Inorganic carbon assimilation by planktonic community in Santos Basin, Southwestern Atlantic Ocean
DOI:
https://doi.org/10.1590/Keywords:
Primary production, Photoautotrophy, Chemoautotrophy, Carbon Cycle, Microbial dynamicsAbstract
Primary production is essential in shaping biogeochemical cycles and microbial and ecosystem dynamics. The
distribution of chemosynthetic rates in pelagic zones and their participation in the carbon cycle, especially when
compared to photosynthetic rates in the Southwestern Atlantic Ocean, are poorly constrained. This study aimed
to measure pelagic photo- and chemosynthetic productivity and to analyze their spatial distribution and abiotic
drivers. Samples for photosynthesis experiments collected at the surface and deep chlorophyll maximum (DCM)
were incubated with 14C-bicarbonate at eight light levels, simulating in situ conditions. Samples for chemosynthesis
experiments were collected throughout the water column, from the surface, DCM, 250 m, 900 m, 1,200 m, and
2,300 m, and were incubated in the dark. Rates were analyzed using statistical tests to verify spatial differences
between groups of samples and generalized linear models to identify correlations with environmental variables
(temperature, salinity, density, mixed layer depth, dissolved oxygen, nitrite, nitrate, silicate, phosphate, turbidity,
CDOM, and phycoerythrin and chlorophyll-a concentrations). Moreover, both processes were integrated from the
surface to the DCM and compared at the same stations to determine the relative contribution in the epipelagic zone.
The photosynthetic and chemosynthetic rates were, on average, 3.00 ± 3.26 mg C m-3 h-1 and 0.97 ± 1.22 mg C m-3
h-1, respectively. In most stations, chemosynthesis represented an average of 10.2% of total primary productivity,
but surpassed photosynthesis in three experiments (reaching 63.4 – 78.8%). Photosynthesis displayed a clear
offshore-onshore gradient, along with correlated CDOM concentrations, indicating an autochthonous production
of the latter. Chemosynthesis, on the other hand, exhibited high variability and lack of prediction by studied
environmental variables, with isolated points of substantially higher activity.
References
Aguiar, V., Neto, J. & Rangel, C. 2011. Eutrophication
and hypoxia in four streams discharging in Guanabara
Bay, RJ, Brazil, a case study. Marine Pollution Bulletin,
(8), 1915–1919. DOI: https://doi.org/10.1016/j.
marpolbul.2011.04.035
Aidar-Aragão, E., Teixeira, C. & Vieira, A. 1980. Produção
primária e concentração de clorofila-a na costa brasileira
(Lat. 22o
’S - Long. 41o
’W a Lat. 28o
’S - Long.
o
’W). Boletim Do Instituto Oceanográfico, 29(2), 9–14.
DOI: https://doi.org/10.1590/s0373-55241980000200003
Baltar, F. & Herndl, G. 2019. Ideas and perspectives: Is dark
carbon fixation relevant for oceanic primary production
estimates? Biogeosciences, 16(19), 3793–3799. DOI:
https://doi.org/10.5194/bg-16-3793-2019
Bergo, N., Signori, C., Amado, A., Brandini, F. & Pellizari, V. 2017.
The Partitioning of Carbon Biomass among the Pico- and
Nano-plankton Community in the South Brazilian Bight
during a Strong Summer Intrusion of South Atlantic
Central Water. Frontiers in Marine Science, 4, 238.
DOI: https://doi.org/10.3389/fmars.2017.00238
Bird, R. E. & Hulstrom, R. L. 1981. A Simplified Clear Sky
Model for Direct and Diffuse Insolation on Horizontal
Surfaces (techreport No. SERI/TR-642-761). Golden:
Solar Energy Research Institute.
Bowman, J., Kavanaugh, M., Doney, S. & Ducklow, H.
Recurrent seascape units identify key ecological
processes along the western Antarctic Peninsula.
Global Change Biology, 24(7), 3065–3078. DOI: https://
doi.org/10.1111/gcb.14161
Planktonic photo- and chemoautotrophy in Santos Basin
Ocean and Coastal Research 2023, v71(suppl 3):e23006 16
Kutner et al.
Brandini, F. 1990b. Hydrography and characteristics of
the phytoplankton in shelf and oceanic waters off
southeastern Brazil during winter (July/August 1982) and
summer (February/March 1984). Hydrobiologia, 196(2),
–148. DOI: https://doi.org/10.1007/bf00006105
Brandini, F. 1990a. Produção primária e características
fotossintéticas do fitoplâncton na região sueste do Brasil.
Brazilian Journal of Oceanography, 38(2), 147–159.
DOI: https://doi.org/10.1590/s1679-87591990000200004
Brandini, F., Nogueira, M., Simião, M., Codina, J. &
Noernberg, M. 2014. Deep chlorophyll maximum
and plankton community response to oceanic bottom
intrusions on the continental shelf in the South Brazilian
Bight. Continental Shelf Research, 89, 61–75. DOI:
https://doi.org/10.1016/j.csr.2013.08.002
Brandini, F., Tura, P. & Santos, P. 2018. Ecosystem
responses to biogeochemical fronts in the South Brazil
Bight. Progress in Oceanography, 164, 52–62. DOI:
https://doi.org/10.1016/j.pocean.2018.04.012
Casamayor, E., García-Cantizano, J., Mas, J. & PedrósAlió, C. 2001. Primary production in estuarine oxic/
anoxic interfaces: contribution of microbial dark CO2
fixation in the Ebro River Salt Wedge Estuary. Marine
Ecology Progress Series, 215, 49–56. DOI: https://doi.
org/10.3354/meps215049
Casamayor, E., García-Cantizano, J. & Pedrós-Alió, C. 2008.
Carbon dioxide fixation in the dark by photosynthetic
bacteria in sulfide-rich stratified lakes with oxic-anoxic
interfaces. Limnology and Oceanography, 53(4),
–1203. DOI: https://doi.org/10.4319/lo.2008.53.4.1193
Castro, B. 2014. Summer/winter stratification variability in
the central part of the South Brazil Bight. Continental
Shelf Research, 89, 15–23. DOI: https://doi.org/
1016/j.csr.2013.12.002
Crawley, M. J. 2015. Statistics: an introduction using R (2nd
ed.). Sussex: John Wiley & Sons, Inc.
Dottori, M., Sasaki, D. K., Silva, D. A., Giovannino, S. R.,
Pinto, A. P., Gnamah, M., Santos, A. D., Silveira, I. C. A.,
Belo, W. C., Martins, R. P. & Moreira, D. L. 2023.
Hydrographic structure of the continental shelf in Santos
Basin and its causes: The SANAGU and SANSED
campaigns (2019). Ocean and Coastal Research,
(Suppl 3).
Dunne, J., Sarmiento, J. & Gnanadesikan, A. 2007. A
synthesis of global particle export from the surface
ocean and cycling through the ocean interior and on
the seafloor. Global Biogeochemical Cycles, 21(4). DOI:
https://doi.org/10.1029/2006gb002907
Enrich-Prast, A., Bastviken, D., Crill, P., Santoro, A.,
Signori, C. & Sanseverino, A. 2014. Reference Module
in Earth Systems and Environmental Sciences. Elsevier.
DOI: https://doi.org/org/10.1016/B978-0-12-409548-9.
-0
Farías, L., Fernández, C., Faúndez, J., Cornejo, M. &
Alcaman, M. 2009. Chemolithoautotrophic production
mediating the cycling of the greenhouse gases N2
O and
CH4
in an upwelling ecosystem. Biogeosciences, 6(12),
–3069. DOI: https://doi.org/10.5194/bg-6-3053-
Field, C., Behrenfeld, M., Randerson, J. & Falkowski, P.
Primary Production of the Biosphere: Integrating
Terrestrial and Oceanic Components. Science,
(5374), 237–240. DOI: https://doi.org/10.1126/
science.281.5374.237
Fogg, G. 1983. The Ecological Significance of Extracellular
Products of Phytoplankton Photosynthesis. Botanica
Marina, 26(1), 3–14. DOI: https://doi.org/10.1515/
botm.1983.26.1.3
Fox, J. & Weisberg, S. 2019. An R Companion to Applied
Regression (3rd ed.). Thousand Oaks: Sage. Accessed:
https://socialsciences.mcmaster.ca/jfox/Books/
Companion/
Frazão, L., Penninck, S., Michelazzo, L., Moreno, G.,
Guimarães, C., Lopes, R. & Signori, C. 2021. Microbial
ecology of the South Atlantic Subtropical Gyre: a stateof-the-art review of an understudied ocean region.
Ocean and Coastal Research, 69. DOI: https://doi.
org/10.1590/2675-2824069.20026lrf
Frouin, R. & Pinker, R. 1995. Estimating Photosynthetically
Active Radiation (PAR) at the earth’s surface from
satellite observations. Remote Sensing of Environment,
(1), 98–107. DOI: https://doi.org/org/10.1016/0034-
(94)00068-X
Gaeta, S. A. & Brandini, F. P. 2006. O Ambiente
Oceanográfico da plataforma continental e do talude na
região sudeste-sul do Brasil. In: Rossi-Wongtschowski,
C. L. B. & Madureira, L. S. P. (eds.) (pp. 219–264). São
Paulo: Edusp.
Gonçalves-Araujo, R., Röttgers, R., Haraguchi, L. &
Brandini, F. 2019. Hydrography-Driven Variability of
Optically Active Constituents of Water in the South
Brazilian Bight: Biogeochemical Implications. Frontiers
in Marine Science, 6, 716. DOI: https://doi.org/10.3389/
fmars.2019.00716
Gonzalez-Rodriguez, E. 1994. Yearly variation in primary
productivity of marine phytoplankton from Cabo Frio
(RJ, Brazil) region. Hydrobiologia, 294(2), 145–156.
DOI: https://doi.org/10.1007/bf00016855
Gonzalez-Rodriguez, E., Valentin, J., André, D. & Jacob,
S. 1992. Upwelling and downwelling at Cabo Frio
(Brazil): comparison of biomass and primary production
responses. Journal of Plankton Research, 14(2),
–306. DOI: https://doi.org/10.1093/plankt/14.2.289
Grasshoff, K., Kremling, K. & Ehrhardt, M. 2009. Methods
of Seawater Analysis (3rd ed.). Weinheim: Wiley-VCH.
Guenther, M., Paranhos, R., Rezende, C., GonzalezRodriguez, E. & Valentin, J. 2008. Dynamics of bacterial
carbon metabolism at the entrance of a tropical eutrophic
bay influenced by tidal oscillation. Aquatic Microbial
Ecology, 50, 123–133. DOI: https://doi.org/10.3354/
ame01154
Guerra, L., Paiva, A. & Chassignet, E. 2018. On the
translation of Agulhas rings to the western South Atlantic
Ocean. Deep Sea Research Part I: Oceanographic
Research Papers, 139, 104–113. DOI: https://doi.
org/10.1016/j.dsr.2018.08.005
Guisan, A., Edwards, T. & Hastie, T. 2002. Generalized
linear and generalized additive models in studies of
species distributions: setting the scene. Ecological
Modelling, 157(2–3), 89–100.
Planktonic photo- and chemoautotrophy in Santos Basin
Ocean and Coastal Research 2023, v71(suppl 3):e23006 17
Kutner et al.
Herndl, G. & Reinthaler, T. 2013. Microbial control of the
dark end of the biological pump. Nature Geoscience,
(9), 718–724. DOI: https://doi.org/10.1038/ngeo1921
Herndl, G., Reinthaler, T., Teira, E., Van Aken, H., Veth,
C., Pernthaler, A. & Pernthaler, J. 2005. Contribution
of Archaea to Total Prokaryotic Production in the
Deep Atlantic Ocean. Applied and Environmental
Microbiology, 71(5), 2303–2309. DOI: https://doi.
org/10.1128/aem.71.5.2303-2309.2005
IOC, SCOR, & IAPSO. 2010. The international
thermodynamic equation of seawater – 2010:
Calculation and use of thermodynamic properties (56th
ed.). London: UNESCO.
Karl, D. M. 2007. Microbial oceanography: paradigms,
processes and promise. Nature Reviews Microbiology,
(10), 759–769. DOI: https://doi.org/10.1038/nrmicro1749
Kirchman, D. L. 2012. Processes in microbial ecology.
Oxford: Oxford University Press.
Kirk, J. T. O. 2011. Light and photosynthesis in aquatic
ecosystems (3rd ed.). Cambridge: Cambridge University
Press.
Lange, P., Moser, G., Teixeira de Lima, D., Rodrigues, S.,
Fernandes, L. & S, N. 2022. An unprecedented harmful
algae bloom on the beaches of Rio, Brazil. Harmful
Algae News (IOC-UNESCO), (70).
Laxenaire, R., Speich, S., Blanke, B., Chaigneau, A.,
Pegliasco, C. & Stegner, A. 2018. Anticyclonic Eddies
Connecting the Western Boundaries of Indian and
Atlantic Oceans. Journal of Geophysical Research:
Oceans, 123(11), 7651–7677. DOI: https://doi.
org/10.1029/2018jc014270
Li, W. K. W., Irwin, B. D. & Dickie, P. M. 1993. Dark
fixation of 14C: Variations related to biomass and
productivity of phytoplankton and bacteria. Limnology
and Oceanography, 38(3), 483–494. DOI: https://doi.
org/10.4319/lo.1993.38.3.0483
Longhurst, A. & Harrison, W. 1989. The biological pump:
Profiles of plankton production and consumption in the
upper ocean. Progress in Oceanography, 22(1), 47–123.
DOI: https://doi.org/org/10.1016/0079-6611(89)90010-4
Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill,
C. 1995. An estimate of global primary production in
the ocean from satellite radiometer data. Journal of
Plankton Research, 17(6), 1245–1271. DOI: https://doi.
org/10.1093/plankt/17.6.1245
López-Urrutia, Á., San Martin, E., Harris, R. & Irigoien, X.
Scaling the metabolic balance of the oceans.
Proceedings of the National Academy of Sciences,
(23), 8739–8744. DOI: https://doi.org/10.1073/
pnas.0601137103
Lutz, V., Segura, V., Dogliotti, A., Tavano, V., Brandini, F.,
Calliari, D., Ciotti, A., Villafañe, V., Schloss, I., Corrêa,
F., Benavides, H. & Cantonnet, D. 2018. Overview
on Primary Production in the Southwestern Atlantic.
In: Hoffmeyer, M. S., Sabatini, M. E., Brandini, F. P.,
Calliari, D. L., & Santinelli, N. H. (eds.), Plankton
Ecology of the Southwestern Atlantic (pp. 101–126).
Cham: Springer International Publishing. DOI: https://
doi.org/10.1007/978-3-319-77869-3_6
Marañón, E., Behrenfeld, M., González, N., Mouriño, B. &
Zubkov, M. 2003. High variability of primary production
in oligotrophic waters of the Atlantic Ocean: uncoupling
from phytoplankton biomass and size structure. Marine
Ecology Progress Series, 257, 1–11. DOI: https://doi.
org/10.3354/meps257001
Markager, S. 1998. Dark uptake of inorganic14C in
oligotrophic oceanic waters. Journal of Plankton
Research, 20(9), 1813–1836. DOI: https://doi.org/
1093/plankt/20.9.1813
Merchant, S. & Helmann, J. 2012. Elemental economy:
microbial strategies for optimizing growth in the face of
nutrient limitation. Advances in Microbial Physiology,
, 91–210. DOI: https://doi.org/org/10.1016/B978-0-
-398264-3.00002-4
Middelburg, J. 2011. Chemoautotrophy in the ocean.
Geophysical Research Letters, 38(24). DOI: https://doi.
org/10.1029/2011gl049725
Moreira, D. L., Dalto, A. G., Figueiredo Jr, A. G., Valerio, A.
M., Bonecker, A. C. T., Signori, C. N., Namiki, C., Sasaki,
D. K., Pupo, D. V., Silva, D. A., Kutner, D. S., DuqueCastaño, D. C., Marcon, E. H., Gallotta, F. D. C., Paula, F.
S., Gallucci, F., Roque, G. C. F., Campos, G. S., Fonseca,
..., G. & Souza, S. H. M. 2023. Multidisciplinary Scientific
Cruises for Environmental Characterization in Santos
Basin. Ocean and Coastal Research, 71(Suppl 3).
Moreira, J. L. P., Madeira, C. V., Gil, J. A. & Machado,
M. A. P. 2007. Bacias Sedimentares Brasileiras:
Cartas Estratigráficas - Bacia de Santos. Boletim de
Geociências Da Petrobras, 15(2), 531–549.
Morel, A. 1991. Light and marine photosynthesis: a spectral
model with geochemical and climatological implications.
Progress in Oceanography, 26(3), 263–306. DOI:
https://doi.org/org/10.1016/0079-6611(91)90004-6
Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre,
P., Mcglinn, D., Minchin, P., Hara, R., Simpson, G.,
Solymos, P., Stevens, M., Szoecs, E. & Wagner, H.
vegan: Community Ecology Package. Accessed:
https://CRAN.R-project.org/package=vegan
Organelli, E. & Claustre, H. 2019. Small Phytoplankton
Shapes Colored Dissolved Organic Matter Dynamics
in the North Atlantic Subtropical Gyre. Geophysical
Research Letters, 46(21), 12183–12191. DOI: https://
doi.org/10.1029/2019gl084699
Passos, J. G., Soares, L. F., Sumida, P. Y. G., Bendia, A. G.,
Nakamura, F. M., Pellizari, V. H. & Signori, C. N. 2022.
Contribution of chemoautotrophy and heterotrophy to
the microbial carbon cycle in the Southwestern Atlantic
Ocean. Ocean and Coastal Research, 70(suppl 2). DOI:
https://doi.org/10.1590/2675-2824070.22137jgp
Platt, T., Gallegos, C. L. & Harrison, W. G. 1980.
Photoinhibition of photosynthesis in natural assemblages
of marine phytoplankton. Journal of Marine Research,
, 687–701.
Poole, H. & Atkins, W. 1929. Photo-electric Measurements
of Submarine Illumination throughout the Year. Journal
of the Marine Biological Association of the United
Kingdom, 16(1), 297–324. DOI: https://doi.org/10.1017/
s0025315400029829
Prakash, A., Sheldon, R. & Sutcliffe, W. 1991. Geographic
variation of oceanic 14 C dark uptake. Limnology
and Oceanography, 36(1), 30–39. DOI: https://doi.
org/10.4319/lo.1991.36.1.0030
Planktonic photo- and chemoautotrophy in Santos Basin
Ocean and Coastal Research 2023, v71(suppl 3):e23006 18
Kutner et al.
R Core Team. 2021. A language and environment for
statistical computing (Version 4.1.2). Accessed: https://
www.R-project.org/
Regaudie-de-Gioux, A. & Duarte, C. M. 2012. Temperature
dependence of planktonic metabolism in the ocean.
Global Biogeochemical Cycles, 26(1). DOI: https://doi.
org/10.1029/2010GB003907
Reinthaler, T., Van Aken, H. & Herndl, G. 2010. Major
contribution of autotrophy to microbial carbon cycling in
the deep North Atlantic’s interior. Deep Sea Research
Part II: Topical Studies in Oceanography, 57(16), 1572–
DOI: https://doi.org/10.1016/j.dsr2.2010.02.023
Schlitzer, R. 2021. Ocean Data View. Accessed: https://odv.
awi.de/
Signori, C., Felizardo, J. & Enrich-Prast, A. 2020. Bacterial
production prevails over photo- and chemosynthesis in
a eutrophic tropical lagoon. Estuarine, Coastal and Shelf
Science, 243, 106889. DOI: https://doi.org/10.1016/j.
ecss.2020.106889
Signori, C., Valentin, J., Pollery, R. & Enrich-Prast, A.
Temporal Variability of Dark Carbon Fixation
and Bacterial Production and Their Relation with
Environmental Factors in a Tropical Estuarine System.
Estuaries and Coasts, 41(4), 1089–1101. DOI: https://
doi.org/10.1007/s12237-017-0338-7
Silveira, I., Napolitano, D. & Farias, I. 2020. Water Masses
and Oceanic Circulation of the Brazilian Continental
Margin and Adjacent Abyssal Plain. In: Sumida, P. Y. G.,
Bernardino, A. F., & De Léo, F. C. (eds.) Brazilian Marine
Biodiversity. (pp. 7–36). Berlim: Springer International
Publishing. DOI: https://doi.org/10.1007/978-3-030-53222-2_2
Silveira, I. C. A., Lazaneo, C. Z., Amorim, J. P. M.,
Borges-Silva, M., Bernardo, P. S., Martins, R. C.,
Santos, D. M. C., Dottori, M., Belo, W. C., Martins, R. P. &
Moreira, D. L. 2023. Oceanographic conditions of the
continental slope and deep waters in Santos Basin:
the SANSED cruise (winter 2019). Ocean and Coastal
Research, 71(suppl 3).
Sorokin, J. 1964. On the Trophic Role of Chemosynthesis
in Water Bodies. Internationale Revue Der Gesamten
Hydrobiologie Und Hydrographie, 49(2), 307–324. DOI:
https://doi.org/10.1002/iroh.19640490205
Steemann-Nielsen, E. 1952. The Use of Radio-active
Carbon (C14) for Measuring Organic Production in the
Sea. ICES Journal of Marine Science, 18(2), 117–140.
DOI: https://doi.org/10.1093/icesjms/18.2.117
Synergy Software. KaleidaGraph, Version 4.0 for Windows.
Reading, PA, USA. Accessed: https://www.synergy.com/
Teixeira, C. 1973. Introdução aos métodos para medir a
produção primária do fitoplâncton marinho. Boletim Do
Instituto Oceanográfico, 22(0), 59–92. DOI: https://doi.
org/10.1590/s0373-55241973000100004
Thimijan, R. W. & Heins, R. D. 1983. Photometric,
Radiometric, and Quantum Light Units of Measure: A
Review of Procedures for Interconversion. Hortscience,
(6), 818–822.
Thornton, D. 2014. Dissolved organic matter (DOM) release
by phytoplankton in the contemporary and future ocean.
European Journal of Phycology, 49(1), 20–46. DOI:
https://doi.org/10.1080/09670262.2013.875596
Vicente, T., Yamashita, C., Sousa, S. & Ciotti, A. 2021.
Evaluation of the relationship between biomass of living
(stained) benthic foraminifera and particulate organic
matter vertical flux in an oligotrophic region, Campos
Basin, southeastern Brazilian continental margin.
Journal of Sea Research, 176, 102110. DOI: https://doi.
org/10.1016/j.seares.2021.102110
Vieira, A. & Teixeira, C. 1981. Excreção de materia orgânica
dissolvida por populações fitoplanctônicas da costa leste
e sudeste do Brasil. Boletim Do Instituto Oceanográfico,
(1), 9–25. DOI: https://doi.org/10.1590/s0373-5524
Villac, M. & Tenenbaum, D. 2010. The phytoplankton
of Guanabara Bay, Brazil: I. historical account of its
biodiversity. Biota Neotropica, 10(2), 271–293. DOI:
https://doi.org/10.1590/s1676-06032010000200030
Welschmeyer, N. 1994. Fluorometric analysis of chlorophyll
a in the presence of chlorophyll b and pheopigments.
Limnology and Oceanography, 39(8), 1985–1992. DOI:
https://doi.org/10.4319/lo.1994.39.8.1985
Wickham, H. 2016. ggplot2: Elegant Graphics for Data
Analysis. New York: Oxford University Press.
Yakimov, M., La Cono, V., Smedile, F., Crisafi, F., Arcadi, E.,
Leonardi, M., Decembrini, F., Catalfamo, M., Bargiela, R.,
Ferrer, M., Golyshin, P. & Giuliano, L. 2014. Heterotrophic
bicarbonate assimilation is the main process of de
novoorganic carbon synthesis in hadal zone of the
Hellenic Trench, the deepest part of Mediterranean Sea.
Environmental Microbiology Reports, 6(6), 709–722.
DOI: https://doi.org/10.1111/1758-2229.12192
Zhou, W., Liao, J., Guo, Y., Yuan, X., Huang, H., Yuan, T.
& Liu, S. 2017. High dark carbon fixation in the tropical
South China Sea. Continental Shelf Research, 146,