Meteorological and potential climatic influence on high cyanobacterial biomass within Patos Lagoon (southern Brazil): A case study of the summer of 2019–2020
DOI:
https://doi.org/10.1590/Keywords:
Freshwater environment, Wind-driven hydrodynamics, Rainfall, Satellite-Derived biomass index, Climate variationAbstract
Cyanobacterial blooms are a potential threat to human communities and ecosystems. Since the late 1980s, researchers have reported harmful cyanobacterial colonies in Patos Lagoon (PL), the largest coastal lagoon in South America. Most studies concerning harmful blooms in PL have focused on its biology and on its southernmost estuarine region, with little information about its displacement inside the lagoon and the influence of physical forces on its dynamics. This study uses satellite-derived information (normalized difference chlorophyll-a index – NDCI), river discharge data, and meteorological data (wind speed and direction, rainfall, and air temperature) to analyze two bloom episodes in PL, during the austral summer of 2019/2020, specifically in its larger, limnic portion. A 30-year meteorological time series was used to contrast the same summer period. Two remote sensing images from Sentinel-2 were taken of PL margins, near their central portion. The summer of 2019/2020 was drier when compared with the historical data, characterizing low river discharge. This environmental condition was coupled with high temperature, which implies thermal stratification in summer even at 2-m depth sites, which might have promoted cyanobacterial growth and accumulation inside PL. Moreover, weak winds (<<6 m s−1) seemed to accumulate cyanobacterial patches on the water surface, including after vertical mixing caused by strong winds (>6 m s−1). The NDCI values represented the two days of blooms, with higher values occurring under higher water temperatures and low wind speeds.
References
Abreu, P. C., Hartmann, C. & Odebrecht, C. 1995. Nutrientrich saltwater and its influence on the phytoplankton of
the patos lagoon estuary, Southern Brazil. Estuarine,
Coastal and Shelf Science, 40(2), 219–229. DOI:
https://doi.org/10.1016/s0272-7714(05)80006-x
Aguilera, L., Santos, A. L. F. D. & Rosman, P. C. C. 2020.
On characteristic hydraulic times through hydrodynamic
modelling: discussion and application in Patos Lagoon
(RS). Ambiente e Água, 15(2). DOI: https://doi.org/
4136/ambi-agua.2456
Andrade, M. M., Abreu, P. C., Ávila, R. A. & Möller, O. O.
Importance of winds, freshwater discharge
and retention time in the space–time variability of
phytoplankton biomass in a shallow microtidal estuary.
Regional Studies in Marine Science, 50, 102161. DOI:
https://doi.org/10.1016/j.rsma.2022.102161
Aubriot, L., Zabaleta, B., Bordet, F., Sienra, D., Risso, J.,
Achkar, M. & Somma, A. 2020. Assessing the origin
of a massive cyanobacterial bloom in the Río de la
Plata (2019): Towards an early warning system. Water
Research, 181, 115944. DOI: https://doi.org/10.1016/j.
watres.2020.115944
Baumgarten, M. da G. Z., Niencheski, L. F. H. & Veeck, L.
Nutrientes na coluna da agua e na agua intersticial
de sedimentos de uma enseada rasa estuarina com
aportes de origem antropica (RS-Brasil). Atlantica
(Rio Grande), 23, 101–116.
Bitencourt, L. P., Fernandes, E. H., Silva, P. D. da & Möller,
O. 2020. Spatio-temporal variability of suspended
sediment concentrations in a shallow and turbid lagoon.
Journal of Marine Systems, 212, 103454. DOI: https://
doi.org/10.1016/j.jmarsys.2020.103454
Bortolin, E. C., Weschenfelder, J., Fernandes, E. H.,
Bitencourt, L. P., Möller, O. O., García-Rodríguez, F. &
Toldo, E. 2020. Reviewing sedimentological and
hydrodynamic data of large shallow coastal lagoons for
defining mud depocenters as environmental monitoring
sites. Sedimentary Geology, 410, 105782. DOI: https://
doi.org/10.1016/j.sedgeo.2020.105782
Caballero, I., Fernández, R., Escalante, O. M., Mamán, L. &
Navarro, G. 2020. New capabilities of Sentinel-2A/B
satellites combined with in situ data for monitoring
small harmful algal blooms in complex coastal waters.
Scientific Reports, 10(1), 8743. DOI: https://doi.org/
1038/s41598-020-65600-1
Carpenter, S. R., Caraco, N. F., Corell, D. L., Howarth,
R. W., Sharpey, A. N. & Smith, V. H. 1998. Nonpoint
pollution of surface waters with phosphorus and
nitrogen. Ecological Applications, 8(3), 559–568.
Cloern, J. E. 2001. Our evolving conceptual model of
the coastal eutrophication problem. Marine Ecology
Progress Series, 210, 223–253.
Devercelli, M. 2009. Changes in phytoplankton morphofunctional groups induced by extreme hydroclimatic
events in the Middle Paraná River (Argentina).
Hydrobiologia, 639(1), 5–19. DOI: https://doi.org/
1007/s10750-009-0020-6
Devercelli, M. & O’Farrell, I. 2013. Factors affecting the
structure and maintenance of phytoplankton functional
groups in a nutrient rich lowland river. Limnologica, 43(2),
–78. DOI: https://doi.org/10.1016/j.limno.2012.05.001
Fernandes, E. H. L., Dyer, K. R., Moller, O. O. & Niencheski,
L. F. H. 2002. The Patos Lagoon hydrodynamics during
an El Niño event (1998). Continental Shelf Research,
Meteorological and climatic influence on cyanobacteria
Ocean and Coastal Research 2023, v71(suppl 2):e23026 15
Canever et al.
(11–13), 1699–1713. DOI: https://doi.org/10.1016/
s0278-4343(02)00033-x
Ferreira, A. H. F., Minillo, A., Silva, L. de M., Yunes, J. S.
Ocorrência de Anabaena spiroides (cianobactéria)
no estuário da Lagoa dos Patos (RS, Brasil) no verãooutono de 1998. Atlântica, 26(1), 17–26.
Fujita, C. C. & Odebrecht, C. 2007. Short term variability of
chlorophyll a and phytoplankton composition in a shallow
area of the Patos Lagoon estuary (Southern Brazil).
Atlântica, 29(2), 93–106.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S.,
Thau, D. & Moore, R. 2017. Google Earth Engine:
Planetary-scale geospatial analysis for everyone.
Remote Sensing of Environment, 202, 18–27. DOI:
https://doi.org/10.1016/j.rse.2017.06.031
Haraguchi, L., Carstensen, J., Abreu, P. C. & Odebrecht, C.
Long-term changes of the phytoplankton
community and biomass in the subtropical shallow Patos
Lagoon Estuary, Brazil. Estuarine, Coastal and Shelf
Science, 162, 76–87. DOI: https://doi.org/10.1016/j.
ecss.2015.03.007
Ho, J. C. & Michalak, A. M. 2017. Phytoplankton
blooms in Lake Erie impacted by both long-term and
springtime phosphorus loading. Journal of Great
Lakes Research, 43(3), 221–228. DOI: https://doi.
org/10.1016/j.jglr.2017.04.001
Kalikoski, D. C. & Vasconcellos, M. 2012. Case study of the
technical, socio-economic and environmental conditions
of small-scale fisheries in the estuary of Patos Lagoon,
Brazil. Rome: FAO.
Kennish, M. J. & Pearl, H. W. (eds.). 2010. Coastal Lagoons:
Critical Habitats of Environmental Change. Abingdon:
CRC Press.
King, K. W., Williams, M. R. & Fausey, N. R. 2015.
Contributions of Systematic Tile Drainage to WatershedScale Phosphorus Transport. Journal of Environmental
Quality, 44(2), 486–494. DOI: https://doi.org/10.2134/
jeq2014.04.0149
Kiss, K. T. & Ács, É. 2002. Nature conservation oriented algal
biodiversity monitoring investigations in the main arm and
some dead arms of the River Tisza II. Phytoplankton. In:
Limnological Reports (Vol. 34, pp. 163–171). Tulcea:
International Association for Danube Research.
Kjerfve, B. 1994. Coastal Lagoons. In: Coastal Lagoon
Process (pp. 1–8). Amsterdam: Elsevier.
Lehman, P. W., Boyer, G., Hall, C., Waller, S. & Gehrts,
K. 2005. Distribution and toxicity of a new colonial
Microcystis aeruginosa bloom in the San Francisco Bay
Estuary, California. Hydrobiologia, 541(1), 87–99. DOI:
https://doi.org/10.1007/s10750-004-4670-0
Lobo, F. de L., Nagel, G. W., Maciel, D. A., Carvalho, L. A. S.
de, Martins, V. S., Barbosa, C. C. F. & Novo, E. M. L. de
M. 2021. AlgaeMAp: Algae Bloom Monitoring Application
for Inland Waters in Latin America. Remote Sensing,
(15), 2874. DOI: https://doi.org/10.3390/rs13152874
Marreto, R. N., Baumgarten, M. da G. Z. & WallnerKersanach, M. 2017. Trophic quality of waters in the
Patos Lagoon estuary: a comparison between its
margins and the port channel located in Rio Grande,
RS, Brazil. Acta Limnologica Brasiliensia, 29(0). DOI:
https://doi.org/10.1590/s2179-975x10716
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb,
L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., & Zho, B. (eds.). 2021. Climate
Change 2021: The Physical Science Basis. Contribution
of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change.
Cambridge: Cambridge University Press.
Mendes, C. R. B., Odebrecht, C., Tavano, V. M. & Abreu,
P. C. 2017. Pigment-based chemotaxonomy of
phytoplankton in the Patos Lagoon estuary (Brazil) and
adjacent coast. Marine Biology Research, 13(1), 22–35.
DOI: https://doi.org/10.1080/17451000.2016.1189082
Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S.,
Bosch, N. S., Bridgeman, T. B., Chaffin, J. D., Cho, K.,
Confesor, R., Daloğlu, I., DePinto, J. V., Evans, M. A.,
Fahnenstiel, G. L., He, L., Ho, J. C., Jenkins, L.,
Johengen, T. H., Kuo, K. C., LaPorte, E., Liu, X.,
McWilliams, M. R., Moore, M. R., Posselt, D. J.,
Richards, R. P., Scavia, D., Steiner, A. L., Verhamme, E.,
Wright, D. M. & Zagorski, M. A. 2013. Record-setting
algal bloom in Lake Erie caused by agricultural and
meteorological trends consistent with expected future
conditions. Proceedings of the National Academy of
Sciences, 110(16), 6448–6452. DOI: https://doi.org/
1073/pnas.1216006110
Mishra, S. & Mishra, D. R. 2012. Normalized difference
chlorophyll index: A novel model for remote estimation of
chlorophyll-a concentration in turbid productive waters.
Remote Sensing of Environment, 117, 394–406. DOI:
https://doi.org/10.1016/j.rse.2011.10.016
Mishra, S., Stumpf, R. P., Schaeffer, B. A., Werdell, P. J.,
Loftin, K. A. & Meredith, A. 2019. Measurement of
Cyanobacterial Bloom Magnitude using Satellite
Remote Sensing. Scientific Reports, 9(1). DOI: https://
doi.org/10.1038/s41598-019-54453-y
Möller, O. O. & Castaing, P. 1999. Hydrographical
Characteristics of the Estuarine Area of Patos
Lagoon (30°S, Brazil). In: Estuaries of South America
(pp. 83–100). Springer Berlin Heidelberg. DOI: https://
doi.org/10.1007/978-3-642-60131-6_5
Moller, O. O., Castaing, P., Salomon, J.-C. & Lazure, P. 2001.
The Influence of Local and Non-Local Forcing Effects
on the Subtidal Circulation of Patos Lagoon. Estuaries,
(2), 297. DOI: https://doi.org/10.2307/1352953
Möller, O. O., Castello, J. P. & Vaz, A. C. 2009. The Effect
of River Discharge and Winds on the Interannual
Variability of the Pink Shrimp Farfantepenaeus
paulensis Production in Patos Lagoon. Estuaries and
Coasts, 32(4), 787–796. DOI: https://doi.org/10.1007/
s12237-009-9168-6
Odebrecht, C., Abreu, P. C., Bemvenuti, C. E., Copertino,
M., Muelbert, J. H., Vieira, J. P. & Seeliger, U. 2010.
The Patos Lagoon estuary: Biotic responses to natural
and anthropogenic impacts in the last decades (1979–
In: Kennish, M. J. & Paerl, H. W. (eds.). Coastal
Lagoons: Critical habitats of environmental change
(pp. 437–459). Abingdon: CRC Press.
Odebrecht, C., Abreu, P. C., Möller, O. O., Niencheski, L.
F., Proença, L. A. & Torgan, L. C. 2005. Drought effects
on pelagic properties in the shallow and turbid Patos
Meteorological and climatic influence on cyanobacteria
Ocean and Coastal Research 2023, v71(suppl 2):e23026 16
Canever et al.
Lagoon, Brazil. Estuaries, 28(5), 675–685. DOI: https://
doi.org/10.1007/bf02732906
Odebrecht, C., Selliger, U., Coutinho, R. & Torgan, L. C.
Florações de Microcystis (cianobactérias) na
Lagoa dos Patos, RS. In: Anais do simpósio sobre
ecossistemas da costa sul e sudeste brasileira (Vol. 2,
pp. 280–287). Canadéia: ACIESP.
Paerl, H. W. 2017. Controlling harmful cyanobacterial blooms
in a climatically more extreme world: management options
and research needs. Journal of Plankton Research, 39(5),
–771. DOI: https://doi.org/10.1093/plankt/fbx042
Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R.,
McCarthy, M. J., Newell, S. E., Qin, B. & Scott, J. T.
Mitigating cyanobacterial harmful algal blooms in
aquatic ecosystems impacted by climate change and
anthropogenic nutrients. Harmful Algae, 54, 213–222.
DOI: https://doi.org/10.1016/j.hal.2015.09.009
Paerl, H. W. & Huisman, J. 2009. Climate change: a catalyst
for global expansion of harmful cyanobacterial blooms.
Environmental Microbiology Reports, 1(1), 27–37. DOI:
https://doi.org/10.1111/j.1758-2229.2008.00004.x
Paerl, H. W. & Otten, T. G. 2013. Harmful Cyanobacterial
Blooms: Causes, Consequences, and Controls.
Microbial Ecology, 65(4), 995–1010. DOI: https://doi.org/
1007/s00248-012-0159-y
Paerl, H. W. & Paul, V. J. 2012. Climate change: Links
to global expansion of harmful cyanobacteria. Water
Research, 46(5), 1349–1363. DOI: https://doi.org/
1016/j.watres.2011.08.002
Paerl, H. W., Yin, K. & O’Brien, T. D. 2015. SCOR Working
Group 137: “Global Patterns of Phytoplankton Dynamics
in Coastal Ecosystems”: An introduction to the special
issue of Estuarine, Coastal and Shelf Science.
Estuarine, Coastal and Shelf Science, 162, 1–3. DOI:
https://doi.org/10.1016/j.ecss.2015.07.011
Reichwaldt, E. S. & Ghadouani, A. 2012. Effects of rainfall
patterns on toxic cyanobacterial blooms in a changing
climate: Between simplistic scenarios and complex
dynamics. Water Research, 46(5), 1372–1393. DOI:
https://doi.org/10.1016/j.watres.2011.11.052
Reynolds, C. S. & Davies, P. S. 2001. Sources and
bioavailability of phosphorus fractions in freshwaters:
a British perspective. Biological Reviews of the
Cambridge Philosophical Society, 76(1), 27–64. DOI:
https://doi.org/10.1017/s1464793100005625
Seeliger, U.; Odebrecht, C.; Castello, J.P. 1998. Os
Ecossistemas Costeiro e Marinho do Extremo Sul do
Brasil. Rio Grande, Ecoscientia. 332p.
SEMA. 2015. Plano da Bacia Hidrográfica do Rio Camaquã.
Accessed: https://sema.rs.gov.br/l030-bh-rio-camaqua
Sokal, R. R. & Rohlf, F. J. 1994. Biometry: The Principles and
Practice of Statistics in Biological Research (3rd ed.).
New York: W. H. Freeman.
Song, R., Muller, J.-P., Kharbouche, S., Yin, F., Woodgate, W.,
Kitchen, M., Roland, M., Arriga, N., Meyer, W., Koerber, G.,
Bonal, D., Burban, B., Knohl, A., Siebicke, L., Buysse, P.,
Loubet, B., Leonardo, M., Lerebourg, C. & Gobron, N. 2020.
Validation of Space-Based Albedo Products from Upscaled
Tower-Based Measurements Over Heterogeneous and
Homogeneous Landscapes. Remote Sensing, 12(5), 833.
DOI: https://doi.org/10.3390/rs12050833
Souza, M. S. de, Muelbert, J. H., Costa, L. D. F., Klering,
E. V. & Yunes, J. S. 2018. Environmental Variability
and Cyanobacterial Blooms in a Subtropical Coastal
Lagoon: Searching for a Sign of Climate Change
Effects. Frontiers in Microbiology, 9. DOI: https://doi.org/
3389/fmicb.2018.01727
Távora, J., Fernandes, E. H., Bitencourt, L. P. & Orozco, P.
M. S. 2020. El-Niño Southern Oscillation (ENSO) effects
on the variability of Patos Lagoon Suspended Particulate
Matter. Regional Studies in Marine Science, 40, 101495.
DOI: https://doi.org/10.1016/j.rsma.2020.101495
Thompson, P. A., O’Brien, T. D., Paerl, H. W., Peierls, B. L.,
Harrison, P. J. & Robb, M. 2015. Precipitation as a driver
of phytoplankton ecology in coastal waters: A climatic
perspective. Estuarine, Coastal and Shelf Science, 162,
–129. DOI: https://doi.org/10.1016/j.ecss.2015.04.004
Vaz, A. C., Junior, O. O. M. & Almeida, T. L. de. 2011.
Análise quantitativa da descarga dos rios afluentes da
Lagoa dos Patos. Atlântica, 28(1), 13–24.
Viégas, V. R. 2021. Mecanismos para a gestão integrada
entre a bacia hidrográfica e a zona costureira:
diagnóstico da sub-bacia hidrográfica do Arroio Teixeira
em Tapes/RS (mathesis). Universidade Federal do Rio
Grande do Sul, Porto Alegre.
Watanabe, F., Alcântara, E., Bernardo, N., Andrade, C. de,
Gomes, A. C., Carmo, A. do, Rodrigues, T. & Rotta, L. H.
Mapping the chlorophyll-a horizontal gradient in
a cascading reservoirs system using MSI Sentinel-2A
images. Advances in Space Research, 64(3), 581–590.
DOI: https://doi.org/10.1016/j.asr.2019.04.035
Watanabe, F., Alcântara, E., Rodrigues, T., Rotta, L.,
Bernardo, N., Imai, N., Sayuri, F. & Watanabe, Y. 2018.
Remote sensing of the chlorophyll-a based on OLI/
Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir,
Brazil). Anais Da Academia Brasileira de Ciências,
(2 suppl 1), 1987–2000. DOI: https://doi.org/10.1590/
-3765201720170125
Xavier, A. C., King, C. W. & Scanlon, B. R. 2016. Daily
gridded meteorological variables in Brazil (1980-2013).
International Journal of Climatology, 36(6), 2644–2659.
DOI: https://doi.org/10.1002/joc.4518
Yin, F., Lewis, P., Gomez-Dans, J. & Wu, Q. 2019. Bayesian
atmospheric correction over land: Sentinel-2/MSI and
Landsat 8/OLI. Geoscientific Model Development, 15,
–7976. DOI: https://doi.org/10.31223/osf.io/ps957
Yunes, J. S. 2009. Florações de microcystis na lagoa dos
patos e o seu estuário: 20 Anos de Estudos. Oecologia
Australis, 13(2), 313–318. DOI: https://doi.org/10.4257/
oeco.2009.1302.06
Yunes, J. S., Niencheski, L. F. H., Salomon, P. S., Parise, M.,
Beattie, K. A., Raggett, S. L. & Codd, G. A. 1998. Effect
of nutrient balance and physical factors on blooms of
toxic cyanobacteria in the Patos Lagoon, southern
Brazil. SIL Proceedings, 1922-2010, 26(4), 1796–1800.