Predicting large-scale spatial patterns of marine meiofauna: implications for environmental monitoring
DOI:
https://doi.org/10.1590/Keywords:
Meiobenthos, Ecology, Random Forest, Santos Basin, Environmental MonitoringAbstract
This study aims model the distribution of meiofauna indicators in relation to environmental variables from the
Santos Basin continental margin, SE Brazil, using machine learning techniques, to provide baseline information
and foster future monitoring programs. A total of 100 sampling stations were distributed in eight transects and 11
isobaths (25 to 2,400 m) perpendicular to the coast. In each station, three replicates were sampled for meiofauna
and 38 environmental parameters. A total of 28 meiofauna taxa were found, with a mean richness varying
from 3 to 15 taxa per station. Meiofauna mean density varied between 55 and 2,001 ind. 10 cm-2. Density of
meiofauna and its most frequent taxa (Nematoda, Copepoda, Kinorhyncha, and Polychaeta), and taxa richness
were used as descriptors for the models. Meiofauna and nematode density showed the highest training and
testing accuracies, with R² values above 0.74. Based on the distribution of meiofauna descriptors and their
responses to environmental conditions, we suggest a mosaic of six benthic zones. The La Plata Plume zone
and the Cabo Frio Upwelling zone are two of the most diverse and productive zones in the continental shelf, wich
are separated by the less productive Central Continental Shelf zone. A fourth zone, with very low meiofauna
densities, corresponds to the carbonated sediments of the shelf-break. The Upper and Mid-Slope is a narrow
zone along the entire basin, with intermediate densities and small amounts of high-quality organic carbon. The
largest, impoverished zone, the Lower Slope and Plateau comprises the deepest areas and the São Paulo
Plateau. The study showed that, although some zones can be recognized by most meiofauna descriptors, others
are better characterized by specific ones, implying that meiofauna indicators should be monitored concomitantly.
We recommend the optimization of sampling design based on our model to reduce costs and increase our
understanding of the system.
References
ANP. 2021. Anuário estatístico brasileiro do petróleo, gás
natural e biocombustíveis: 2021. Rio de Janeiro: Agência
Nacional do Petróleo, Gás Natural e Biocombustíveis.
Arasaki, E., Muniz, P. & Pires-Vanin, A. M. S. 2004. A
Functional Analysis of the Benthic Macrofauna of the
Sao Sebastiao Channel (Southeastern Brazil). Marine
Ecology, 25(4), 249–263. DOI: https://doi.org/10.1111/
j.1439-0485.2004.00032.x
Aspila, K. I., Argemian, H. & Chau, A. S. Y. 1976. A semiautomated method for the determination of inorganic,
organic and total phosphorus in sediments. Analyst,
, 187-197.
Argeiro, M. C. C. 2009. Os Nematoda da plataforma
continental da região sudeste brasileira sob a influência
da Água Central do Atlântico Sul: Cabo Frio (RJ) e
Ubatuba (SP) (mathesis). Universidade de Sao Paulo,
Agencia USP de Gestao da Informacao Academica
(AGUIA), São Paulo. https://doi.org/10.11606/d.21.2009.
tde-05082011-105858
Azovsky, A. I. 2009. Structural complexity of species
assemblages and spatial scale of community
organization: A case study of marine benthos.
Ecological Complexity, 6(3), 308–315. DOI: https://doi.
org/10.1016/j.ecocom.2008.12.001
Bradford, M. M. 1976. A rapid method of total lipid extraction
and purification. Canadian Journal of Biochemistry and
Physiology, 72, 248-254.
Brandini, F., Tura, P. & Santos, P. 2018. Ecosystem
responses to biogeochemical fronts in the South Brazil
Bight. Progress in Oceanography, 164, 52–62. DOI:
https://doi.org/10.1016/j.pocean.2018.04.012
Breiman, L. 2001. Random forests. Machine Learning, 45(1),
–32. DOI: https://doi.org/10.1023/A:1010933404324
Campanyà-Llovet, N., Snelgrove, P. V. R. & Parrish, C. C.
Rethinking the importance of food quality in marine
benthic food webs. Progress in Oceanography, 156,
–251. DOI: https://doi.org/10.1016/j.pocean.2017.07.006
Carreira, R. da S., Canuel, E. A., Macko, S. A., Lopes, M. B.,
Luz, L. G. & Jasmim, L. N. 2012. On the accumulation
of organic matter on the southeastern Brazilian
continental shelf: a case study based on a sediment
core from the shelf off Rio de Janeiro. Brazilian Journal
of Oceanography, 60(1), 75–87.
Carreira, R. S., Lazzari, L., Ceccopieri, M., Rozo, L.,
Martins, D., Fonseca, G., Vieira, D. C. & Massone,
C. G. 2023. Sedimentary provinces of organic matter
accumulation in the Santos Basin, SW Atlantic: insights
from multiple bulk proxies and machine learning
analysis. Ocean and Coastal Research; 23030. DOI:
https://doi.org/10.1590/2675-2824071.22061rsc
Castro, B. M., Lorenzetti, J. A., Silveira, I. C. A. & Miranda, L. B.
Estrutura termohalina e circulação na região
entre o Cabo de São Tomé (RJ) e o Chuí (RS). In:
Madureira, C. L. D. B. R.-W. e L. S.-P. (ed.) O Ambiente
Oceanográfico da Plataforma Continental e do Talude
na Região Sudeste-Sul do Brasil (pp. 209–251). São
Paulo: Edusp.
Castro Filho, B. M. de, Miranda, L. B. de & Miyao, S. Y. 1987.
Condições hidrográficas na plataforma continental
ao largo de Ubatuba: variações sazonais e em
média escala. Boletim Do Instituto Oceanográfico,
(2), 135–151. DOI: https://doi.org/10.1590/s0373-
Cho, Y., Shim, W., Jang, M., Han, G. & Hong, S. 2021.
Nationwide monitoring of microplastics in bivalves
from the coastal environment of Korea. Environmental
Pollution, 270, 116175. DOI: https://doi.org/10.1016/j.
envpol.2020.116175
Ciotti, Á. M., Mahiques, M. de & Möller, O. O. 2014. The
meridional gradients of the S-SE Brazilian continental
shelf: Introduction to the special volume. Continental
Shelf Research, 89, 1–4. DOI: https://doi.org/10.1016/j.
csr.2014.08.008
Coelho-Souza, S. A., López, M. S., Guimarães, J. R. D.,
Coutinho, R. & Candella, R. N. 2012. Biophysical
interactions in the Cabo Frio upwelling system,
southeastern Brazil. Brazilian Journal Od Oceanography,
(3), 353–365.
Predicting spatial patterns of marine meiofauna
Ocean and Coastal Research 2023, v71(suppl 3):e23037 18
Gallucci et al.
COLBIO-IOUSP. 2022. Coleção Biológica Prof. Edmundo
F. Nonato.
Corbisier, T. N., Petti, M. A. V., Soares, L. S. H., Muto, E. Y.,
Bromberg, S. & Valiela, I. 2014. Trophic structure of
benthic communities in the Cabo Frio upwelling system
(southeastern Brazilian shelf): a temporal study using
stable isotope analysis. Marine Ecology Progress
Series, 512, 23–38. DOI: https://doi.org/10.3354/
meps10947
Dale, V. & Beyeler, S. 2001. Challenges in the development
and use of ecological indicators. Ecological Indicators,
(1), 3–10. DOI: https://doi.org/10.1016/s1470-160x(01)
-6
Danovaro, R., Dell’anno, A. & Pusceddu, A. 2004.
Biodiversity response to climate change in a warm deep
sea. Ecology Letters, 7(9), 821–828. DOI: https://doi.
org/10.1111/j.1461-0248.2004.00634.x
Danovaro, R., Dinet, A., Duineveld, G. & Tselepides, A.
Benthic response to particulate fluxes in different
trophic environments: a comparison between the Gulf
of Lions–Catalan Sea (western-Mediterranean) and
the Cretan Sea (eastern-Mediterranean). Progress in
Oceanography, 44(1–3), 287–312. DOI: https://doi.
org/10.1016/s0079-6611(99)00030-0
Danovaro, R., Gambi, C., Lampadariou, N. & Tselepides,
A. 2008. Deep-sea nematode biodiversity in the
Mediterranean basin: testing for longitudinal, bathymetric
and energetic gradients. Ecography, 31(2), 231–244.
DOI: https://doi.org/10.1111/j.0906-7590.2008.5484.x
De Léo, F., Bernardino, A. & Sumida, P. 2020. Continental
Slope and Submarine Canyons: Benthic Biodiversity
and Human Impacts. In: De Léo, F., Bernardino, A.,
& Sumida, P. (eds.) Brazilian Deep-Sea Biodiversity
(pp. 37–72). Berlim: Springer. DOI: https://doi.
org/10.1007/978-3-030-53222-2_3
De Léo, F. C. & Pires-Vanin, A. M. S. 2006. Benthic
megafauna communities under the influence of the
South Atlantic Central Water intrusion onto the Brazilian
SE shelf: A comparison between an upwelling and a
non-upwelling ecosystem. Journal of Marine Systems,
(3–4), 268–284. DOI: https://doi.org/10.1016/j.
jmarsys.2006.02.002
Dominguez, J. M. L., Silva, R. P. da, Nunes, A. S. & Freire,
A. F. M. 2013. The narrow, shallow, low-accommodation
shelf of central Brazil: Sedimentology, evolution, and
human uses. Geomorphology, 203, 46–59. DOI: https://
doi.org/10.1016/j.geomorph.2013.07.004
Dottori, D. K., M, Sasaki, Silva, D. A., Giovannino, S. R.,
Pinto, A. P., Gnamah, M., Santos, A. D., Silveira, I. C. A.,
Belo, W. C., Martins, R. P. & Moreira, D. L. 2023.
Hydrographic structure of the continental shelf in Santos
Basin and its causes: The SANAGU and SANSED
campaigns (2019). Ocean and Coastal Research.
Ellis, J. I., Fraser, G. & Russell, J. 2012. Discharged drilling
waste from oil and gas platforms and its effects on
benthic communities. Marine Ecology Progress Series,
, 285–302. DOI: https://doi.org/10.3354/meps09622
Faith, D. P., Reid, C. A. M. & Hunter, J. 2004. Integrating
Phylogenetic Diversity, Complementarity, and Endemism
for Conservation Assessment. Conservation Biology,
(1), 255–261. DOI: https://doi.org/10.1111/j.1523-
2004.00330.x
Fidler, F., Burgman, M. A., Cumming, G., Buttrose, R.
& Thomason, N. 2006. Impact of Criticism of NullHypothesis Significance Testing on Statistical Reporting
Practices in Conservation Biology. Conservation Biology,
(5), 1539–1544. DOI: https://doi.org/10.1111/j.1523-
2006.00525.x
Figueiredo, R. A. G., Carneiro, J. C., Santos Filho, J. R.,
Cecilio, A. B., Rocha, G. J., Santos, S. T. V., Oliveira,
A. S., Ferreira, F. & Luz, M. R. 2023. Sedimentary
processes as a set-up conditions for living benthic
communities in Santos Basin, Brazil. Ocean and Coastal
Research; 23030. DOI: https://doi.org/10.1590/2675-
22061rsc
Fonseca, G., Soltwedel, T., Vanreusel, A. & Lindegarth, M.
Variation in nematode assemblages over multiple
spatial scales and environmental conditions in Arctic deep
seas. Progress in Oceanography, 84(3–4), 174–184.
DOI: https://doi.org/10.1016/j.pocean.2009.11.001
Fonseca, G. & Vieira, D. 2023. Overcoming the challenges
of data integration in ecosystem studies with machine
learning pipelines: an example from the PCRBS.
Ocean and Coastal Research; 23021. DOI: https://doi.
org/10.1590/2675-2824071.22044dcv
Fonseca, G. & Vieira, D. 2023. Overcoming the challenges
of data integration in ecosystem studies with machine
learning workflows: an example from the Santos project.
Ocean and Coastal Research. 71(3). DOI: https://doi.
org/10.1590/2675-2824071.22044gf
Fonsêca-Genevois, V., Silva, M. C., Lira, V. F., Neres, P. F.,
Lima, R. C. C. & Esteves, A. M. 2017. Ambiente
Bentônico: caracterização ambiental regional da Bacia
de Campos, Atlântico Sudoeste. In: Falcão, A. P. C.
& Lavrado, H. P. (eds.) (Vol. 3, pp. 183–226). Rio de
Janeiro: Elsevier Habitats.
Gallucci, F., Moens, T., Vanreusel, A. & Fonseca, G. 2008.
Active colonization of disturbed sediments by deepsea nematodes: evidence for the patch mosaic model.
Marine Ecology Progress Series, 367, 173-183.
Gambi, C. & Danovaro, R. 2006. A multiple-scale
analysis of metazoan meiofaunal distribution in the
deep Mediterranean Sea. Deep Sea Research Part I:
Oceanographic Research Papers, 53(7), 1117–1134.
DOI: https://doi.org/10.1016/j.dsr.2006.05.003
Giere, O. 2009. Meiobenthology - The Microscopic Motile
Fauna of Aquatic Sediments. Berlin: Springer-Verlag.
DOI: https://doi.org/10.1007/978-3-540-68661-3
Griffiths, B., Römbke, J., Schmelz, R., Schfffczyk, A., Faber, J.,
Bloem, J., Pérès, G., Cluzeau, D., Chabbi, A., Suhadolc,
M., Sousa, J., Martins Da Silva, P., Carvalho, F., Mendes,
S., Morais, P., Francisco, R., Pereira, C., Bonkowski, M.,
Geisen, S., Bardgett, R., De Vries, F., Bolger, T., Dirilgen,
T., Schmidt, O., Winding, A., Hendriksen, N., Johansen,
A., Philippot, L., Plassart, P., Bru, D., Thomson, B.,
Griffiths, R., Bailey, M., Keith, A., Rutgers, M., Mulder, C.,
Hannula, S., Creamer, R. & Stone, D. 2016. Selecting
cost effective and policy-relevant biological indicators for
European monitoring of soil biodiversity and ecosystem
function. Ecological Indicators, 69, 213–223. DOI: https://
doi.org/10.1016/j.ecolind.2016.04.023
Guerrero, R. A., Acha, E. M., Framintexttildelowan, M. B. &
Lasta, C. A. 1997. Physical oceanography of the Río de
la Plata Estuary, Argentina. Continental Shelf Research,
Predicting spatial patterns of marine meiofauna
Ocean and Coastal Research 2023, v71(suppl 3):e23037 19
Gallucci et al.
(7), 727–742. DOI: https://doi.org/10.1016/s0278-
(96)00061-1
HARTREE, E. F. 1972. Determination of protein: a
modification of the Lowry method that gives a linear
photometric response. Analytical Biochemistry, 48, 422-427.
Iacono, M., Romano, E. & Marrone, S. 2010. Adaptive
monitoring of marine disasters with intelligent
mobile sensor networks. In: 2010 IEEE Workshop
on Environmental Energy and Structural Monitoring
Systems (pp. 38–45). Taranto: IEEE. DOI: https://doi.
org/10.1109/eesms.2010.5634179
Ingels, J., Vanreusel, A., Pape, E., Pasotti, F., Macheriotou,
L., Arbizu, P. M., Sørensen, M. V., Edgcomb, V. P.,
Sharma, J., Sánchez, N., Homoky, W. B., Woulds, C.,
Leduc, D., Gooday, A. J., Pawlowski, J., Dolan, J. R.,
Schratzberger, M., Gollner, S., Schoenle, A., Arndt, H.
& Zeppilli, D. 2021. Ecological variables for deep-ocean
monitoring must include microbiota and meiofauna for
effective conservation. Nature Ecology & Evolution,
(1), 27–29. DOI: https://doi.org/10.1038/s41559-020-
-6
Johnson, C. J. 2013. Identifying ecological thresholds for
regulating human activity: Effective conservation or
wishful thinking? Biological Conservation, 168, 57–65.
DOI: https://doi.org/10.1016/j.biocon.2013.09.012
Kennedy, A. D. & Jacoby, C. A. 1999. Biological Indicators
of Marine Environmental Health: Meiofauna – A
Neglected Benthic Component? Environmental
Monitoring and Assessment, 54(1), 47–68. DOI: https://
doi.org/10.1023/a:1005854731889
King, L., Clarke, G., Bennion, H., Kelly, M. & Yallop, M. 2006.
Recommendations for sampling littoral diatoms in lakes
for ecological status assessments. Journal of Applied
Phycology, 18(1), 15–25. DOI: https://doi.org/10.1007/
s10811-005-9009-3
Korpinen, S. & Andersen, J. H. 2016. A Global Review
of Cumulative Pressure and Impact Assessments in
Marine Environments. Frontiers in Marine Science, 3.
DOI: https://doi.org/10.3389/fmars.2016.00153
Lambshead, P., Tietjen, J., Ferrero, T. & Jensen, P. 2000.
Latitudinal diversity gradients in the deep sea with
special reference to North Atlantic nematodes. Marine
Ecology Progress Series, 194, 159–167. DOI: https://
doi.org/10.3354/meps194159
Landers, S., Bassham, R., Miller, J., Ingels, J., Sánchez, N.
& Sørensen, M. 2020. Kinorhynch communities from
Alabama coastal waters. Marine Biology Research,
(6–7), 494–504.
Leslie, H. M. & McLeod, K. L. 2007. Confronting the
challenges of implementing marine ecosystem-based
management. Frontiers in Ecology and the Environment,
(10), 540–548. DOI: https://doi.org/10.1890/060093
L’Heureux, A., Grolinger, K., Elyamany, H. & Capretz, M.
Machine Learning With Big Data: Challenges and
Approaches. IEEE Access, 5, 7776–7797. DOI: https://
doi.org/10.1109/access.2017.2696365
Long, R. D., Charles, A. & Stephenson, R. L. 2015. Key
principles of marine ecosystem-based management.
Marine Policy, 57, 53–60. DOI: https://doi.org/10.1016/j.
marpol.2015.01.013
Mahiques, M. M., Figueira, R. C. L., Alves, D. P. V., Italiani,
D. M., Martins, C. C. & Dias, J. M. A. 2014. Coastline
changes and sedimentation related with the opening
of an artificial channel: the Valo Grande Delta, SE
Brazil. Anais Da Academia Brasileira de Ciências,
(4), 1597–1607. DOI: https://doi.org/10.1590/0001-
Mahiques, M. M. de, Silveira, I. C. A. da, Sousa, S. H. de M.
e & Rodrigues, M. 2002. Post-LGM sedimentation on the
outer shelf–upper slope of the northernmost part of the
São Paulo Bight, southeastern Brazil. Marine Geology,
(4), 387–400. DOI: https://doi.org/10.1016/s0025-
(01)00225-0
Mahiques, M. M. de, Sousa, S. H. de M. e, Furtado, V. V.,
Tessler, M. G., Toledo, F. A. de L., Burone, L.,
Figueira, R. C. L., Klein, D. A., Martins, C. C. & Alves,
D. P. V. 2010. The Southern Brazilian shelf: general
characteristics, quaternary evolution and sediment
distribution. Brazilian Journal of Oceanography,
(spe2), 25–34. DOI: https://doi.org/10.1590/s1679-
Mahiques, M. M. de, Tessler, M. G., Ciotti, A. M., Silveira,
I. C. A. da, Sousa, S. H. de M. e, Figueira, R. C. L.,
Tassinari, C. C. G., Furtado, V. V. & Passos, R. F.
Hydrodynamically driven patterns of recent
sedimentation in the shelf and upper slope off Southeast
Brazil. Continental Shelf Research, 24(15), 1685–1697.
DOI: https://doi.org/10.1016/j.csr.2004.05.013
Mahiques, M. M., Violante, R., Franco-Fraguas, P., Burone, L.,
Barbedo Rocha, C., Ortega, L., Felicio Dos Santos, R.,
Mi Kim, B. S., Lopes Figueira, R. C. & Caruso Bícego, M.
Control of oceanic circulation on sediment
distribution in the southwestern Atlantic margin (23 to
° S). Ocean Science, 17(5), 1213–1229. DOI: https://
doi.org/10.5194/os-17-1213-2021
Mare, M. F. 1942. A study of a marine benthic community
with special reference to the micro-organisms. Journal
of the Marine Biological Association of the United
Kingdom, 25(3), 517–554. DOI: https://doi.org/10.1017/
s0025315400055132
Mascart, T., Lepoint, G. & Troch, M. D. 2013. Meiofauna
and harpacticoid copepods in different habitats of
a Mediterranean seagrass meadow. Journal of the
Marine Biological Association of the United Kingdom,
(6), 1557–1566. DOI: https://doi.org/10.1017/
s0025315413000222
Miljutin, D. M., Miljutina, M. A., Arbizu, P. M. & Galéron, J.
Deep-sea nematode assemblage has not
recovered 26 years after experimental mining of
polymetallic nodules (Clarion-Clipperton Fracture Zone,
Tropical Eastern Pacific). Deep Sea Research Part I
Oceanographic Research Papers, 58(8), 885–897.
DOI: https://doi.org/10.1016/j.dsr.2011.06.003
Moens, T., Braeckman, U., Derycke, S., Fonseca, G.,
Gallucci, F., Gingold, R., Guilini, K., Ingels, J., Leduc, D.,
Vanaverbeke, J., Colen, C. V., Vanreusel, A. & Vincx, M.
Handbook of Zoology. In: Schmidt-Rhaesa, A. (ed.),
Nematoda (Vol. 2, pp. 109–152). Boston: De Gruyter.
DOI: https://doi.org/10.1515/9783110274257.109
Mohamed, H. S., Muthumbi, A., Githaiga, J. & Okondo, J.
Sediment macro- and meiobenthic fauna
distribution along the Kenyan continental shelf. Western
Predicting spatial patterns of marine meiofauna
Ocean and Coastal Research 2023, v71(suppl 3):e23037 20
Gallucci et al.
Indian Ocean Journal of Marine Science, 17(2),
–116. DOI: https://doi.org/10.4314/wiojms.v17i2.9
Möller, O. O., Piola, A. R., Freitas, A. C. & Campos, E. J. D.
The effects of river discharge and seasonal
winds on the shelf off southeastern South America.
Continental Shelf Research, 28(13), 1607–1624. DOI:
https://doi.org/10.1016/j.csr.2008.03.012
Montagna, P. A., Baguley, J. G., Cooksey, C., Hartwell, I.,
Hyde, L. J., Hyland, J. L., Kalke, R. D., Kracker, L. M.,
Reuscher, M. & Rhodes, A. C. E. 2013. Deep-Sea
Benthic Footprint of the Deepwater Horizon Blowout.
PLoS ONE, 8(8), e70540. DOI: https://doi.org/10.1371/
journal.pone.0070540
Moreira, A. C. T., D. L. ,. Marcon, E. H. ,. Toledo, R. G.
A. ,. Bonecker. 2023. Multidisciplinary Scientific Cruises
for Environmental Characterization in the Santos Basin.
Ocean and Coastal Research; 23022. DOI: https://doi.
org/10.1590/2675-2824071.22072dlm
Netto, S. A., Fonseca, G. & Gallucci, F. 2010. Effects of
drill cuttings discharge on meiofauna communities of a
shelf break site in the southwest Atlantic. Environmental
Monitoring and Assessment, 167(1–4), 49–63. DOI:
https://doi.org/10.1007/s10661-010-1515-3
Netto, S. A., Gallucci, F. & Fonseca, G. 2009. Deep-sea
meiofauna response to synthetic-based drilling mud
discharge off SE Brazil. Deep Sea Research Part II:
Topical Studies in Oceanography, 56(1–2), 41–49. DOI:
https://doi.org/10.1016/j.dsr2.2008.08.018
Netto, S. A., Gallucci, F. & Fonseca, G. F. C. 2005.
Meiofauna communities of continental slope and deepsea sites off SE Brazil. Deep Sea Research Part I:
Oceanographic Research Papers, 52(5), 845–859. DOI:
https://doi.org/10.1016/j.dsr.2004.11.009
Nichols, J. & Williams, B. 2006. Monitoring for conservation.
Trends in Ecology & Evolution, 21(12), 668–673.
DOI: https://doi.org/10.1016/j.tree.2006.08.007
Ostmann, A. & Martínez Arbizu, P. 2018. Predictive models
using randomForest regression for distribution patterns
of meiofauna in Icelandic waters. Marine Biodiversity,
(2), 719–735. DOI: https://doi.org/10.1007/s12526-
-0882-9
Patil, G. 1995. Editorial: Composite sampling. Environmental
and Ecological Statistics, 2(3), 169–179. DOI: https://
doi.org/10.1007/bf00456662
Perez, J. A. A., Abreu, J. G. N., Lima, A. O. de S., Silva,
M. A. C. da, Souza, L. H. P. de & Bernardino, A. F.
Brazilian Deep-Sea Biodiversity. Brazilian Marine
Biodiversity. In: Sumida, P. Y. G., Bernardino, A. F., &
De Léo, F. C. (eds.), Brazilian Marine Biodiversity (pp.
–253). Berlin: Springer International Publishing.
DOI: https://doi.org/10.1007/978-3-030-53222-2_8
Petrobras. 2013. Projeto de Caracterização Regional
da Bacia de Campos (PCR-BC/Habitats). Ambiente
bentônico. (Vol. 5). Rio de Janeiro: Petrobras.
Pinto, T. K., Rocha, E. M., Ferreira, R. C., Silva, M. C.
& Guilherme, B. C. 2018. Plataforma Continental
de Sergipe e Alagoas: Geoquímica e Comunidade
Bêntica. In: Carneiro, M. E. R. & Arguelho, M. L. P. M.
(eds.) Plataforma Continental de Sergipe e Alagoas:
Geoquímica e Comunidade Bêntica (pp. 250–276).
São Cristóvão: Editora UFS.
Piola, A. R., Campos, E. J. D., Möller, O. O., Charo, M. &
Martinez, C. 2000. Subtropical Shelf Front off eastern
South America. Journal of Geophysical Research:
Oceans, 105(C3), 6565–6578. DOI: https://doi.
org/10.1029/1999jc000300
Piola, A. R., Romero, S. I. & Zajaczkovski, U. 2008. Space–
time variability of the Plata plume inferred from ocean
color. Continental Shelf Research, 28(13), 1556-1567.
DOI: https://doi.org/10.1016/j.csr.2007.02.013
Pruski, A. M., Rzeznik-Orignac, J., Kerhervé, P., Vétion, G.,
Bourgeois, S., Péru, E., Brosset, P., Toussaint, F. &
Rabouille, C. 2021. Dynamic of organic matter and
meiofaunal community on a river-dominated shelf
(Rhône prodelta, NW Mediterranean Sea): Responses
to river regime. Estuarine, Coastal and Shelf
Science, 253, 107274. DOI: https://doi.org/10.1016/j.
ecss.2021.107274
R Core Team. 2021. R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. http://www.R-project.org.
Reuscher, M. G., Baguley, J. G., Conrad-Forrest, N.,
Cooksey, C., Hyland, J. L., Lewis, C., Montagna, P. A.,
Ricker, R. W., Rohal, M. & Washburn, T. 2017. Temporal
patterns of Deepwater Horizon impacts on the benthic
infauna of the northern Gulf of Mexico continental
slope. PLOS ONE, 12(6), e0179923. DOI: https://doi.
org/10.1371/journal.pone.0179923
Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, C.
R., Johnson, N. A., Stuart, C. T., Deming, J. W., Thies,
R. & Avery, R. 2006. Global bathymetric patterns of
standing stock and body size in the deep-sea benthos.
Marine Ecology Progress Series, 317, 1–8. DOI: https://
doi.org/10.3354/meps317001
RICE, D. L. 1982. The detritus of nitrogen problem: new
observation and perspectives from organic geochemistry.
Marine Ecology Progress Series, 9, 153-162.
Ridall, A. & Ingels, J. 2021. Suitability of Free-Living
Marine Nematodes as Bioindicators: Status and Future
Considerations. Frontiers in Marine Science, 8, 685327.
DOI: https://doi.org/10.3389/fmars.2021.685327
Rohal, M., Barrera, N., Escobar-Briones, E., Brooks, G.,
Hollander, D., Larson, R., Montagna, P. A., Pryor, M.,
Romero, I. C. & Schwing, P. 2020. How quickly will the
offshore ecosystem recover from the 2010 Deepwater
Horizon oil spill? Lessons learned from the 1979 Ixtoc-1
oil well blowout. Ecological Indicators, 117, 106593.
DOI: https://doi.org/10.1016/j.ecolind.2020.106593
Santos, G. A. P., Neres, P. F., Vazquez, Y. V. & Esteves,
A. M. 2016. Associações de Nematoda no talude
continental (techreport). Petrobras/Cenpes.
Santos, G. A. P., Silva, A. C., Esteves, A. M., RibeiroFerreira, V. P., Neres, P. F., Valdes, Y. & Ingels, J.
Testing Bathymetric and Regional Patterns in the
Southwest Atlantic Deep Sea Using Infaunal Diversity,
Structure, and Function. Diversity, 12(12), 485. DOI:
https://doi.org/10.3390/d12120485
Schmidt, C. & Martínez Arbizu, P. 2015. Unexpectedly
higher metazoan meiofauna abundances in the Kuril–
Kamchatka Trench compared to the adjacent abyssal
plains. Deep Sea Research Part II: Topical Studies
in Oceanography, 111, 60–75. DOI: https://doi.
org/10.1016/j.dsr2.2014.08.019
Predicting spatial patterns of marine meiofauna
Ocean and Coastal Research 2023, v71(suppl 3):e23037 21
Gallucci et al.
Schratzberger, M. & Jennings, S. 2002. Impacts of chronic
trawling disturbance on meiofaunal communities.
Marine Biology, 141(5), 991–1000. DOI: https://doi.
org/10.1007/s00227-002-0895-5
Silveira, I. C. A. da, Napolitano, D. C. & Farias, I. U. 2020.
Brazilian Deep-Sea Biodiversity. Brazilian Marine
Biodiversity. In: Sumida, P. Y. G., Bernardino, A. F.,
& De Léo, F. C. (eds.), Brazilian Marine Biodiversity
(pp. 7–36). Berlin: Springer International Publishing.
DOI: https://doi.org/10.1007/978-3-030-53222-2_2
Silveira, I. C. A., Lazaneo, C. Z., Amorim, J. P. M., Silva,
M. B., Bernardo, P. S., Martins, R. C., Santos, D. M.
C., Dottori, M., Belo, W. C., Martins, R. P. & Moreira,
D. L. 2023. Oceanographic conditions of the continental
slope and deep waters in Santos Basin: the SANSED
cruise (winter 2019). Ocean and Coastal Research.
Soltwedel, T. 2000. Metazoan meiobenthos along continental
margins: a review. Progress in Oceanography, 46(1),
–84. DOI: https://doi.org/10.1016/s0079-6611(00)
-6
Somerfield, P. J. & Warwick, R. M. 2013. Meiofauna
Techniques. In: Eleftheriou, A. (ed.), Methods for
the Study of Marine Benthos (4th ed., pp. 253--284).
Hoboken: John Wiley & Sons, Ltd.
Souza, R. B. de & Robinson, I. S. 2004. Lagrangian and
satellite observations of the Brazilian Coastal Current.
Continental Shelf Research, 24(2), 241–262. DOI:
https://doi.org/10.1016/j.csr.2003.10.001
SUESS, E. 1980. Particulate organic fluxes in the oceans —
surface productivity and oxygen utilization. Nature, 288,
–263.
Sumida, P. Y. G., Pellizari, V. H., Lourenço, R. A., Signorini,
C. N., Bendia, A. G., Carrerette, O., Nakamura, F. M.,
Ramos, R. B., Bergamo, G., Souza, B. H. M., Butarelli,
A. C. A., Passos, J. G., Dias, R. J. S., Maly, M.,
Banha, T. N. S., Güth, A. Z., Soares, L. F., Perugino,
P. D. N., Santos, F. R., Santana, F. R. & Mahiques, M.
M. de. 2022. Sedimentation in the adjacencies of a
southwestern Atlantic giant carbonate ridge. Ocean and
Coastal Research, 70(suppl 2), e22031. DOI: https://
doi.org/10.1590/2675-2824070.22077pygs
Sumida, P. Y. G., Yoshinaga, M. Y., Ciotti, A. M. & Gaeta,
S. A. 2005. Benthic response to upwelling events
off the SE Brazilian coast. Marine Ecology Progress
Series, 291, 35–42. DOI: https://doi.org/10.3354/
meps291035
Troch, M. D., Steinarsdóttir, M. B., Chepurnov, V. &
Ólafsson, E. 2005. Grazing on diatoms by harpacticoid
copepods: species-specific density-dependent uptake
and microbial gardening. Aquatic Microbial Ecology, 39,
–144. DOI: https://doi.org/10.3354/ame039135
Tura, P. & Brandini, F. 2020. Nutrients and particulate
organic matter dynamics in the outer-shelf of the South
Brazil Bight: Two distinct scenarios during summer
Regional Studies in Marine Science, 37, 101345.
DOI: https://doi.org/10.1016/j.rsma.2020.101345
Urban-Malinga, B. 2014. Meiobenthos in marine coastal
sediments. Geological Society of London, 388(1),
–78. DOI: https://doi.org/10.1144/sp388.9
Veit-Köhler, G., Durst, S., Schuckenbrock, J., Hauquier, F.,
Suja, L. D., Dorschel, B., Vanreusel, A. & Arbizu, P. M.
Oceanographic and topographic conditions
structure benthic meiofauna communities in the Weddell
Sea, Bransfield Strait and Drake Passage (Antarctic).
Progress in Oceanography, 162, 240–256. DOI: https://
doi.org/10.1016/j.pocean.2018.03.005
Venekey, V., Braga, C. F., Lira, V. F., Lisboa, V. B., Barros,
D. F. & Silva, R. F. 2016. Nematofauna da plataforma
continental da Bacia do Espírito Santo. (techreport). Rio
de Janeiro: Petrobras/Cenpes.
Vieira, D. C., & Fonseca, G. 2013. The importance of
vertical and horizontal dimensions of the sediment
matrix in structuring nematodes across spatial scales.
PLoS One, 8(10), e77704.
Vieira, D. C. & Fonseca, G. 2022. iMESc: An Interactive
Machine Learning App for Environmental Science.
Zenodo. DOI: https://doi.org/10.5281/ZENODO.6484391
Villora-Moreno, S., Capaccioni-Azzati, R. & GarciaCarrascosa, A. M. 1991. Meiobenthos of Sandy Beaches
from the Gulf of Valencia (Western Mediterranean):
Ecology of Interstitial Polychaetes. Bulletin of Marine
Science, 48(2), 376–385.
Washburn, T., Rhodes, A. C. E. & Montagna, P. A. 2016.
Benthic taxa as potential indicators of a deep-sea oil
spill. Ecological Indicators, 71, 587–597. DOI: https://
doi.org/10.1016/j.ecolind.2016.07.045
Yaginuma, L. E. 2010. Os Nematoda da plataforma
continental ao largo do sistema estuarino de Santos
(mathesis). Universidade de Sao Paulo, Agencia
USP de Gestao da Informacao Academica (AGUIA),
São Paulo. https://doi.org/10.11606/d.21.2011.tde27072011-153347