Predicting large-scale spatial patterns of marine meiofauna: implications for environmental monitoring

Authors

  • Fabiane Gallucci
  • Gustavo Fonseca
  • Danilo C Vieira
  • Luciana Erika Yaginuma
  • Paula Foltran Gheller
  • Simone Brito
  • Thais Navajas Corbisier

DOI:

https://doi.org/10.1590/

Keywords:

Meiobenthos, Ecology, Random Forest, Santos Basin, Environmental Monitoring

Abstract

This study aims model the distribution of meiofauna indicators in relation to environmental variables from the
Santos Basin continental margin, SE Brazil, using machine learning techniques, to provide baseline information
and foster future monitoring programs. A total of 100 sampling stations were distributed in eight transects and 11
isobaths (25 to 2,400 m) perpendicular to the coast. In each station, three replicates were sampled for meiofauna
and 38 environmental parameters. A total of 28 meiofauna taxa were found, with a mean richness varying
from 3 to 15 taxa per station. Meiofauna mean density varied between 55 and 2,001 ind. 10 cm-2. Density of
meiofauna and its most frequent taxa (Nematoda, Copepoda, Kinorhyncha, and Polychaeta), and taxa richness
were used as descriptors for the models. Meiofauna and nematode density showed the highest training and
testing accuracies, with R² values above 0.74. Based on the distribution of meiofauna descriptors and their
responses to environmental conditions, we suggest a mosaic of six benthic zones. The La Plata Plume zone
and the Cabo Frio Upwelling zone are two of the most diverse and productive zones in the continental shelf, wich
are separated by the less productive Central Continental Shelf zone. A fourth zone, with very low meiofauna
densities, corresponds to the carbonated sediments of the shelf-break. The Upper and Mid-Slope is a narrow
zone along the entire basin, with intermediate densities and small amounts of high-quality organic carbon. The
largest, impoverished zone, the Lower Slope and Plateau comprises the deepest areas and the São Paulo
Plateau. The study showed that, although some zones can be recognized by most meiofauna descriptors, others
are better characterized by specific ones, implying that meiofauna indicators should be monitored concomitantly.
We recommend the optimization of sampling design based on our model to reduce costs and increase our
understanding of the system.

References

ANP. 2021. Anuário estatístico brasileiro do petróleo, gás

natural e biocombustíveis: 2021. Rio de Janeiro: Agência

Nacional do Petróleo, Gás Natural e Biocombustíveis.

Arasaki, E., Muniz, P. & Pires-Vanin, A. M. S. 2004. A

Functional Analysis of the Benthic Macrofauna of the

Sao Sebastiao Channel (Southeastern Brazil). Marine

Ecology, 25(4), 249–263. DOI: https://doi.org/10.1111/

j.1439-0485.2004.00032.x

Aspila, K. I., Argemian, H. & Chau, A. S. Y. 1976. A semiautomated method for the determination of inorganic,

organic and total phosphorus in sediments. Analyst,

, 187-197.

Argeiro, M. C. C. 2009. Os Nematoda da plataforma

continental da região sudeste brasileira sob a influência

da Água Central do Atlântico Sul: Cabo Frio (RJ) e

Ubatuba (SP) (mathesis). Universidade de Sao Paulo,

Agencia USP de Gestao da Informacao Academica

(AGUIA), São Paulo. https://doi.org/10.11606/d.21.2009.

tde-05082011-105858

Azovsky, A. I. 2009. Structural complexity of species

assemblages and spatial scale of community

organization: A case study of marine benthos.

Ecological Complexity, 6(3), 308–315. DOI: https://doi.

org/10.1016/j.ecocom.2008.12.001

Bradford, M. M. 1976. A rapid method of total lipid extraction

and purification. Canadian Journal of Biochemistry and

Physiology, 72, 248-254.

Brandini, F., Tura, P. & Santos, P. 2018. Ecosystem

responses to biogeochemical fronts in the South Brazil

Bight. Progress in Oceanography, 164, 52–62. DOI:

https://doi.org/10.1016/j.pocean.2018.04.012

Breiman, L. 2001. Random forests. Machine Learning, 45(1),

–32. DOI: https://doi.org/10.1023/A:1010933404324

Campanyà-Llovet, N., Snelgrove, P. V. R. & Parrish, C. C.

Rethinking the importance of food quality in marine

benthic food webs. Progress in Oceanography, 156,

–251. DOI: https://doi.org/10.1016/j.pocean.2017.07.006

Carreira, R. da S., Canuel, E. A., Macko, S. A., Lopes, M. B.,

Luz, L. G. & Jasmim, L. N. 2012. On the accumulation

of organic matter on the southeastern Brazilian

continental shelf: a case study based on a sediment

core from the shelf off Rio de Janeiro. Brazilian Journal

of Oceanography, 60(1), 75–87.

Carreira, R. S., Lazzari, L., Ceccopieri, M., Rozo, L.,

Martins, D., Fonseca, G., Vieira, D. C. & Massone,

C. G. 2023. Sedimentary provinces of organic matter

accumulation in the Santos Basin, SW Atlantic: insights

from multiple bulk proxies and machine learning

analysis. Ocean and Coastal Research; 23030. DOI:

https://doi.org/10.1590/2675-2824071.22061rsc

Castro, B. M., Lorenzetti, J. A., Silveira, I. C. A. & Miranda, L. B.

Estrutura termohalina e circulação na região

entre o Cabo de São Tomé (RJ) e o Chuí (RS). In:

Madureira, C. L. D. B. R.-W. e L. S.-P. (ed.) O Ambiente

Oceanográfico da Plataforma Continental e do Talude

na Região Sudeste-Sul do Brasil (pp. 209–251). São

Paulo: Edusp.

Castro Filho, B. M. de, Miranda, L. B. de & Miyao, S. Y. 1987.

Condições hidrográficas na plataforma continental

ao largo de Ubatuba: variações sazonais e em

média escala. Boletim Do Instituto Oceanográfico,

(2), 135–151. DOI: https://doi.org/10.1590/s0373-

Cho, Y., Shim, W., Jang, M., Han, G. & Hong, S. 2021.

Nationwide monitoring of microplastics in bivalves

from the coastal environment of Korea. Environmental

Pollution, 270, 116175. DOI: https://doi.org/10.1016/j.

envpol.2020.116175

Ciotti, Á. M., Mahiques, M. de & Möller, O. O. 2014. The

meridional gradients of the S-SE Brazilian continental

shelf: Introduction to the special volume. Continental

Shelf Research, 89, 1–4. DOI: https://doi.org/10.1016/j.

csr.2014.08.008

Coelho-Souza, S. A., López, M. S., Guimarães, J. R. D.,

Coutinho, R. & Candella, R. N. 2012. Biophysical

interactions in the Cabo Frio upwelling system,

southeastern Brazil. Brazilian Journal Od Oceanography,

(3), 353–365.

Predicting spatial patterns of marine meiofauna

Ocean and Coastal Research 2023, v71(suppl 3):e23037 18

Gallucci et al.

COLBIO-IOUSP. 2022. Coleção Biológica Prof. Edmundo

F. Nonato.

Corbisier, T. N., Petti, M. A. V., Soares, L. S. H., Muto, E. Y.,

Bromberg, S. & Valiela, I. 2014. Trophic structure of

benthic communities in the Cabo Frio upwelling system

(southeastern Brazilian shelf): a temporal study using

stable isotope analysis. Marine Ecology Progress

Series, 512, 23–38. DOI: https://doi.org/10.3354/

meps10947

Dale, V. & Beyeler, S. 2001. Challenges in the development

and use of ecological indicators. Ecological Indicators,

(1), 3–10. DOI: https://doi.org/10.1016/s1470-160x(01)

-6

Danovaro, R., Dell’anno, A. & Pusceddu, A. 2004.

Biodiversity response to climate change in a warm deep

sea. Ecology Letters, 7(9), 821–828. DOI: https://doi.

org/10.1111/j.1461-0248.2004.00634.x

Danovaro, R., Dinet, A., Duineveld, G. & Tselepides, A.

Benthic response to particulate fluxes in different

trophic environments: a comparison between the Gulf

of Lions–Catalan Sea (western-Mediterranean) and

the Cretan Sea (eastern-Mediterranean). Progress in

Oceanography, 44(1–3), 287–312. DOI: https://doi.

org/10.1016/s0079-6611(99)00030-0

Danovaro, R., Gambi, C., Lampadariou, N. & Tselepides,

A. 2008. Deep-sea nematode biodiversity in the

Mediterranean basin: testing for longitudinal, bathymetric

and energetic gradients. Ecography, 31(2), 231–244.

DOI: https://doi.org/10.1111/j.0906-7590.2008.5484.x

De Léo, F., Bernardino, A. & Sumida, P. 2020. Continental

Slope and Submarine Canyons: Benthic Biodiversity

and Human Impacts. In: De Léo, F., Bernardino, A.,

& Sumida, P. (eds.) Brazilian Deep-Sea Biodiversity

(pp. 37–72). Berlim: Springer. DOI: https://doi.

org/10.1007/978-3-030-53222-2_3

De Léo, F. C. & Pires-Vanin, A. M. S. 2006. Benthic

megafauna communities under the influence of the

South Atlantic Central Water intrusion onto the Brazilian

SE shelf: A comparison between an upwelling and a

non-upwelling ecosystem. Journal of Marine Systems,

(3–4), 268–284. DOI: https://doi.org/10.1016/j.

jmarsys.2006.02.002

Dominguez, J. M. L., Silva, R. P. da, Nunes, A. S. & Freire,

A. F. M. 2013. The narrow, shallow, low-accommodation

shelf of central Brazil: Sedimentology, evolution, and

human uses. Geomorphology, 203, 46–59. DOI: https://

doi.org/10.1016/j.geomorph.2013.07.004

Dottori, D. K., M, Sasaki, Silva, D. A., Giovannino, S. R.,

Pinto, A. P., Gnamah, M., Santos, A. D., Silveira, I. C. A.,

Belo, W. C., Martins, R. P. & Moreira, D. L. 2023.

Hydrographic structure of the continental shelf in Santos

Basin and its causes: The SANAGU and SANSED

campaigns (2019). Ocean and Coastal Research.

Ellis, J. I., Fraser, G. & Russell, J. 2012. Discharged drilling

waste from oil and gas platforms and its effects on

benthic communities. Marine Ecology Progress Series,

, 285–302. DOI: https://doi.org/10.3354/meps09622

Faith, D. P., Reid, C. A. M. & Hunter, J. 2004. Integrating

Phylogenetic Diversity, Complementarity, and Endemism

for Conservation Assessment. Conservation Biology,

(1), 255–261. DOI: https://doi.org/10.1111/j.1523-

2004.00330.x

Fidler, F., Burgman, M. A., Cumming, G., Buttrose, R.

& Thomason, N. 2006. Impact of Criticism of NullHypothesis Significance Testing on Statistical Reporting

Practices in Conservation Biology. Conservation Biology,

(5), 1539–1544. DOI: https://doi.org/10.1111/j.1523-

2006.00525.x

Figueiredo, R. A. G., Carneiro, J. C., Santos Filho, J. R.,

Cecilio, A. B., Rocha, G. J., Santos, S. T. V., Oliveira,

A. S., Ferreira, F. & Luz, M. R. 2023. Sedimentary

processes as a set-up conditions for living benthic

communities in Santos Basin, Brazil. Ocean and Coastal

Research; 23030. DOI: https://doi.org/10.1590/2675-

22061rsc

Fonseca, G., Soltwedel, T., Vanreusel, A. & Lindegarth, M.

Variation in nematode assemblages over multiple

spatial scales and environmental conditions in Arctic deep

seas. Progress in Oceanography, 84(3–4), 174–184.

DOI: https://doi.org/10.1016/j.pocean.2009.11.001

Fonseca, G. & Vieira, D. 2023. Overcoming the challenges

of data integration in ecosystem studies with machine

learning pipelines: an example from the PCRBS.

Ocean and Coastal Research; 23021. DOI: https://doi.

org/10.1590/2675-2824071.22044dcv

Fonseca, G. & Vieira, D. 2023. Overcoming the challenges

of data integration in ecosystem studies with machine

learning workflows: an example from the Santos project.

Ocean and Coastal Research. 71(3). DOI: https://doi.

org/10.1590/2675-2824071.22044gf

Fonsêca-Genevois, V., Silva, M. C., Lira, V. F., Neres, P. F.,

Lima, R. C. C. & Esteves, A. M. 2017. Ambiente

Bentônico: caracterização ambiental regional da Bacia

de Campos, Atlântico Sudoeste. In: Falcão, A. P. C.

& Lavrado, H. P. (eds.) (Vol. 3, pp. 183–226). Rio de

Janeiro: Elsevier Habitats.

Gallucci, F., Moens, T., Vanreusel, A. & Fonseca, G. 2008.

Active colonization of disturbed sediments by deepsea nematodes: evidence for the patch mosaic model.

Marine Ecology Progress Series, 367, 173-183.

Gambi, C. & Danovaro, R. 2006. A multiple-scale

analysis of metazoan meiofaunal distribution in the

deep Mediterranean Sea. Deep Sea Research Part I:

Oceanographic Research Papers, 53(7), 1117–1134.

DOI: https://doi.org/10.1016/j.dsr.2006.05.003

Giere, O. 2009. Meiobenthology - The Microscopic Motile

Fauna of Aquatic Sediments. Berlin: Springer-Verlag.

DOI: https://doi.org/10.1007/978-3-540-68661-3

Griffiths, B., Römbke, J., Schmelz, R., Schfffczyk, A., Faber, J.,

Bloem, J., Pérès, G., Cluzeau, D., Chabbi, A., Suhadolc,

M., Sousa, J., Martins Da Silva, P., Carvalho, F., Mendes,

S., Morais, P., Francisco, R., Pereira, C., Bonkowski, M.,

Geisen, S., Bardgett, R., De Vries, F., Bolger, T., Dirilgen,

T., Schmidt, O., Winding, A., Hendriksen, N., Johansen,

A., Philippot, L., Plassart, P., Bru, D., Thomson, B.,

Griffiths, R., Bailey, M., Keith, A., Rutgers, M., Mulder, C.,

Hannula, S., Creamer, R. & Stone, D. 2016. Selecting

cost effective and policy-relevant biological indicators for

European monitoring of soil biodiversity and ecosystem

function. Ecological Indicators, 69, 213–223. DOI: https://

doi.org/10.1016/j.ecolind.2016.04.023

Guerrero, R. A., Acha, E. M., Framintexttildelowan, M. B. &

Lasta, C. A. 1997. Physical oceanography of the Río de

la Plata Estuary, Argentina. Continental Shelf Research,

Predicting spatial patterns of marine meiofauna

Ocean and Coastal Research 2023, v71(suppl 3):e23037 19

Gallucci et al.

(7), 727–742. DOI: https://doi.org/10.1016/s0278-

(96)00061-1

HARTREE, E. F. 1972. Determination of protein: a

modification of the Lowry method that gives a linear

photometric response. Analytical Biochemistry, 48, 422-427.

Iacono, M., Romano, E. & Marrone, S. 2010. Adaptive

monitoring of marine disasters with intelligent

mobile sensor networks. In: 2010 IEEE Workshop

on Environmental Energy and Structural Monitoring

Systems (pp. 38–45). Taranto: IEEE. DOI: https://doi.

org/10.1109/eesms.2010.5634179

Ingels, J., Vanreusel, A., Pape, E., Pasotti, F., Macheriotou,

L., Arbizu, P. M., Sørensen, M. V., Edgcomb, V. P.,

Sharma, J., Sánchez, N., Homoky, W. B., Woulds, C.,

Leduc, D., Gooday, A. J., Pawlowski, J., Dolan, J. R.,

Schratzberger, M., Gollner, S., Schoenle, A., Arndt, H.

& Zeppilli, D. 2021. Ecological variables for deep-ocean

monitoring must include microbiota and meiofauna for

effective conservation. Nature Ecology & Evolution,

(1), 27–29. DOI: https://doi.org/10.1038/s41559-020-

-6

Johnson, C. J. 2013. Identifying ecological thresholds for

regulating human activity: Effective conservation or

wishful thinking? Biological Conservation, 168, 57–65.

DOI: https://doi.org/10.1016/j.biocon.2013.09.012

Kennedy, A. D. & Jacoby, C. A. 1999. Biological Indicators

of Marine Environmental Health: Meiofauna – A

Neglected Benthic Component? Environmental

Monitoring and Assessment, 54(1), 47–68. DOI: https://

doi.org/10.1023/a:1005854731889

King, L., Clarke, G., Bennion, H., Kelly, M. & Yallop, M. 2006.

Recommendations for sampling littoral diatoms in lakes

for ecological status assessments. Journal of Applied

Phycology, 18(1), 15–25. DOI: https://doi.org/10.1007/

s10811-005-9009-3

Korpinen, S. & Andersen, J. H. 2016. A Global Review

of Cumulative Pressure and Impact Assessments in

Marine Environments. Frontiers in Marine Science, 3.

DOI: https://doi.org/10.3389/fmars.2016.00153

Lambshead, P., Tietjen, J., Ferrero, T. & Jensen, P. 2000.

Latitudinal diversity gradients in the deep sea with

special reference to North Atlantic nematodes. Marine

Ecology Progress Series, 194, 159–167. DOI: https://

doi.org/10.3354/meps194159

Landers, S., Bassham, R., Miller, J., Ingels, J., Sánchez, N.

& Sørensen, M. 2020. Kinorhynch communities from

Alabama coastal waters. Marine Biology Research,

(6–7), 494–504.

Leslie, H. M. & McLeod, K. L. 2007. Confronting the

challenges of implementing marine ecosystem-based

management. Frontiers in Ecology and the Environment,

(10), 540–548. DOI: https://doi.org/10.1890/060093

L’Heureux, A., Grolinger, K., Elyamany, H. & Capretz, M.

Machine Learning With Big Data: Challenges and

Approaches. IEEE Access, 5, 7776–7797. DOI: https://

doi.org/10.1109/access.2017.2696365

Long, R. D., Charles, A. & Stephenson, R. L. 2015. Key

principles of marine ecosystem-based management.

Marine Policy, 57, 53–60. DOI: https://doi.org/10.1016/j.

marpol.2015.01.013

Mahiques, M. M., Figueira, R. C. L., Alves, D. P. V., Italiani,

D. M., Martins, C. C. & Dias, J. M. A. 2014. Coastline

changes and sedimentation related with the opening

of an artificial channel: the Valo Grande Delta, SE

Brazil. Anais Da Academia Brasileira de Ciências,

(4), 1597–1607. DOI: https://doi.org/10.1590/0001-

Mahiques, M. M. de, Silveira, I. C. A. da, Sousa, S. H. de M.

e & Rodrigues, M. 2002. Post-LGM sedimentation on the

outer shelf–upper slope of the northernmost part of the

São Paulo Bight, southeastern Brazil. Marine Geology,

(4), 387–400. DOI: https://doi.org/10.1016/s0025-

(01)00225-0

Mahiques, M. M. de, Sousa, S. H. de M. e, Furtado, V. V.,

Tessler, M. G., Toledo, F. A. de L., Burone, L.,

Figueira, R. C. L., Klein, D. A., Martins, C. C. & Alves,

D. P. V. 2010. The Southern Brazilian shelf: general

characteristics, quaternary evolution and sediment

distribution. Brazilian Journal of Oceanography,

(spe2), 25–34. DOI: https://doi.org/10.1590/s1679-

Mahiques, M. M. de, Tessler, M. G., Ciotti, A. M., Silveira,

I. C. A. da, Sousa, S. H. de M. e, Figueira, R. C. L.,

Tassinari, C. C. G., Furtado, V. V. & Passos, R. F.

Hydrodynamically driven patterns of recent

sedimentation in the shelf and upper slope off Southeast

Brazil. Continental Shelf Research, 24(15), 1685–1697.

DOI: https://doi.org/10.1016/j.csr.2004.05.013

Mahiques, M. M., Violante, R., Franco-Fraguas, P., Burone, L.,

Barbedo Rocha, C., Ortega, L., Felicio Dos Santos, R.,

Mi Kim, B. S., Lopes Figueira, R. C. & Caruso Bícego, M.

Control of oceanic circulation on sediment

distribution in the southwestern Atlantic margin (23 to

° S). Ocean Science, 17(5), 1213–1229. DOI: https://

doi.org/10.5194/os-17-1213-2021

Mare, M. F. 1942. A study of a marine benthic community

with special reference to the micro-organisms. Journal

of the Marine Biological Association of the United

Kingdom, 25(3), 517–554. DOI: https://doi.org/10.1017/

s0025315400055132

Mascart, T., Lepoint, G. & Troch, M. D. 2013. Meiofauna

and harpacticoid copepods in different habitats of

a Mediterranean seagrass meadow. Journal of the

Marine Biological Association of the United Kingdom,

(6), 1557–1566. DOI: https://doi.org/10.1017/

s0025315413000222

Miljutin, D. M., Miljutina, M. A., Arbizu, P. M. & Galéron, J.

Deep-sea nematode assemblage has not

recovered 26 years after experimental mining of

polymetallic nodules (Clarion-Clipperton Fracture Zone,

Tropical Eastern Pacific). Deep Sea Research Part I

Oceanographic Research Papers, 58(8), 885–897.

DOI: https://doi.org/10.1016/j.dsr.2011.06.003

Moens, T., Braeckman, U., Derycke, S., Fonseca, G.,

Gallucci, F., Gingold, R., Guilini, K., Ingels, J., Leduc, D.,

Vanaverbeke, J., Colen, C. V., Vanreusel, A. & Vincx, M.

Handbook of Zoology. In: Schmidt-Rhaesa, A. (ed.),

Nematoda (Vol. 2, pp. 109–152). Boston: De Gruyter.

DOI: https://doi.org/10.1515/9783110274257.109

Mohamed, H. S., Muthumbi, A., Githaiga, J. & Okondo, J.

Sediment macro- and meiobenthic fauna

distribution along the Kenyan continental shelf. Western

Predicting spatial patterns of marine meiofauna

Ocean and Coastal Research 2023, v71(suppl 3):e23037 20

Gallucci et al.

Indian Ocean Journal of Marine Science, 17(2),

–116. DOI: https://doi.org/10.4314/wiojms.v17i2.9

Möller, O. O., Piola, A. R., Freitas, A. C. & Campos, E. J. D.

The effects of river discharge and seasonal

winds on the shelf off southeastern South America.

Continental Shelf Research, 28(13), 1607–1624. DOI:

https://doi.org/10.1016/j.csr.2008.03.012

Montagna, P. A., Baguley, J. G., Cooksey, C., Hartwell, I.,

Hyde, L. J., Hyland, J. L., Kalke, R. D., Kracker, L. M.,

Reuscher, M. & Rhodes, A. C. E. 2013. Deep-Sea

Benthic Footprint of the Deepwater Horizon Blowout.

PLoS ONE, 8(8), e70540. DOI: https://doi.org/10.1371/

journal.pone.0070540

Moreira, A. C. T., D. L. ,. Marcon, E. H. ,. Toledo, R. G.

A. ,. Bonecker. 2023. Multidisciplinary Scientific Cruises

for Environmental Characterization in the Santos Basin.

Ocean and Coastal Research; 23022. DOI: https://doi.

org/10.1590/2675-2824071.22072dlm

Netto, S. A., Fonseca, G. & Gallucci, F. 2010. Effects of

drill cuttings discharge on meiofauna communities of a

shelf break site in the southwest Atlantic. Environmental

Monitoring and Assessment, 167(1–4), 49–63. DOI:

https://doi.org/10.1007/s10661-010-1515-3

Netto, S. A., Gallucci, F. & Fonseca, G. 2009. Deep-sea

meiofauna response to synthetic-based drilling mud

discharge off SE Brazil. Deep Sea Research Part II:

Topical Studies in Oceanography, 56(1–2), 41–49. DOI:

https://doi.org/10.1016/j.dsr2.2008.08.018

Netto, S. A., Gallucci, F. & Fonseca, G. F. C. 2005.

Meiofauna communities of continental slope and deepsea sites off SE Brazil. Deep Sea Research Part I:

Oceanographic Research Papers, 52(5), 845–859. DOI:

https://doi.org/10.1016/j.dsr.2004.11.009

Nichols, J. & Williams, B. 2006. Monitoring for conservation.

Trends in Ecology & Evolution, 21(12), 668–673.

DOI: https://doi.org/10.1016/j.tree.2006.08.007

Ostmann, A. & Martínez Arbizu, P. 2018. Predictive models

using randomForest regression for distribution patterns

of meiofauna in Icelandic waters. Marine Biodiversity,

(2), 719–735. DOI: https://doi.org/10.1007/s12526-

-0882-9

Patil, G. 1995. Editorial: Composite sampling. Environmental

and Ecological Statistics, 2(3), 169–179. DOI: https://

doi.org/10.1007/bf00456662

Perez, J. A. A., Abreu, J. G. N., Lima, A. O. de S., Silva,

M. A. C. da, Souza, L. H. P. de & Bernardino, A. F.

Brazilian Deep-Sea Biodiversity. Brazilian Marine

Biodiversity. In: Sumida, P. Y. G., Bernardino, A. F., &

De Léo, F. C. (eds.), Brazilian Marine Biodiversity (pp.

–253). Berlin: Springer International Publishing.

DOI: https://doi.org/10.1007/978-3-030-53222-2_8

Petrobras. 2013. Projeto de Caracterização Regional

da Bacia de Campos (PCR-BC/Habitats). Ambiente

bentônico. (Vol. 5). Rio de Janeiro: Petrobras.

Pinto, T. K., Rocha, E. M., Ferreira, R. C., Silva, M. C.

& Guilherme, B. C. 2018. Plataforma Continental

de Sergipe e Alagoas: Geoquímica e Comunidade

Bêntica. In: Carneiro, M. E. R. & Arguelho, M. L. P. M.

(eds.) Plataforma Continental de Sergipe e Alagoas:

Geoquímica e Comunidade Bêntica (pp. 250–276).

São Cristóvão: Editora UFS.

Piola, A. R., Campos, E. J. D., Möller, O. O., Charo, M. &

Martinez, C. 2000. Subtropical Shelf Front off eastern

South America. Journal of Geophysical Research:

Oceans, 105(C3), 6565–6578. DOI: https://doi.

org/10.1029/1999jc000300

Piola, A. R., Romero, S. I. & Zajaczkovski, U. 2008. Space–

time variability of the Plata plume inferred from ocean

color. Continental Shelf Research, 28(13), 1556-1567.

DOI: https://doi.org/10.1016/j.csr.2007.02.013

Pruski, A. M., Rzeznik-Orignac, J., Kerhervé, P., Vétion, G.,

Bourgeois, S., Péru, E., Brosset, P., Toussaint, F. &

Rabouille, C. 2021. Dynamic of organic matter and

meiofaunal community on a river-dominated shelf

(Rhône prodelta, NW Mediterranean Sea): Responses

to river regime. Estuarine, Coastal and Shelf

Science, 253, 107274. DOI: https://doi.org/10.1016/j.

ecss.2021.107274

R Core Team. 2021. R: A language and environment for

statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. http://www.R-project.org.

Reuscher, M. G., Baguley, J. G., Conrad-Forrest, N.,

Cooksey, C., Hyland, J. L., Lewis, C., Montagna, P. A.,

Ricker, R. W., Rohal, M. & Washburn, T. 2017. Temporal

patterns of Deepwater Horizon impacts on the benthic

infauna of the northern Gulf of Mexico continental

slope. PLOS ONE, 12(6), e0179923. DOI: https://doi.

org/10.1371/journal.pone.0179923

Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, C.

R., Johnson, N. A., Stuart, C. T., Deming, J. W., Thies,

R. & Avery, R. 2006. Global bathymetric patterns of

standing stock and body size in the deep-sea benthos.

Marine Ecology Progress Series, 317, 1–8. DOI: https://

doi.org/10.3354/meps317001

RICE, D. L. 1982. The detritus of nitrogen problem: new

observation and perspectives from organic geochemistry.

Marine Ecology Progress Series, 9, 153-162.

Ridall, A. & Ingels, J. 2021. Suitability of Free-Living

Marine Nematodes as Bioindicators: Status and Future

Considerations. Frontiers in Marine Science, 8, 685327.

DOI: https://doi.org/10.3389/fmars.2021.685327

Rohal, M., Barrera, N., Escobar-Briones, E., Brooks, G.,

Hollander, D., Larson, R., Montagna, P. A., Pryor, M.,

Romero, I. C. & Schwing, P. 2020. How quickly will the

offshore ecosystem recover from the 2010 Deepwater

Horizon oil spill? Lessons learned from the 1979 Ixtoc-1

oil well blowout. Ecological Indicators, 117, 106593.

DOI: https://doi.org/10.1016/j.ecolind.2020.106593

Santos, G. A. P., Neres, P. F., Vazquez, Y. V. & Esteves,

A. M. 2016. Associações de Nematoda no talude

continental (techreport). Petrobras/Cenpes.

Santos, G. A. P., Silva, A. C., Esteves, A. M., RibeiroFerreira, V. P., Neres, P. F., Valdes, Y. & Ingels, J.

Testing Bathymetric and Regional Patterns in the

Southwest Atlantic Deep Sea Using Infaunal Diversity,

Structure, and Function. Diversity, 12(12), 485. DOI:

https://doi.org/10.3390/d12120485

Schmidt, C. & Martínez Arbizu, P. 2015. Unexpectedly

higher metazoan meiofauna abundances in the Kuril–

Kamchatka Trench compared to the adjacent abyssal

plains. Deep Sea Research Part II: Topical Studies

in Oceanography, 111, 60–75. DOI: https://doi.

org/10.1016/j.dsr2.2014.08.019

Predicting spatial patterns of marine meiofauna

Ocean and Coastal Research 2023, v71(suppl 3):e23037 21

Gallucci et al.

Schratzberger, M. & Jennings, S. 2002. Impacts of chronic

trawling disturbance on meiofaunal communities.

Marine Biology, 141(5), 991–1000. DOI: https://doi.

org/10.1007/s00227-002-0895-5

Silveira, I. C. A. da, Napolitano, D. C. & Farias, I. U. 2020.

Brazilian Deep-Sea Biodiversity. Brazilian Marine

Biodiversity. In: Sumida, P. Y. G., Bernardino, A. F.,

& De Léo, F. C. (eds.), Brazilian Marine Biodiversity

(pp. 7–36). Berlin: Springer International Publishing.

DOI: https://doi.org/10.1007/978-3-030-53222-2_2

Silveira, I. C. A., Lazaneo, C. Z., Amorim, J. P. M., Silva,

M. B., Bernardo, P. S., Martins, R. C., Santos, D. M.

C., Dottori, M., Belo, W. C., Martins, R. P. & Moreira,

D. L. 2023. Oceanographic conditions of the continental

slope and deep waters in Santos Basin: the SANSED

cruise (winter 2019). Ocean and Coastal Research.

Soltwedel, T. 2000. Metazoan meiobenthos along continental

margins: a review. Progress in Oceanography, 46(1),

–84. DOI: https://doi.org/10.1016/s0079-6611(00)

-6

Somerfield, P. J. & Warwick, R. M. 2013. Meiofauna

Techniques. In: Eleftheriou, A. (ed.), Methods for

the Study of Marine Benthos (4th ed., pp. 253--284).

Hoboken: John Wiley & Sons, Ltd.

Souza, R. B. de & Robinson, I. S. 2004. Lagrangian and

satellite observations of the Brazilian Coastal Current.

Continental Shelf Research, 24(2), 241–262. DOI:

https://doi.org/10.1016/j.csr.2003.10.001

SUESS, E. 1980. Particulate organic fluxes in the oceans —

surface productivity and oxygen utilization. Nature, 288,

–263.

Sumida, P. Y. G., Pellizari, V. H., Lourenço, R. A., Signorini,

C. N., Bendia, A. G., Carrerette, O., Nakamura, F. M.,

Ramos, R. B., Bergamo, G., Souza, B. H. M., Butarelli,

A. C. A., Passos, J. G., Dias, R. J. S., Maly, M.,

Banha, T. N. S., Güth, A. Z., Soares, L. F., Perugino,

P. D. N., Santos, F. R., Santana, F. R. & Mahiques, M.

M. de. 2022. Sedimentation in the adjacencies of a

southwestern Atlantic giant carbonate ridge. Ocean and

Coastal Research, 70(suppl 2), e22031. DOI: https://

doi.org/10.1590/2675-2824070.22077pygs

Sumida, P. Y. G., Yoshinaga, M. Y., Ciotti, A. M. & Gaeta,

S. A. 2005. Benthic response to upwelling events

off the SE Brazilian coast. Marine Ecology Progress

Series, 291, 35–42. DOI: https://doi.org/10.3354/

meps291035

Troch, M. D., Steinarsdóttir, M. B., Chepurnov, V. &

Ólafsson, E. 2005. Grazing on diatoms by harpacticoid

copepods: species-specific density-dependent uptake

and microbial gardening. Aquatic Microbial Ecology, 39,

–144. DOI: https://doi.org/10.3354/ame039135

Tura, P. & Brandini, F. 2020. Nutrients and particulate

organic matter dynamics in the outer-shelf of the South

Brazil Bight: Two distinct scenarios during summer

Regional Studies in Marine Science, 37, 101345.

DOI: https://doi.org/10.1016/j.rsma.2020.101345

Urban-Malinga, B. 2014. Meiobenthos in marine coastal

sediments. Geological Society of London, 388(1),

–78. DOI: https://doi.org/10.1144/sp388.9

Veit-Köhler, G., Durst, S., Schuckenbrock, J., Hauquier, F.,

Suja, L. D., Dorschel, B., Vanreusel, A. & Arbizu, P. M.

Oceanographic and topographic conditions

structure benthic meiofauna communities in the Weddell

Sea, Bransfield Strait and Drake Passage (Antarctic).

Progress in Oceanography, 162, 240–256. DOI: https://

doi.org/10.1016/j.pocean.2018.03.005

Venekey, V., Braga, C. F., Lira, V. F., Lisboa, V. B., Barros,

D. F. & Silva, R. F. 2016. Nematofauna da plataforma

continental da Bacia do Espírito Santo. (techreport). Rio

de Janeiro: Petrobras/Cenpes.

Vieira, D. C., & Fonseca, G. 2013. The importance of

vertical and horizontal dimensions of the sediment

matrix in structuring nematodes across spatial scales.

PLoS One, 8(10), e77704.

Vieira, D. C. & Fonseca, G. 2022. iMESc: An Interactive

Machine Learning App for Environmental Science.

Zenodo. DOI: https://doi.org/10.5281/ZENODO.6484391

Villora-Moreno, S., Capaccioni-Azzati, R. & GarciaCarrascosa, A. M. 1991. Meiobenthos of Sandy Beaches

from the Gulf of Valencia (Western Mediterranean):

Ecology of Interstitial Polychaetes. Bulletin of Marine

Science, 48(2), 376–385.

Washburn, T., Rhodes, A. C. E. & Montagna, P. A. 2016.

Benthic taxa as potential indicators of a deep-sea oil

spill. Ecological Indicators, 71, 587–597. DOI: https://

doi.org/10.1016/j.ecolind.2016.07.045

Yaginuma, L. E. 2010. Os Nematoda da plataforma

continental ao largo do sistema estuarino de Santos

(mathesis). Universidade de Sao Paulo, Agencia

USP de Gestao da Informacao Academica (AGUIA),

São Paulo. https://doi.org/10.11606/d.21.2011.tde27072011-153347

Downloads

Published

10.04.2024

How to Cite

Predicting large-scale spatial patterns of marine meiofauna: implications for environmental monitoring. (2024). Ocean and Coastal Research, 71(Suppl. 3). https://doi.org/10.1590/