06/Relatorio_Workshop_

MAArE_2015.pdf [Accessed: 11 Oct. 2019].

MÖLLER, O., PIOLA, A. R., FREITAS, A. C. & CAMPOS, E. J. D. 2008.

The effects of river discharge and seasonal winds on the

shelf off southeastern South America. Continental Shelf Research, 28(13), 1607-1624, DOI: https://doi.org/10.1016/j.

csr.2008.03.012

MOREL, A. 1974. Optical properties of pure water and pure sea

water. In: JERLOV, N. G. & STEEMAN-NIELSEN, E. (eds.). Optical aspects of oceanography. London: Academic Press.

MOREL, A. & PRIEUR, L. 1977. Analysis of variations in ocean color. Limnology and Oceanogr, 22(4), 709-722.

O’REILLY, J. E., MARITORENA, S., MITCHELL, B. G., SIEGEL, D. A.

M., CARDER, K. L., GARVER, S. A., KAHRU, M. & MCCLAIN, C.

Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research: Oceans, 103(C11), 24937-24953.

PANDOLFO, C., BRAGA, H. J., SILVA JÚNIOR, V. P., MASSIGNAN, A.

M., PEREIRA, E. S. & THOMÉ, V. M. R. 2002. Atlas climatológico

digital do Estado de Santa Catarina [online]. Florianópolis:

Epagri. Available at: http://www.ciram.epagri.sc.gov.br/index.phpoption=com_contenteview=articleeid=708eItem

id=483 [Accessed: 17 Jul 2016].

PAQUETTE, M. 2016. Spatial patterns of benthic foraminifera as

a support to the oceanographic characterization of Arvoredo biological marine reserve (South Atlantic, Brazil). Marine

Environmental Research, 114, 40-50.

PARK, J. 2010. Variability of seawifs chlorophyll-a in the southwest Atlantic sector of the Southern Ocean: strong topographic effects and weak seasonality. Deep Sea Research

Part I: Oceanographic Research Papers, 57(4), 604-620.

PEÑAFLOR, E. L. 2007. Detection of monsoonal phytoplankton

blooms in Luzon Strait with MODIS data. Remote Sensing of

Environment, 109, 443-450.

PEREIRA, E. S. & GARCIA, C. A. E. 2018. Evaluation of satellite-

-derived MODIS chlorophyll algorithms in the northern Antarctic Peninsula. Deep-Sea Research Part II: Topical Studies in

Oceanography, 149, 124-137, DOI: https://doi.org/10.1016/j.

dsr2.2017.12.018

PIOLA, A. R., MATANO, R. P., PALMA, E. D., MÖLLER JUNIOR, O.

O. & CAMPOS, E. J. D. 2005. The influence of the Plata River discharge on the western South Atlantic shelf. Geophysical Research Letters, 32(1), L01603, DOI: https://doi.

org/10.1029/2004GL021638

PREISENDORFER, R. W. 1976. Hydrologic optics. Honolulu: National Technical Information Service.

Ocean chlorophyll-a remote sensing algorithms evaluation

Ocean and Coastal Research 2021, v69:e21012 19

Silva & Garcia

RAST, M. & BEZY, J. L. 1999. The ESA Medium Resolution Imaging Spectrometer MERIS: a review of the instrument and

its mission. International Journal of Remote Sensing, 20(9),

-1702.

ROESLER, C., UITZ, J., CLAUSTRE, H., BOSS, E., XING, X., ORGANELLI, E., BRIGGS, N., BRICAUD, A., SCHMECHTING, C., POTEAU,

A., D’ORTENZIO, F., RAS, J., DRAPEAU, S., HAËNTJENS, N. &

BARBIDEUX, M. 2017. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: a global analysis of WET Labs ECO sensors. Limnology and Oceanography: Methods, 15(6), 572-585, DOI: https://

doi.org/10.1002/lom3.10185

RÖRIG, L. R. 2018. Phytoplankton patterns and processes in a

tropical-subtropical transition region: Santa Catarina coast,

southern Brazil. Plankton Ecology of the Southwestern Atlantic, 1, 269-288.

SACKMANN, B. S., PERRY, M. J. & ERIKSEN, C. C. 2008. Seaglider observations of variability in daytime fluorescence

quenching of chlorophyll-a in Northeastern Pacific coastal waters. Biogeosciences, 5, 2839-2865, DOI: https://doi.

org/10.5194/bgd-5-2839-2008

SALOMONSON, V. V., BARNES, W. L., MAYMON, P. W., MONTGOMERY, H. E. & OSTROW, H. 1989. MODIS: advanced facility

instrument for studies of the Earth as a system. IEEE Transactions on Geoscience and Remote Sensing, 27(2), 145-

, DOI: https://doi.org/10.1109/36.20292

SCHETTINI, C. A. F., CARVALHO, J. L. B. & JABOR, P. 1996. Comparative hydrology and suspended matter distribution of

four estuaries in Santa Catarina State – Southern Brazil. In:

Proceedings of the Workshop on Comparative Studies of Temperate Coast Estuaries. Bahia Blanca: UNS/IADO/NSF/IAI, pp.

-32.

SEEGERS, B. N., STUMPF, R. P., SCHAEFFER, B. A., LOFTIN, K. A.

& WERDELL, P. J. 2018. Performance metrics for the assessment of satellite data products: an ocean color case

study. Optics Express, 26(6), 7404-7422, DOI: https://doi.

org/10.1364/OE.26.007404

SHI, W. & WANG, M. 2007. Observations of a Hurricane Katrina-

-induced phytoplankton bloom in the Gulf of Mexico. Geophysical Research Letters, 34(11), l21603.

SMITH, C. R. & BAKER, K. S. 1978. The bio-optical state of ocean waters and remote sensing. Limnology and Oceanography, 23(2),

-259, DOI: https://doi.org/10.4319/lo.1978.23.2.0247

SONG, H., JI, R., STOCK, C. & WANG, Z. 2010. Phenology of phytoplankton blooms in the Nova Scotian shelf Gulf of Marine

region: remote sensing and modeling analysis. Journal of

Plankton Research, 32(11), 1485-1499.

STERCKX, S., KNAEPS, E. & RUDDICK, K. 1960. Detection and correction of adjacency effects in hyperspectral airborne data

of coastal and inland waters: The use of the near infrared

similarity spectrum. International Journal of Remote Sensing,

(21), 6479-6505.

STRICKLAND, J. D. H. 1960. Measuring the production of marine

phytoplankton. Virginia: Fisheries Research Board of Canada.

WANG, M., LIU, X., TAN, L., JIANG, L., SON, S., SHI, W., RAUSCH, K. &

VOSS, K. 2013. Impacts of VIIRS SDR performance on ocean color products. Journal of Geophysical Research: Atmospheres,

(18), 10-347, DOI: https://doi.org/10.1002/jgrd.50793

WELSCH, C., SWENSON, H., COTA, S. A., DELUCCIA, F., HAAS, J. M.,

SCHUELER, C., DURHAM, R. M., CLEMENT, J. E. & ARDANUY,

P. E. 2001. “VIIRS (Visible Infrared Imager Radiometer Suite):

a next-generation operational environmental sensor for

NPOESS. In: IEEE 2001 International Geoscience and Remote

Sensing Symposium (IGARSS), 9-13 Jul. 2001, Sydney, NSW,

Australia. Sydney: IGARSS, v. 3, pp. 1020-1022, DOI: https://

doi.org/10.1109/IGARSS.2001.976733

WELSCHMEYER, N. A. 1994. Fluorometric analysis of chlorophyll

a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39(8), 1985-1992.

WERDELL, P. J. & BAILEY, S. W. 2005. An improved bio-optical data

set for ocean color algorithm development and satellite data

product validation. Remote Sensing of Environment, 98, 122-140.

XING, X., BRIGGS, N., BOSS, E. & CLAUSTRE, H. 2018. Improved

correction for non-photochemical quenching of in situ

chlorophyll fluorescence based on a synchronous irradiance profile. Optics Express, 26(19), 24734-24751.

ZHAO, H., TANG, D. & WANG, Y. 2008. Comparison of phytoplankton blooms triggered by two typhoons with different

intensities and translation speeds in the South China Sea.

Marine Ecology Progress Series, 365, 57-65.

Downloads

Published

23.04.2024

How to Cite

Evaluation of ocean chlorophyll-a remote sensing algorithms using in situ fluorescence data in Southern Brazilian Coastal Waters. (2024). Ocean and Coastal Research, 69. https://doi.org/10.1590/