Influences of strong and moderate ENSO events on the Maranhão precipitation from the western equatorial Atlantic SST anomalies
DOI:
https://doi.org/10.1590/Keywords:
El Niño, Interannual Variability, Zonal Teleconnection, Maranhão Climate, Precipitation VariabilityAbstract
This study analyzed the influence of strong and moderate El Niño-Southern Oscillation (ENSO) events on
the seasonal and interannual variabilities of the sea surface temperature (SST) in the Western Equatorial
Atlantic (WEA) Ocean and how the precipitation over the state of Maranhão, in Brazil, responds to the zonal
teleconnection. To evaluate the ENSO magnitude and phase in the four Niño regions (1+2, 3, 3.4, and 4),
the SODA 3.3.1 oceanic reanalysis database for the period from 1980 to 2015 was used. Our results showed
that the La Niña phase with moderate magnitude was the most predominant among the 70 events analyzed,
with Niño 3.4 presenting the highest number (20) of ENSO events (both positive and negative phases).
At lag = 0, we found that significant negative correlations prevailed between the WEA SST anomalies and
ENSO index, with the region of Niño 3.4 showing the most significant correlations (r = −0.25). The whole events
of El Niño and La Niña were, respectively, accompanied by a cooling and a heating of up to −0.6°C or +0.8°C
in the WEA Ocean. The WEA SST anomalies during El Niño and La Niña events have, respectively, reduced
and increased the precipitation in Maranhão around ± 100 mm in a quarter. Strong El Niño events influence a
greater precipitation deficit in Maranhão than moderate El Niño events. Moderate La Niña events have more
pronounced influence on the precipitation over Maranhão than strong La Niña events do, especially on the
negative anomalies. Our results showed that the central, northern, and eastern tip sectors of the state are the
most affected by this zonal teleconnection. We concluded that ENSO’s significant influences on the WEA SST
seasonal variability, added to the performance of the Atlantic Meridional Mode (Soares 2019), determine the
quality of the rainy season (March–April–May) in the state of Maranhão
References
Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R.,
Ngar-Cheung Lau & Scott, J. D. 2002. The Atmospheric
Bridge: The Influence of ENSO Teleconnections on
Air–Sea Interaction over the Global Oceans. Journal of
Climate, 15(16), 2205–2231.
Alves, J. B., Servain, J. & Campos, J. N. B. 2009.
Relationship between ocean climatic variability
and rain-fed agriculture in northeast Brazil. Climate
Research, 38, 225–236. DOI: https://doi.org/10.3354/
cr00786
Andreoli, R. V., Oliveira, S. S. de, Kayano, M. T., Viegas, J.,
Souza, R. A. F. de & Candido, L. A. 2016. The influence
of different El Niño types on the South American rainfall.
International Journal of Climatology, 37(3), 1374–1390.
DOI: https://doi.org/10.1002/joc.4783
Araújo, R. G., Andreoli, R. V., Candido, L. A., Kayano, M. T. &
Souza, R. A. F. de. 2013. A influência do evento El Niño -
Oscilação Sul e Atlântico Equatorial na precipitação
sobre as regiões norte e nordeste da América do Sul.
Acta Amazonica, 43(4), 469–480. DOI: https://doi.org/
1590/s0044-59672013000400009
Braga, C. C., Amanajás, J. C., Cerqueira, H. D. V. & Vitorino,
M. I. 2014. The Role of the Tropical Atlantic and Pacific
Oceans SST in Modulating the Rainfall of Paraíba State,
Brazil. Revista Brasileira de Geofísica, 32(1), 97–107.
DOI: https://doi.org/10.22564/rbgf.v32i1.399
Cabos, W., Vara, A. de la & Koseki, S. 2019. Tropical
Atlantic Variability: Observations and Modeling.
Atmosphere, 10(9), 502. DOI: https://doi.org/10.3390/
atmos10090502
Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R.,
Taschetto, A. S., Garreaud, R. D., Dewitte, B., Poveda, G.,
Ham, Y.-G., Santoso, A., Ng, B., Anderson, W., Wang, G.,
Geng, T., Jo, H.-S., Marengo, J. A., Alves, L. M., Osman, M.,
Li, S., Wu, L., Karamperidou, C., Takahashi, K. & Vera, C.
Climate impacts of the El Niño–Southern Oscillation
on South America. Nature Reviews Earth &
mathsemicolon Environment, 1(4), 215–231. DOI:
https://doi.org/10.1038/s43017-020-0040-3
Influence of ENSO on precipitation in Maranhão
Ocean and Coastal Research 2023, v71(suppl 2):e23043 18
Soares et al.
Hastenrath, S. & Heller, L. 1977. Dynamics of climatic
hazards in northeast Brazil. Quarterly Journal of the
Royal Meteorological Society, 103(435), 77–92. DOI:
https://doi.org/10.1002/qj.49710343505
He, S., Yu, J.-Y., Yang, S. & Fang, S.-W. 2020. ENSO’s
impacts on the tropical Indian and Atlantic Oceans via
tropical atmospheric processes: observations versus
CMIP5 simulations. Climate Dynamics, 54(11–12),
–4640. DOI: https://doi.org/10.1007/s00382-020-
-w
Hirst, A. C. & Hastenrath, S. 1983. Atmosphere-Ocean
Mechanisms of Climate Anomalies in the Angola-Tropical
Atlantic Sector. Journal of Physical Oceanography,
(7), 1146–1157.
Hounsou-Gbo, A., Servain, J., Junior, F. das C. V., Martins,
E. S. P. R. & Araújo, M. 2020. Summer and winter
Atlantic Niño: connections with ENSO and implications.
Climate Dynamics, 55(11–12), 2939–2956. DOI:
https://doi.org/10.1007/s00382-020-05424-x
Hounsou-Gbo, G. A., Servain, J., Araujo, M., Martins, E. S.,
Bourlès, B. & Caniaux, G. 2016. Oceanic Indices for
Forecasting Seasonal Rainfall over the Northern Part
of Brazilian Northeast. American Journal of Climate
Change, 5(2), 261–274. DOI: https://doi.org/10.4236/
ajcc.2016.52022
Huang, B., Schopf, P. S. & Shukla, J. 2004. Intrinsic Ocean–
Atmosphere Variability of the Tropical Atlantic Ocean.
Journal of Climate, 17(11), 2058–2077.
Kayano, M. T., Andreoli, R. V., Garcia, S. R. & Souza,
R. A. F. de. 2018. How the two nodes of the tropical
Atlantic sea surface temperature dipole relate the
climate of the surrounding regions during austral
autumn. International Journal of Climatology, 38(10),
–3941. DOI: https://doi.org/10.1002/joc.5545
Kayano, M. T., Capistrano, V. B., Andreoli, R. V. & Souza,
R. A. F. de. 2016. A further analysis of the tropical Atlantic
SST modes and their relations to north-eastern Brazil
rainfall during different phases of Atlantic Multidecadal
Oscillation. International Journal of Climatology, 36(12),
–4018. DOI: https://doi.org/10.1002/joc.4610
Kidson, J. W. 1975. Tropical Eigenvector Analysis and the
Southern Oscillation. Monthly Weather Review, 103(3),
–196.
Latif, M. & Barnett, T. P. 1995. Interactions of the Tropical
Oceans. The Journal of Climate, 8(4), 952–964.
Latif, M. & Grötzner, A. 2000. The equatorial Atlantic
oscillation and its response to ENSO. Climate Dynamics,
(2–3), 213–218. DOI: https://doi.org/10.1007/
s003820050014
Lübbecke, J. F., Böning, C. W., Keenlyside, N. S. & Xie,
S.-P. 2010. On the connection between Benguela and
equatorial Atlantic Niños and the role of the South
Atlantic Anticyclone. Journal of Geophysical Research,
(C9). DOI: https://doi.org/10.1029/2009jc005964
Lübbecke, J. F. & McPhaden, M. J. 2012. On the
Inconsistent Relationship between Pacific and Atlantic
Niños. Journal of Climate, 25(12), 4294–4303. DOI:
https://doi.org/10.1175/jcli-d-11-00553.1
Lübbecke, J. F., Rodríguez-Fonseca, B., Richter, I.,
Martín-Rey, M., Losada, T., Polo, I. & Keenlyside,
N. S. 2018. Equatorial Atlantic variability—Modes,
mechanisms, and global teleconnections. WIREs
Climate Change, 9(4). DOI: https://doi.org/10.1002/wcc.527
Merle, J., Fieux, M. & Hisard, P. 1980. Annual signal and
interannual anomalies of sea surface temperature in the
eastern equatorial Atlantic Ocean. In: Oceanography
and Surface Layer Meteorology in the B/C Scale
(pp. 77–101). Amsterdam: Elsevier. DOI: https://doi.org/
1016/b978-1-4832-8366-1.50023-6
Münnich, M. & Neelin, J. D. 2005. Seasonal influence
of ENSO on the Atlantic ITCZ and equatorial South
America. Geophysical Research Letters, 32(21). DOI:
https://doi.org/10.1029/2005gl023900
Nascimento, F. das C. A. do, Braga, C. C. & Araújo,
F. R. da C. D. 2017. Análise Estatística dos Eventos Secos
e Chuvosos de Precipitação do Estado do Maranhão.
Revista Brasileira de Meteorologia, 32(3), 375–386. DOI:
https://doi.org/10.1590/0102-77863230005
Nicholson, S. E. & Selato, J. C. 2000. A influência de
La Niña na precipitação africana. Jornal Internacional
de Climatologia, 20(14), 1761–1776.
NOAA. 2019a. Cold & Warm Episodes by Season.
Accessed: https://origin.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ONI_v5.php
NOAA. 2019b. El niño regions. Accessed: https://www.cpc.
ncep.noaa.gov/products/analysis_monitoring/ensostuff/
nino_regions.shtml
Nogues-Paegle, J., Mechoso, C. R., Fu, R., Berbery, E. H.,
Chao, W. C., Chen, T.-C., Cook, K., Diaz, A. F.,
Enfield, D., Ferreira, R., Grimm, A. M., Kousky, V.,
Liebmann, B., Marengo, J. A., Mo, K., Neelin, J. D.,
Paegle, J., Robertson, A. W., Seth, A., Vera, C. S. &
Zhou, J. 2002. Progress in Pan American CLIVAR
Research: Understanding the South American
Monsoon. Meteorologica, 27, 3–32.
Philander, S. G. H. 1986. Unusual conditions in the tropical
Atlantic Ocean in 1984. Nature, 322(6076), 236–238.
DOI: https://doi.org/10.1038/322236a0
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery,
B. P. 1992. Numerical Recipes in C: the art of
scientific computing (2nd ed.). Cambridge: Cambridge
University Press.
Rodrigues, R. R., Haarsma, R. J., Campos, E. J. D. &
Ambrizzi, T. 2011. The Impacts of Inter–El Niño
Variability on the Tropical Atlantic and Northeast Brazil
Climate. Journal of Climate, 24(13), 3402–3422. DOI:
https://doi.org/10.1175/2011jcli3983.1
Rodrigues, R. R. & McPhaden, M. J. 2014. Why did the 2011-
La Niña cause a severe drought in the Brazilian
Northeast? Geophysical Research Letters, 41(3), 1012–
DOI: https://doi.org/10.1002/2013gl058703
Rodríguez-Fonseca, B., Suárez-Moreno, R., Ayarzagüena, B.,
López-Parages, J., Gómara, I., Villamayor, J.,
Mohino, E., Losada, T. & Castaño-Tierno, A. 2016.
A Review of ENSO Influence on the North Atlantic.
A Non-Stationary Signal. Atmosphere, 7(7), 87. DOI:
https://doi.org/10.3390/atmos7070087
Saravanan, R. & Chang, P. 2000. Interaction between
tropical Atlantic variability and El Niño–Southern
Oscillation. Journal of Climate, 13(13), 2177–2194.
Sasaki, D. K. 2014. Mudanças dos Modos de Variabilidade do
Atlântico Tropical no Século XX (mathesis). Universidade
Influence of ENSO on precipitation in Maranhão
Ocean and Coastal Research 2023, v71(suppl 2):e23043 19
Soares et al.
de Sao Paulo, Instituto Oceanográfico, São Paulo. https://
doi.org/10.11606/d.21.2014.tde-10032015-151036
Servain, J. 1991. Simple climatic indices for the tropical
Atlantic Ocean and some applications. Journal of
Geophysical Research, 96(C8), 15137–15146. DOI:
https://doi.org/10.1029/91jc01046
Servain, J., Joël Picaut & Merle, J. 1982. Evidence of
Remote Forcing in the Equatorial Atlantic Ocean.
Journal of Physical Oceanography, 12(5), 457–463.
Servain, J., Wainer, I., McCreary, J. P. & Dessier, A. 1999.
Relationship between the equatorial and meridional
modes of climatic variability in the tropical Atlantic.
Geophysical Research Letters, 26(4), 485–488. DOI:
https://doi.org/10.1029/1999gl900014
Soares, L. A. M. 2019. Influência de teleconexão
Pacífico–Atlântico e de modos locais na variabilidade
da temperatura da superfície do mar do Atlântico
Equatorial Ocidental e impactos sobre a precipitação no
estado do Maranhão (mathesis). Universidade Federal
do Maranhão, São Luís.
Stone, R. C., Hammer, G. L. & Marcussen, T. 1996.
Prediction of global rainfall probabilities using phases
of the Southern Oscillation Index. Nature, 384(6606),
–255. DOI: https://doi.org/10.1038/384252a0
Tedeschi, R. G., Grimm, A. M. & Cavalcanti, I. F. A. 2016.
Influence of Central and East ENSO on extreme events
of precipitation in South America during austral spring
and summer. International Journal of Climatology, 35(8),
–2064. DOI: https://doi.org/10.1002/joc.4106
Trenberth, K. E. 1984. Signal versus noise in the Southern
Oscillation. Monthly Weather Review, 112(2), 326–332.
Uvo, C. B., Repelli, C. A., Zebiak, S. E. & Kushnir, Y. 1998.
The relationships between Tropical Pacific and Atlantic
SST and northeast Brazil monthly precipitation. Journal
of Climate, 11(4), 551–562.
Wang, C., Xie, S.-P. & Carton, J. A. 2004. A global survey of
ocean–atmosphere interaction and climate variability. In:
Wang, C., Xie, S., & Carton, J. A. (eds.), Earth’s climate:
the ocean–atmosphere interaction (Vol. 147, pp. 1–19).
Washington, DC: American Geophysical Union.
Wu, L., Zhang, Q. & Liu, Z. 2004. Toward Understanding
Tropical Atlantic Variability Using Coupled Modeling
Surgery. In: Wang, C., Xie, S., & Carton, J. A. (eds.),
Earth’s climate: the ocean–atmosphere interaction
(Vol. 147, pp. 157–170). Hoboken: American Geophysical
Union. DOI: https://doi.org/10.1029/147gm09
Zebiak, S. E. 1993. Air–Sea Interaction in the Equatorial
Atlantic Region. Journal of Climate, 6(8), 1567–1586.
Zhou, J. & Lau, K.-M. 2001. Principal modes of interannual
and decadal variability of summer rainfall over South
America. International Journal of Climatology, 21(13),
–1644. DOI: https://doi.org/10.1002/joc.700