Temporal patterns of picoplankton abundance and metabolism on the western coast of the equatorial Atlantic Ocean

Authors

  • Maiara Menezes
  • Pedro C. Junger
  • Vinicius S. Kavagutti
  • Bruno Wanderley
  • Anderson de Souza Cabral
  • Rodolfo Paranhos
  • Fernando Unrein
  • André M. Amado
  • Hugo Sarmento

DOI:

https://doi.org/10.1590/

Keywords:

Flow cytometry, Bacterioplankton, Picoeukaryotes, Carbon cycling

Abstract

Picoplankton are central global carbon (C) cycling players and often dominate the ocean plankton communities,
especially in low latitudes. Therefore, evaluating picoplankton temporal dynamics is critical to understanding
microbial stocks and C fluxes in tropical oceans. However, the lack of studies on low-latitude picoplankton
communities translates into a common conception that there is an absence of seasonality. Herein, we studied the
temporal variation in abundance (measured by flow cytometry), and carbon flux (taking bacterial production and
respiration as proxies) of the picoplanktonic community for the first time, as well as their environmental drivers
in a low-latitude (05° 59’ 20.7″S 035° 05’ 14.6″W) Atlantic coastal station. We performed monthly samplings
between February 2013 and August 2016 in a novel microbial observatory – hereafter called the Equatorial Atlantic
Microbial Observatory – established on the northeastern Brazilian Atlantic coast. Our results revealed stability
in temporal dynamics of picoplankton, despite a considerable inter-annual variation, with some related to the El
Niño (ENSO) event in 2015. However, weak environmental relationships found were not enough to explain the
variation in picoplankton’s abundance, which suggests that other factors such as biological interactions may lead
to picoplankton abundance variation over time. Heterotrophic bacteria dominated picoplankton during the entire
study period and between photosynthetic counterparts, and Synechococcus showed greater relative importance
than picoeukaryotes. These results bring a novel perspective that picoplankton may exhibit more pronounced
fluctuations in the tropical region when considering inter-annual intervals, and is increasing prokaryotic contribution
to carbon cycling towards the equator.

References

AGAWIN, N. S. R., DUARTE, C. M., AGUSTÍ, S. & MCMANUS, L. 2003. Abundance, biomass and growth rates

of Synechococcus sp. in a tropical coastal ecosystem

(Philippines, South China Sea). Estuarine, Coastal

and Shelf Science, 56(3-4), 493-502, DOI: https://doi.

org/10.1016/S0272-7714(02)00200-7

AMADO, A. M., MEIRELLES-PEREIRA, F., VIDAL, L. O.,

SARMENTO, H., SUHETT, A. L., FARJALLA, V. F., COTNER, J. B. & ROLAND, F. 2013. Tropical freshwater

ecosystems have lower bacterial growth efficiency than

temperate ones. Frontiers in Microbiology, 4, 167, DOI:

https://doi.org/10.3389/fmicb.2013.00167

ANDRADE, L., GONZALEZ, A. M., VALENTIN, J. L.

& PARANHOS, R. 2004. Bacterial abundance and

production in the southwest Atlantic Ocean. Hydrobiologia, 511, 103-111. DOI: https://doi.org/10.1023/

B:HYDR.0000014033.81848.48

ARRIGO, K. R. 2005. Molecular diversity and ecology of microbial plankton. Nature, 437(15), 349-355, DOI: https://

doi.org/10.1038/nature04158

AZAM, F., FENCHEL, T., FIELD, J. G., GRAY, J. S.,

MEYER-REIL, L. A. & THINGSTAD, F. 1983. The ecological role of water-column microbes in the sea. Marine

Ecology Progress Series, 10, 257-263.

AZAM, F. & WORDEN, A. Z. 2004. Microbes, molecules,

and marine ecosystems. Science, 303(5664), 1622-

BARTH, R. & HAUILA, G. 1968. Estudos volumétricos em

plâncton capturado na costa brasileira entre Recife e

Cabo Orange. Publicações do Instituto de Pesquisa Marinha, 28, 1-14.

BERGGREN, M., LAPIERRE, J. F. & DEL GIORGIO, P. A.

Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME Journal, 6(5), 984-993, DOI: https://doi.

org/10.1038/ismej.2011.157

BERGO, N. M., SIGNORI, C. N., AMADO, A. M., BRANDINI, F. P. & PELLIZARI, V. H. 2017. The partitioning

of carbon biomass among the pico-and nano-plankton

community in the South Brazilian bight during a strong

summer intrusion of south Atlantic central water.

Frontiers in Marine Science, 4, 238, DOI: https://doi.

org/10.3389/fmars.2017.00238

BIDDANDA, B., OPSAHL, S. & BENNER, R. 1994. Plankton

respiration and carbon flux through bacterioplankton

on the Louisiana shelf. Limnology and Oceanography, 39(6), 1259-1275, DOI: https://doi.org/10.4319/

lo.1994.39.6.1259

BIDIGARE, R. R. & ONDRUSEK, M. E. 1996. Spatial and

temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep Sea

Research Part II: Topical Studies in Oceanography,

(4-6), 809-833, DOI: https://doi.org/10.1016/0967-

(96)00019-7

BLANCHOT, J. & RODIER, M. 1996. Picophytoplankton abundance and biomass in the western tropical Pacific Ocean during

the 1992 El Nino year: results from flow cytometry. Deep-Sea

Research Part I: Oceanographic Research Papers, 43(6), 877-

, DOI: https://doi.org/10.1016/0967-0637(96)00026-X

Temporal patterns of picoplankton in the tropics

Ocean and Coastal Research 2023, v71(suppl 2):e23019 17

Menezes et al.

BRIAND, E., PRINGAULT, O., JACQUET, S. & TORRÉTON, J.

P. 2004. The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth

efficiency. Limnology and Oceanography: Methods, 2(12),

-416, DOI: https://doi.org/10.4319/lom.2004.2.406

BRUNN, J. R., IGNACIO-ESPINOZA, J. C., ROUX, S.,

DOULCIER, G., ACINAS, S. G., ALBERTI, A., CHAFFRON, S., CRUAUD, C., VARGAS, C., GASOL, J. P.,

GORSKY, G., GREGORY, A. C., GUIDI, L., HINGAMP,

P., IUDICONE, D., NOT, F., OGATA, H., PESANT, S.,

POULOS, B. T., SCHWENCK, S. M., SPEICH, S., DIMIER, STEFANIE KANDELS-LEWIS, C., PICHERAL, M.,

SEARSON, S., COORDINATORS, T. O., BORK, P., BOWLER, C., SUNAGAWA, S., WINCKER, P., KARSENTI, E.

& SULLIVAN, M. B. 2015. Patterns and ecological drivers

of ocean viral communities. Science, 348, 6237.

CAMPBELL, L., LIU, H., NOLLA, H. A. & VAULOT, D. 1997.

Annual variability of phytoplankton and bacteria in the

subtropical North Pacific Ocean at Station ALOHA during the 1991-1994 ENSO event. Deep-Sea Research

Part I: Oceanographic Research Papers, 44(2), 167-192,

DOI: https://doi.org/10.1016/S0967-0637(96)00102-1

CASTELLANOS, P., PELEGRÍ, J. L., CAMPOS, E. J. D.,

ROSELL-FIESCHI, M. & GASSER, M. 2015. Response

of the surface tropical Atlantic Ocean to wind forcing.

Progress in Oceanography, 134, 271-292, DOI: https://

doi.org/10.1016/j.pocean.2015.02.005

CASTRO, B., BRANDINI, F., PIRES-VANIN, A. & MIRANDA, L. 2005. Multidisciplinary oceanographic processes

on the Western Atlantic continental shelf between 4 N

and 34 S. The Sea, 14, 259-293.

COTNER, J. B. & BIDDANDA, B. A. 2002. Small players,

large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems,

(2), 105-121, DOI: https://doi.org/10.1007/s10021-

-0059-3

CROSBIE, N. D. & FURNAS, M. J. 2001. Abundance distribution and flow cytometry characterization of picophytoplankton populations in central and southern shelf

waters of the great barrier reef. Journal of Plankton Research, 23(8), 809-828.

DANDONNEAU, Y., DESCHAMPS, P. Y., NICOLAS, J. M.,

LOISEL, H., BLANCHOT, J., MONTEL, Y., THIEULEUX,

F. & BÉCU, G. 2004. Seasonal and interannual variability of ocean color and composition of phytoplankton

communities in the North Atlantic, equatorial Pacific and

South Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 51(1-3), 303-318, DOI: https://

doi.org/10.1016/j.dsr2.2003.07.018

DEL GIORGIO, P. A., BIRD, D. F., PRAIRIE, Y. T. &

PLANAS, D. 1996. Flow cytometric determination of

bacterial abundance in lake plankton with the green

nucleic acid stain SYTO 13. Limnology and Oceanography, 41(4), 783-789, DOI: https://doi.org/10.4319/

lo.1996.41.4.0783

DEL GIORGIO, P. A., CONDON, R., BOUVIER, T., LONGNECKER, K., BOUVIER, C., SHERR, E. & GASOL, J.

M. 2011. Coherent patterns in bacterial growth, growth

efficiency, and leucine metabolism along a northeastern

Pacific inshore-offshore transect. Limnology and Oceanography, 56(1), 1-16, DOI: https://doi.org/10.4319/

lo.2011.56.1.0001

DEL GIORGIO, P. A. & DUARTE, C. M. 2002. Respiration in

the open ocean. Nature, 420, 379-384.

DEL GIORGIO, P. A. & WILLIAMS, P. J. 2005. Respiration

in aquatic ecosystems. Oxford: Oxford University Press.

DURAND, M. D., OLSON, R. J. & CHISHOLM, S. W. 2001.

Phytoplankton population dynamics at the Bermuda

Atlantic Time-series station in the Sargasso Sea. Deep-

-Sea Research Part II: Topical Studies in Oceanography, 48(8-9), 1983-2003, DOI: https://doi.org/10.1016/

S0967-0645(00)00166-1

FALKOWSKI, P. G., KATZ, M. E., KNOLL, A. H., QUIGG,

A., RAVEN, J. A., SCHOFIELD, O. & TAYLOR, F. J.

R. 2004. The evolution of modern eukaryotic phytoplankton. Science, 305(5682), 354-360, DOI: https://doi.

org/10.1126/science.1095964

FENCHEL, T. 1988. Marine plankton food chains. Annual

Review of Ecology and Systematics, 19, 19-38, DOI: https://doi.org/10.1146/annurev.ecolsys.19.1.19

FRAZÃO, L. R., PENNINCK, S. B., MICHELAZZO, L. S.,

MORENO, G., GUIMARÃES, C., LOPES, R. M. &

SIGNORI, C. N. 2021. Microbial ecology of the South Atlantic Subtropical Gyre: A state-of-the-art review

of an understudied ocean region. Ocean and Coastal

Research, 69, 122. DOI: https://doi.org/10.1590/2675-

-2824069.20026lrf

FUHRMAN, J., SLEETER, T., CARLSON, C. & PROCTOR, L. 1989. Dominance of bacterial biomass in the

Sargasso Sea and its ecological implications. Marine

Ecology Progress Series, 57, 207-217, DOI: https://doi.

org/10.3354/meps057207

GASOL, J. M. & DUARTE, C. M. 2000. Comparative analyses in aquatic microbial ecology: how far do they go?

FEMS Microbiology Ecology, 31(2), 99-106, DOI: https://doi.org/10.1016/S0168-6496(99)00090-2

GASOL, J. M. & DEL GIORGIO, P. A. 2000. Using flow

cytometry for counting natural planktonic bacteria and

understanding the structure of planktonic bacterial communities. Scientia Marina, 64(2), 197-224.

GASOL, J. M. & KIRCHMAN, D. L. 2018. Microbial ecology of the oceans. Journal of Plankton Research,

(4), 500-502, DOI: https://doi.org/10.1093/plankt/

fby022

GASOL, J. M., PEDRÓS-ALIÓ, C. & VAQUÉ, D. 2002. Regulation of bacterial assemblages in oligotrophic plankton

systems: Results from experimental and emperical approaches. Antonie van Leeuwenhoek, 81(1-4), 435-452,

DOI: https://doi.org/10.1023/A:1020578418898

GIOVANNONI, S. J. & VERGIN, K. L. 2012. Seasonality in ocean microbial communities. Science,

(6069), 671-676, DOI: https://doi.org/10.1126/

science.1198078

GRASSHOFF, K., KREMLING, K. & EHRHARDR, M.

Methods of seawater analysis. Weinheim: Wiley-VCH.

GUENTHER, M., GONZALEZ-RODRIGUEZ, E., FLORES-

-MONTES, M., ARAÚJO, M. & NEUMANN-LEITÃO, S.

High bacterial carbon demand and low growth

efficiency at a tropical hypereutrophic estuary: importance of dissolved organic matter remineralization. Brazilian Journal of Oceanography, 65(3), 382-391.

Temporal patterns of picoplankton in the tropics

Ocean and Coastal Research 2023, v71(suppl 2):e23019 18

Menezes et al.

HERBLAND, A., LE BOUTEILLER, A. & RAIMBAULT, P.

Size structure of phytoplankton biomass in the

equatorial Atlantic Ocean. Deep Sea Research Part A,

Oceanographic Research Papers, 32(7), 819-836, DOI:

https://doi.org/10.1016/0198-0149(85)90118-9

HEYWOOD, J. L., ZUBKOV, M. V., TARRAN, G. A., FUCHS, B. M. & HOLLIGAN, P. M. 2006. Prokaryoplankton

standing stocks in oligotrophic gyre and equatorial provinces of the Atlantic Ocean: evaluation of inter-annual

variability. Deep-Sea Research Part II: Topical Studies

in Oceanography, 53(14-16), 1530-1547, DOI: https://

doi.org/10.1016/j.dsr2.2006.05.005

HOPPE, H. G., GOCKE, K., KOPPE, R. & BEGLER, C. 2002.

Bacterial growth and primary production along a north-

-south transect of the Atlantic Ocean. Nature, 416(6877),

-171, DOI: https://doi.org/10.1038/416168a

JIAO, N., YANG, Y., HONG, N., MA, Y., HARADA, S.,

KOSHIKAWA, H. & WATANABE, M. 2005. Dynamics

of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Continental Shelf Research, 25(10), 1265-1279, DOI: https://doi.org/10.1016/j.

csr.2005.01.002

KARL, D. M. & CHURCH, M. J. 2014. Microbial oceanography and the Hawaii Ocean Time-series programme.

Nature Reviews Microbiology, 12(10), 699-713, DOI: https://doi.org/10.1038/nrmicro3333

KARL, D. M., HEBEL, D. V., BJÖRKMAN, K. & LETELIER,

R. M. 1998. The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific

Ocean. Limnology and Oceanography, 43(6), 1270-

, DOI: https://doi.org/10.4319/lo.1998.43.6.1270

KAVAGUTTI, V. S. & SARMENTO, H. 2016. Biotic factors

drive bacterioplankton community in a tropical coastal

site of the Equatorial Atlantic Ocean. DSc. São Carlos

(SP): UFSCAR (Universidade Federal de São Carlos).

KIRCHMAN, D. L. 1992. Incorporation of thymidine and leucine in the subarctic Pacific: application to estimating

bacterial production. Marine Ecology Progress Series,

, 301-309, DOI: https://doi.org/10.3354/meps082301

LANDRY, M. R., KIRSHTEIN, J. & CONSTANTINOU, J.

Abundances and distributions of picoplankton populations in the central equatorial pacific from 12°N to

°S, 140°W. Deep-Sea Research Part II: Topical Studies in Oceanography, 43(4-6), 871-890, DOI: https://

doi.org/10.1016/0967-0645(96)00018-5

LEE, C. W., BONG, C. W. & HII, Y. S. 2009. Temporal

variation of bacterial respiration and growth efficiency

in tropical coastal waters. Applied and Environmental Microbiology, 75(24), 7594-7601, DOI: https://doi.

org/10.1128/AEM.01227-09

LEGENDRE, L. & RASSOULZADEGAN, F. 1995. Plankton

and nutrient dynamics in marine waters. Ophelia, 41(1),

-172, DOI: https://doi.org/10.1080/00785236.1995.

LEWIS, W. M. 1976. Surface/volume ratio: implications for

phytoplankton morphology. Science, 192(4242), 885-

, DOI: https://doi.org/10.1126/science.192.4242.885

LI, X., SUI, C., ADAMEC, D. & LAU, K. 1998. Impacts of

precipitation in the upper ocean in the western Pacific

warm pool during TOGA-COARE. Journal of Geophysical Research, 103(C3), 5347-5359.

LITCHMAN, E., PINTO, P. T., EDWARDS, K. F., KLAUSMEIER, C. A., KREMER, C. T. & THOMAS, M. K. 2015.

Global biogeochemical impacts of phytoplankton: a trait-

-based perspective. Journal of Ecology, 103(6), 1384-

, DOI: https://doi.org/10.1111/1365-2745.12438

LIU, H., CHANG, J., TSENG, C. M., WEN, L. S. & LIU, K.

K. 2007. Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station. Deep-Sea

Research Part II: Topical Studies in Oceanography,

(14-15), 1602-1616, DOI: https://doi.org/10.1016/j.

dsr2.2007.05.004

LONGHRUST, A. R. & PAULY, D. 1987. Ecology of tropical

oceans. Cambridge: Academic Press, DOI: https://doi.

org/10.1016/c2009-0-02861-x

LUHTALA, H. & TOLVANEN, H. 2013. Optimizing the use

of secchi depth as a proxy for euphotic depth in coastal

waters: an empirical study from the Baltic sea. ISPRS

International Journal of Geo-Information, 2(4), 1153-

, DOI: https://doi.org/10.3390/ijgi2041153

MAGUE, T. H., FRIBERG, E., HUGHES, D. J. & MORRIS, I. 1980. Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnology

and Oceanography, 25(2), 262-279, DOI: https://doi.

org/10.4319/lo.1980.25.2.0262

MARAÑON, E., HOLLIGAN, P. M., VARELA, M., MOURIÑO, B. & BALE, A. J. 2000. Basin-scale variability of

phytoplankton biomass, production and growth in the

Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 47(5), 825-857, DOI: https://doi.

org/10.1016/S0967-0637(99)00087-4

MARENGO, J. A., TORRES, R. R. & ALVES, L. M. 2017.

Drought in Northeast Brazil—past, present, and future.

Theoretical and Applied Climatology, 129(3-4), 1189-

, DOI: https://doi.org/10.1007/s00704-016-1840-8

MARIE, D., PARTENSKY, F., JACQUET, S. & VAULOT, D.

Enumeration and cell cycle analysis of natural

populations of marine picoplankton by flow cytometry

using the nucleic acid stain SYBR Green I. Applied

and Environmental Microbiology, 63(1), 186-193, DOI:

https://doi.org/10.1128/aem.63.1.186-193.1997

MARIE, D., SHI, X. L., RIGAUT-JALABERT, F. & VAULOT,

D. 2010. Use of flow cytometric sorting to better assess the diversity of small photosynthetic eukaryotes

in the English Channel. FEMS Microbiology Ecology,

(2), 165-178, DOI: https://doi.org/10.1111/j.1574-

2010.00842.x

MARTINY, A. C., PHAM, C. T. A., PRIMEAU, F. W., VRUGT,

J. A., MOORE, J. K., LEVIN, S. A. & LOMAS, M. W. 2013.

Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience, 6(4),

-283, DOI: https://doi.org/10.1038/ngeo1757

MASSANA, R. 2011. Eukaryotic picoplankton in surface oceans. Annual Reviews of Microbiology, 65,

-110, DOI: https://doi.org/10.1146/annurev-micro-090110-102903

MOORE, L. R., GOERICKE, R. & CHISHOLM, S. W. 1995.

Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on

growth, pigments, fluorescence and absortive properties. Marine Ecology Progress Series, 116, 259-275,

DOI: https://doi.org/10.3354/meps116259

Temporal patterns of picoplankton in the tropics

Ocean and Coastal Research 2023, v71(suppl 2):e23019 19

Menezes et al.

MORÁN, X. A. G., LÓPEZ-URRUTIA, Á., CALVO-DÍAZ,

A. & LI, W. K. W. 2010. Increasing importance of small

phytoplankton in a warmer ocean. Global Change Biology, 16(3), 1137-1144, DOI: https://doi.org/10.1111/

j.1365-2486.2009.01960.x

MORENO-OSTOS, E., FERNÁNDEZ, A., HUETE-ORTEGA, M., MOURIÑO-CARBALLIDO, B., CALVO-DÍAZ,

A., MORÁN, X. A. G. & MARAÑÓN, E. 2011. Size-fractionated phytoplankton biomass and production in the

tropical Atlantic. Scientia Marina, 75(2), 379-389, DOI:

https://doi.org/10.3989/scimar.2011.75n2379

MOSER, G. A. O., CASTRO, N. O., TAKANOHASHI, R.

A., FERNANDES, A. M., POLLERY, R. C. G., TENENBAUM, D. R., VARELA-GUERRA, J., BARRERA-ALBA,

J. J. & CIOTTI, A. M. 2016. The influence of surface

low-salinity waters and cold subsurface water masses

on picoplankton and ultraplankton distribution in the

continental shelf off Rio de Janeiro, SE Brazil. Continental Shelf Research, 120, 82-95, DOI: https://doi.

org/10.1016/j.csr.2016.02.017

NIMER, E. 1979. Climatologia do Brasil. Rio de Janeiro:

Supren IBGE.

NOT, F., DEL CAMPO, J., BALAGUÉ, V., VARGAS, C. &

MASSANA, R. 2009. New insights into the diversity of

marine picoeukaryotes. PLoS One, 4(9), e7143, DOI:

https://doi.org/10.1371/journal.pone.0007143

PARANHOS, R., ANDRADE, L., MENDONÇA-HAGLER, L.

C. & PFEIFFER, W. C. 2001. Coupling bacterial abundance with production in a polluted tropical coastal bay.

Oecologia Brasiliensis, 9, 117-132.

PARTENSKY, F., BLANCHOT, J., LANTOINE, F., NEVEUX, J. & MARIE, D. 1996. Vertical structure of

picophytoplankton at different trophic sites of the

tropical northeastern Atlantic Ocean. Deep-Sea

Research Part I: Oceanographic Research Papers,

(8), 1191-1213, DOI: https://doi.org/10.1016/0967-

(96)00056-8

PARTENSKY, F., BLANCHOT, J. & VAULOT, D. 1999. Differential distribution and ecology of Prochlorococcus

and Synechococcus in oceanic waters: a review. Marine

Cyanobacteria, 19(1999), 457-475.

PARTENSKY, F. & GARCZAREK, L. 2010. Prochlorococcus: advantages and limits of minimalism. Annual Review of Marine Science, 2, 305-331, DOI: https://doi.

org/10.1146/annurev-marine-120308-081034

PÉREZ, V., FERNÁNDEZ, E., MARAÑÓN, E., SERRET, P.,

VARELA, R., BODE, A., VARELA, M., VARELA, M. M.,

MORÁN, X. A. G., WOODWARD, E. M. S., KITIDIS, V. &

GARCÍA-SOTO, C. 2005. Latitudinal distribution of microbial plankton abundance, production, and respiration

in the Equatorial Atlantic in autumn 2000. Deep-Sea Research Part I: Oceanographic Research Papers, 52(5),

-880, DOI: https://doi.org/10.1016/j.dsr.2005.01.002

POMEROY, L. R. 1974. The ocean’s food web, a changing

paradigm. BioScience, 24(9), 499-504.

PRADEEP RAM, A. S., NAIR, S. & CHANDRAMOHAN,

D. 2003. Bacterial growth efficiency in the tropical estuarine and coastal waters of Goa, southwest coast of

India. Microbial Ecology, 45(1), 88-96, DOI: https://doi.

org/10.1007/s00248-002-3005-9

RIBEIRO, C. G., LOPES, A., MARIE, D., PELLIZARI, V. H.,

BRANDINI, F. P. & VAULOT, D. 2016. Pico and nanoplankton abundance and carbon stocks along the Brazilian

Bight. PeerJ, 1-20, DOI: https://doi.org/10.7717/peerj.2587

RIBEIRO, C. G., MARIE, D., SANTOS, A. L., BRANDINI, F.

P. & VAULOT, D. 2016. Estimating microbial populations

by flow cytometry: Comparison between instruments.

Limnology and Oceanography: Methods, 14(11), 750-

, DOI: https://doi.org/10.1002/lom3.10135

RODRIGUES, R. R., HAARSMA, R. J., CAMPOS, E. J.

D. & AMBRIZZI, T. 2011. The impacts of inter-El Niño

variability on the tropical Atlantic and northeast Brazil

climate. Journal of Climate, 24(13), 3402-3422, DOI: https://doi.org/10.1175/2011JCLI3983.1

RUIZ-GONZÁLEZ, C., LEFORT, T., GALÍ, M., MONTSERRAT

SALA, M., SOMMARUGA, R., SIMÓ, R. & GASOL, J. M.

Seasonal patterns in the sunlight sensitivity of bacterioplankton from Mediterranean surface coastal waters.

FEMS Microbiology Ecology, 79(3), 661-674, DOI: https://

doi.org/10.1111/j.1574-6941.2011.01247.x

SARMENTO, H. 2012. New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia, 686(1), 1-14, DOI: https://doi.org/10.1007/

s10750-012-1011-6

SARMENTO, H., MONTOYA, J. M., VÁZQUEZ-DOMÍNGUEZ, E., VAQUÉ, D. & GASOL, J. M. 2010. Warming

effects on marine microbial food web processes: how

far can we go when it comes to predictions? Philosophical Transactions of the Royal Society B: Biological

Sciences, 365(1549), 2137-2149, DOI: https://doi.

org/10.1098/rstb.2010.0045

SATHICQ, M. B., UNREIN, F. & GÓMEZ, N. 2020. Recurrent

pattern of picophytoplankton dynamics in estuaries around

the world: The case of Río de la Plata. Marine Environmental Research, 161, 105136, DOI: https://doi.org/10.1016/j.

marenvres.2020.105136

SCHATTENHOFER, M., FUCHS, B. M., AMANN, R.,

ZUBKOV, M. V., TARRAN, G. A. & PERNTHALER, J.

Latitudinal distribution of prokaryotic picoplankton

populations in the Atlantic Ocean. Environmental Microbiology, 11(8), 2078-2093, DOI: https://doi.org/10.1111/

j.1462-2920.2009.01929.x

SHARPER, J. H. 1983. The distribution of inorganic nitrogen and dissolved and particulate organic nitrogen

in the sea. In: CARPENTER, E. G. & CAPONE, D. G.

(eds.). Nitrogen in the marine environment. New York:

Academic Press, pp. 1-35.

SHERR, E. B. & SHERR, B. F. 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food

webs. Microbial Ecology, 28, 223-235.

SHERR, E. & SHERR, B. 1988. Role of microbes in pelagic

food webs: a revised concept. Limnology and Oceanography, 33(5), 1225-1227, DOI: https://doi.org/10.4319/

lo.1988.33.5.1225

SHIAH, F. K., CHEN, T. Y., GONG, G. C., CHEN, C. C.,

CHIANG, K. P. & HUNG, J. J. 2001. Differential coupling of bacterial and primary production in mesotrophic

and oligotrophic systems of the East China Sea. Aquatic Microbial Ecology, 23(3), 273-282, DOI: https://doi.

org/10.3354/ame023273

Temporal patterns of picoplankton in the tropics

Ocean and Coastal Research 2023, v71(suppl 2):e23019 20

Menezes et al.

SIEBURTH, J. M., SMETACEK, V. & LENZ, J. 1978. Pelagic ecosystem structure: Heterotrophic. Limnology and

Oceanography, 23(6), 1256-1263.

SILVA, M., ARAUJO, M., SERVAIN, J., PENVEN, P. & LENTINI, C. A. D. 2009. High-resolution regional ocean

dynamics simulation in the southwestern tropical Atlantic. Ocean Modelling, 30(4), 256-269, DOI: https://doi.

org/10.1016/j.ocemod.2009.07.002

SMITH, D. C. & AZAM, F. 1992. A simple, economical method for measuring bacterial protein synthesis rates in

seawater using tritiated-leucine. Marine Microbial Food

Webs, 6(2), 107-114.

STERNER, R. W., CLASEN, J., LAMPERT, W. & WEISSE, T. 1998. Carbon: phosphorus stoichiometry and

food chain production. Ecology Letters, 1(3), 146-

TAYLOR, A. G., LANDRY, M. R., FREIBOTT, A., SELPH, K.

E. & GUTIERREZ-RODRÍGUEZ, A. 2015. Patterns of

microbial community biomass, composition and HPLC

diagnostic pigments in the Costa Rica upwelling dome.

Journal of Plankton Research, 38(2), 183-198, DOI: https://doi.org/10.1093/plankt/fbv086

VAQUÉ, D., ALONSO-SÁEZ, L., ARÍSTEGUI, J., AGUSTÍ,

S., DUARTE, C. M., SALA, M. M., VÁZQUEZ-DOMÍNGUEZ, E. & GASOL, J. M. 2014. Bacterial production

and losses to predators along an open ocean productivity gradient in the Subtropical North East Atlantic Ocean.

Journal of Plankton Research, 36(1), 198-213, DOI: https://doi.org/10.1093/plankt/fbt085

VAULOT, D., EIKREM, W., VIPREY, M. & MOREAU, H.

The diversity of small eukaryotic phytoplankton

(≤3 μm) in marine ecosystems. FEMS Microbiology

Reviews, 32(5), 795-820, DOI: https://doi.org/10.1111/

j.1574-6976.2008.00121.x

VÁZQUEZ-DOMÍNGUEZ, E., DUARTE, C. M., AGUSTÍ,

S., JÜRGENS, K., VAQUÉ, D. & GASOL, J. M. 2008.

Microbial plankton abundance and heterotrophic activity

across the Central Atlantic Ocean. Progress in Oceanography, 79(1), 83-94, DOI: https://doi.org/10.1016/j.

pocean.2008.08.002

VITAL, H., GOMES, M. P., TABOSA, W. F., FRAZÃO, E.

P., SANTOS, C. L. A. & PLÁCIDO JÚNIOR, J. S. 2010.

Characterization of the Brazilian continental shelf adjacent to Rio Grande do Norte State, Ne Brazil. Brazilian

Journal of Oceanography, 58(spe1), 43-54, DOI: https://

doi.org/10.1590/s1679-87592010000500005

WATERBURY, J. B., WATSON, S. W., GUILLARD, R. R. &

BRAND, L. E. 1979. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature,

(25), 293-294.

WHITE, P. A., KALFF, J., RASMUSSEN, J. B. & GASOL, J.

M. 1991. The effect of temperature and algal biomass

on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology, 21, 99-

, DOI: https://doi.org/10.1007/BF02539147

WORDEN, A. Z., NOLAN, J. K. & PALENIK, B. 2004. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component.

Limnology and Oceanography, 49(1), 168-179, DOI:

https://doi.org/10.4319/lo.2004.49.1.0168

XIE, S. P. & CARTON, J. A. 2004. Tropical Atlantic variability: patterns, mechanisms, and impacts. Geophysical Monograph Series, 147, 121-142, DOI: https://doi.

org/10.1029/147GM07

ZUBKOV, M. V., SLEIGH, M. A., BURKILL, P. H. & LEAKEY,

R. J. G. 2000. Picoplankton community structure on the

Atlantic Meridional Transect: A comparison between

seasons. Progress in Oceanography, 45(3-4), 369-386,

DOI: https://doi.org/10.1016/S0079-6611(00)00008-2

ZUBKOV, M. V., SLEIGH, M. A., TARRAN, G. A., BURKILL,

P. H. & LEAKEY, R. J. G. 1998. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S.

Deep-Sea Research Part I: Oceanographic Research

Papers, 45(8), 1339-1355, DOI: https://doi.org/10.1016/

S0967-0637(98)00015-6

ZUUR, A. F., IENO, E. N., WALKER, N. J., SAVELIEV, A. A.

& SMITH, G. M. 2008. Mixed effects models and extensions in ecology with R. Journal of Statistical Software,

(b01), 1-3.

Downloads

Published

2024-04-10

How to Cite

Temporal patterns of picoplankton abundance and metabolism on the western coast of the equatorial Atlantic Ocean. (2024). Ocean and Coastal Research, 71(Suppl. 2). https://doi.org/10.1590/