Sea-air CO2 fluxes along the Brazilian continental margin

Authors

  • Helen Michelle de Jesus Affe
  • Diogo Souza Bezerra Rocha
  • Fernanda Reinhardt Piedras
  • Gleyci Aparecida Oliveira Moser
  • Moacyr Cunha de Araujo Filho
  • Leticia Cotrim da Cunha

DOI:

https://doi.org/10.1590/

Keywords:

Atlantic Ocean, Blue Amazon, Carbonate system, CO2 source or sink, Brazilian marine ecoregions.

Abstract

Measurements of the marine carbonate system on tropical and subtropical continental margins are poorly
distributed in space and time, with many uncertainties persisting regarding the role of carbon exchanges at the
ocean-atmosphere interface in these areas. To calculate sea-to-air CO2
 fluxes in Marine Ecoregions along the
Brazilian continental margin (4°N to 34°S), we used data from the Surface Ocean CO2
 Atlas (SOCAT v2020),
collected up to 400 km from the coast, at the surface (5 m), between 1991 and 2018, with the aim of investigating
the role of ecoregions as potential sinks or sources of atmospheric CO2
. The temperature and salinity of seawater
presented variability in the north-south direction mainly because of the broad latitudinal range, reflecting typical
patterns of tropical (T = 27.4°C ±1.49; S = 36.4 ±1.91) and subtropical waters (T = 22.8°C ±3.41; S = 35 ±2.91), in
addition to the greater or lesser influence of river inputs in each ecoregion. The pCO2
 values in the surface waters
varied from 121.81 (Amazon) to 478.92 µatm (Eastern), differing significantly between ecoregions and showing
an expected decadal increasing trend, both in the atmosphere and in the seawater. The calculated values of CO2
fluxes showed non-homogeneous spatio-temporal variations, from -24.37 mmol m-2 d-1 (Rio Grande) to 9.87 mmol
m- 2 d-1 (Southeastern). Throughout the analyzed time series, we observed that the Northeast, Amazon and Eastern
ecoregions acted predominantly as sources of CO2
 and the Southeastern ecoregions and, mainly, Rio Grande,
acted predominantly as sinks of atmospheric CO2

References

ABRIL, G., DEBORDE, J., SAVOYE, N., MATHIEU, F.,

MOREIRA-TURCQ, P., ARTIGAS, F., MEZIANE, T.,

TAKIYAMA, L. R., SOUZA, M. S. & SEYLER, P. 2013.

Export of 13C-depleted dissolved inorganic carbon from

a tidal forest bordering the Amazon estuary. Estuarine,

Coastal Shelf Science, 129, 23-27, DOI: https://doi.

org/10.1016/j.ecss.2013.06.020

ABRIL, G., MARTINEZ, J. M., ARTIGAS, L. F., MOREIRA-

-TURCQ, P., BENEDETTI, M. F., VIDAL, L., MEZIANE,

T., KIM, J. H., BERNARDES, M. C., SAVOYE, N., DEBORDE, J., SOUZA, E. L., ALBÉRIC, P., SOUZA, M.

F. & ROLAND, F. 2014. Amazon River carbon dioxide

outgassing fuelled by wetlands. Nature, 505, 395-398,

DOI: https://doi.org/10.1038/nature12797

CO2

fluxes in Brazilian marine ecoregions

Ocean and Coastal Research 2023, v71(suppl 2):e23017 14

Affe et al.

ARAUJO, M., NORIEGA, C., MEDEIROS, C., LEFÈVRE,

N., IBÁNHEZ, J. S. P., MONTES, M. F., SILVA, A. C.

& SANTOS, M. L., 2019. On the variability in the CO2

system and water productivity in the western tropical

Atlantic off North and Northeast Brazil. Journal of Marine Systems, 189, 62-77, DOI: https://doi.org/10.1016/j.

jmarsys.2018.09.008

ATLAS, R., HOFFMAN, R. N., ARDIZZONE, J., LEIDNER,

S. M., JUSEM, J. C., SMITH, D. K. & GOMBOS, D.

A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2), 157-174, DOI: https://doi.

org/10.1175/2010BAMS2946.1

BAKKER, D. C. E., PFEIL, B., LANDA, C. S., METZL, N.,

O’BRIEN, K. M., OLSEN, A., SMITH, K., COSCA, C.,

HARASAWA, S., JONES, S. D., NAKAOKA, S., NOJIRI, Y., SCHUSTER, U., STEINHOFF, T., SWEENEY,

C., TAKAHASHI, T., TILBROOK, B., WADA, C., WANNINKHOF, R., ALIN, S. R., BALESTRINI, C. F., BARBERO, L., BATES, N. R., BIANCHI, A. A., BONOU,

F., BOUTIN, J., BOZEC, Y., BURGER, E. F., CAI, W.

J., CASTLE, R. D., CHEN, L., CHIERICI, M., CURRIE, K., EVANS, W., FEATHERSTONE, C., FEELY, R.

A., FRANSSON, A., GOYET, C., GREENWOOD, N.,

GREGOR, L., HANKIN, S., HARDMAN-MOUNTFORD,

N. J., HARLAY, J., HAUCK, J., HOPPEMA, M., HUMPHREYS, M. P., HUNT, C. W., HUSS, B., IBÁNHEZ, J.

S. P., JOHANNESSEN, T., KEELING, R., KITIDIS, V.,

KÖRTZINGER, A., KOZYR, A., KRASAKOPOULOU, E.,

KUWATA, A., LANDSCHÜTZER, P., LAUVSET, S. K.,

LEFÈVRE, N., LO MONACO, C., MANKE, A., MATHIS,

J. T., MERLIVAT, L., MILLERO, F. J., MONTEIRO, P.

M. S., MUNRO, D. R., MURATA, A., NEWBERGER, T.,

OMAR, A. M., ONO, T., PATERSON, K., PEARCE, D.,

PIERROT, D., ROBBINS, L. L., SAITO, S., SALISBURY,

J., SCHLITZER, R., SCHNEIDER, B., SCHWEITZER,

R., SIEGER, R., SKJELVAN, I., SULLIVAN, K.F., SUTHERLAND, S. C., SUTTON, A. J., TADOKORO, K.,

TELSZEWSKI, M., TUMA, M., VAN HEUVEN, S. M. A.

C., VANDEMARK, D., WARD, B., WATSON, A. J. & XU,

S. 2020. A multi-decade record of high-quality fCO2

data

in version 3 of the Surface Ocean CO2

Atlas (SOCAT).

Earth System Science Data, 8(2), 383-413, DOI: https://

doi.org/10.5194/essd-8-383-2016

BAUER, J. E., CAI, W. J., RAYMOND, P. A., BIANCHI, T.

S., HOPKINSON, C. S. & REGNIER, P. A. G. 2013.

The changing carbon cycle of the coastal ocean. Nature, 504, 61-70, DOI: https://doi.org/10.1038/nature12857

BERNARDES, M., KNOPPERS, B., REZENDE, C.,

SOUZA, W. & OVALLE, A. 2012. Land-sea interface features of four estuaries on the South America

Atlantic coast. Brazilian Journal of Biology, 72(Suppl

, S761-S774, DOI: https://doi.org/10.1590/S1519-

BORGES, A. V., DELILLE, B. & FRANKIGNOULLE, M. 2005. Budgeting sinks and sources of CO2

in the coastal ocean: diversity of ecosystems

counts: coastal CO2 sinks and sources. Geophysical Research Letters, 32(14), 1-4, DOI: https://doi.

org/10.1029/2005GL023053

BRANDINI, F. P., NOGUEIRA, M., SIMIÃO, M., CODINA,

J. C. U. & NOERNBERG, M. A. 2013. Deep chlorophyll

maximum and plankton community response to oceanic

bottom intrusions on the continental shelf in the South

Brazilian Bight. Continental Shelf Research, 89, 61-75,

DOI: https://doi.org/10.1016/j.csr.2013.08.002

CAI, W. J., XU, Y. Y., FEELY, R.A., WANNINKHOF, R., JÖNSSON, B., ALIN, S. R., BARBERO, L., CROSS, J.N.,

AZETSU-SCOTT, K., FASSBENDER, A. J., CARTER,

B. R., JIANG, L. Q., PEPIN, P., CHEN, B., HUSSAIN, N.,

REIMER, J. J., XUE, L., SALISBURY, J. E., HERNÁNDEZ-AYÓN, J. M., LANGDON, C., LI, Q., SUTTON, A.

J., CHEN, C. T. A. & GLEDHILL, D. K. 2020. Controls on

surface water carbonate chemistry along North American

ocean margins. Nature Communications, 11, 2691, DOI:

https://doi.org/10.1038/s41467-020-16530-z

CALADO, L., SILVEIRA, I. C. A., GANGOPADHYAY, A. & CASTRO, B. M. 2010. Eddy-induced upwelling off Cape São

Tomé (22°S, Brazil). Continental Shelf Research, 30, 1181-

, DOI: https://doi.org/10.1016/j.csr.2010.03.007

CAMPOS, E. J. D., PIOLA, A. R., MATANO, R. P. & MILLER, J. L. 2008. PLATA: a synoptic characterization

of the southwest Atlantic shelf under influence of the

Plata River and Patos Lagoon outflows. Continental

Shelf Research, 28(13), 1551-1555, DOI: https://doi.

org/10.1016/j.csr.2008.03.007

CARVALHO, A. C. O., KERR, R., TAVANO, V. M. & MENDES,

C. R. B. 2022. The southwestern South Atlantic continental

shelf biogeochemical divide. Biogeochemistry, 159(2), 139-

, DOI: https://doi.org/10.1007/s10533-022-00918-8

CARVALHO, A. C. O., MARINS, R. V., DIAS, F. J. S., REZENDE, C. E., LEFÈVRE, N., CAVALCANTE, M. S. &

ESCHRIQUE, S. A. 2017. Air-sea CO2

fluxes for the

Brazilian northeast continental shelf in a climatic transition region. Journal of Marine Systems, 173, 70-80,

DOI: https://doi.org/10.1016/j.jmarsys.2017.04.009

CASTRO, B. M., BRANDINI, F. P., DOTTORI, M. & FORTES, J. F. 2017. A Amazônia Azul: recursos e preservação. Revista USP, 113, 7, DOI: https://doi.org/10.11606/

issn.2316-9036.v0i113p7-26

CHEN, C. T. A. & BORGES, A. V. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as

sources of atmospheric CO2

. Deep Sea Research Part

II: Topical Studies in Oceanography, 56(8-10), 578-590,

DOI: https://doi.org/10.1016/j.dsr2.2009.01.001

CHEN, C. T. A., HUANG, T. H., CHEN, Y. C., BAI, Y., HE,

X. & KANG, Y. 2013. Air-sea exchanges of CO2

in the

world’s coastal seas. Biogeosciences, 10, 6509-6544,

DOI: https://doi.org/10.5194/bg-10-6509-2013

CIOTTI, A. M., MAHIQUES, M. & MÖLLER, O. O. 2014.

The meridional gradients of the S-SE Brazilian continental shelf: introduction to the special volume. Continental

Shelf Research, 89, 1-4, DOI: https://doi.org/10.1016/j.

csr.2014.08.008

CIOTTI, A. M., ODEBRECHT, C., FILLMANN, G. & MOLLER, O. O. 1995. Freshwater outflow and Subtropical

Convergence influence on phytoplankton biomass on

the southern Brazilian continental shelf. Continental Shelf Research, 15, 1737-1756, DOI: https://doi.

org/10.1016/0278-4343(94)00091-Z

CO2

fluxes in Brazilian marine ecoregions

Ocean and Coastal Research 2023, v71(suppl 2):e23017 15

Affe et al.

COTOVICZ, L. C., CHIELLE, R. & MARINS, R. V. 2020.

Air-sea CO2

flux in an equatorial continental shelf dominated by coral reefs (Southwestern Atlantic Ocean).

Continental Shelf Research, 204, 104175, DOI: https://

doi.org/10.1016/j.csr.2020.104175

COTOVICZ, L. C., KNOPPERS, B. A., DEIRMENDJIAN,

L. & ABRIL, G. 2019. Sources and sinks of dissolved

inorganic carbon in an urban tropical coastal bay revealed by δ13C-DIC signals. Estuarine, Coastal and Shelf

Science, 220, 185-195, DOI: https://doi.org/10.1016/j.

ecss.2019.02.048

COTOVICZ, L. C., KNOPPERS, B. A., RÉGIS, C. R.,

TREMMEL, D., COSTA-SANTOS, S. & ABRIL, G. 2021.

Eutrophication overcoming carbonate precipitation in a

tropical hypersaline coastal lagoon acting as a CO2

sink

(Araruama Lagoon, SE Brazil). Biogeochemistry, 156,

, DOI: https://doi.org/10.1007/s10533-021-00842-3

COTOVICZ, L. C., VIDAL, L. O., REZENDE, C. E., BERNARDES, M. C., KNOPPERS, B. A., SOBRINHO, R.

L., CARDOSO, R. P., MUNIZ, M., ANJOS, R. M., BIEHLER, A. & ABRIL, G. 2020. Carbon dioxide sources and

sinks in the delta of the Paraíba do Sul River (Southeastern Brazil) modulated by carbonate thermodynamics,

gas exchange and ecosystem metabolism during estuarine mixing. Marine Chemistry, 226, 103869, DOI:

https://doi.org/10.1016/j.marchem.2020.103869

COYNEL, A., SEYLER, P., ETCHEBER, H., MEYBECK, M.

& ORANGE, D. 2005. Spatial and seasonal dynamics of

total suspended sediment and organic carbon species

in the Congo River: dynamics Of TSS, POC, And DOC

in the Congo River. Glob. Biogeochem. Cycles, 19, DOI:

https://doi.org/10.1029/2004GB002335

CUNHA, L. C. C. & BUITENHUIS, E. T. T. 2013. Riverine

influence on the tropical Atlantic Ocean biogeochemistry. Biogeosciences, 10, 6357-6373, DOI: https://doi.

org/10.5194/bg-10-6357-2013

FRIEDLINGSTEIN, P., JONES, M. W., O’SULLIVAN, M.,

ANDREW, R. M., HAUCK, J., PETERS, G. P., PETERS, W., PONGRATZ, J., SITCH, S., LE QUÉRÉ,

C., BAKKER, D. C. E., CANADELL, J. G., CIAIS, P.,

JACKSON, R. B., ANTHONI, P., BARBERO, L., BASTOS, A., BASTRIKOV, V., BECKER, M., BOPP, L., BUITENHUIS, E., CHANDRA, N., CHEVALLIER, F., CHINI, L. P., CURRIE, K. I., FEELY, R. A., GEHLEN, M.,

GILFILLAN, D., GKRITZALIS, T., GOLL, D. S., GRUBER, N., GUTEKUNST, S., HARRIS, I., HAVERD, V.,

HOUGHTON, R. A., HURTT, G., ILYINA, T., JAIN, A. K.,

JOETZJER, E., KAPLAN, J. O., KATO, E., GOLDEWIJK, K. K., KORSBAKKEN, J. I., LANDSCHÜTZER, P.,

LAUVSET, S. K., LEFÈVRE, N., LENTON, A., LIENERT,

S., LOMBARDOZZI, D., MARLAND, G., MCGUIRE, P.

C., MELTON, J. R., METZL, N., MUNRO, D. R., NABEL,

J. E. M. S., NAKAOKA, S. I., NEILL, C., OMAR, A. M.,

ONO, T., PEREGON, A., PIERROT, D., POULTER, B.,

REHDER, G., RESPLANDY, L., ROBERTSON, E., RÖDENBECK, C., SÉFÉRIAN, R., SCHWINGER, J., SMITH, N., TANS, P. P., TIAN, H., TILBROOK, B., TUBIELLO, F. N., VAN DER WERF, G. R., WILTSHIRE, A. J.

& ZAEHLE, S. 2019. Global Carbon Budget 2019. Earth

System Science Data, 11(4), 1783-1838, DOI: https://

doi.org/10.5194/essd-11-1783-2019

FRIEDLINGSTEIN, P., O’SULLIVAN, M., JONES, M. M.,

ANDREW, R. M., HAUCK, J., OLSEN, A., PETERS,

G. P., PETERS, W., PONGRATZ, J., SITCH, S., LE

QUÉRÉ, C., CANADELL, J. G., CIAIS, P., JACKSON,

R. B., ALIN, S., ARAGÃO, L. E. O. C., ARNETH, A.,

ARORA, V., BATES, N. R., BECKER, M., BENOIT-

-CATTIN, A., BITTIG, H. C., BOPP, L., BULTAN,

S., CHANDRA, N., CHEVALLIER, F., CHINI, L. P.,

EVANS, W., FLORENTIE, L., FORSTER, P. M., GASSER, T., GEHLEN, M., GILFILLAN, D., GKRITZALIS,

T., GREGOR, L., GRUBER, N., HARRIS, I., HARTUNG, K., HAVERD, V., HOUGHTON, R. A., ILYINA,

T., JAIN, A. K., JOETZJER, E., KADONO, K., KATO,

E., KITIDIS, V., KORSBAKKEN, J. I., LANDSCHÜTZER, P., LEFÈVRE, N., LENTON, A., LIENERT, S.,

LIU, Z., LOMBARDOZZI, D., MARLAND, G., METZL,

N., MUNRO, D. R., NABEL, J. E. M. S., NAKAOKA,

S., NIWA, Y., O’BRIEN, K., ONO, T., PALMER, P. I.,

PIERROT, D., POULTER, B., RESPLANDY, L., ROBERTSON, E., RÖDENBECK, C., SCHWINGER,

J., SÉFÉRIAN, R., SKJELVAN, I., SMITH, A. J. P.,

SUTTON, A., J., TANHUA, T., TANS, P. P., TIAN, H.,

TILBROOK, B., VAN DER WERF, G., VUICHARD,

N., WALKER, A. P., WANNINKHOF, R., WATSON, A.

J., WILLIS, D., WILTSHIRE, A. J., YUAN, W., YUE,

X. & ZAEHLE, S. 2020. Global carbon budget 2020.

Earth System Science Data, 12(4), 3269-3340, DOI:

https://doi.org/10.5194/essd-12-3269-2020

GERHARDINGER, L. C., GORRIS, P., GONÇALVES, L.

R., HERBST, D. F., VILA-NOVA, D. A., CARVALHO, F.

G., GLASER, M., ZONDERVAN, R. & GLAVOVIC, B. C.

Healing Brazil’s Blue Amazon: the role of knowledge networks in nurturing cross-scale transformations

at the frontlines of ocean sustainability. Frontiers in

Marine Science, 4, 395, DOI: https://doi.org/10.3389/

fmars.2017.00395

GLOEGE, L., YAN, M., ZHENG, T. & MCKINLEY, G. A.

Improved quantification of ocean carbon uptake

by using machine learning to merge global models

and pCO2

data. Journal of Advances in Modeling Earth Systems, 14(2), e2021MS002620, DOI: https://doi.

org/10.1029/2021MS002620

GRUBER, N., CLEMENT, D., CARTER, B. R., FEELY, R.

A., VAN HEUVEN, S., HOPPEMA, M., ISHII, M., KEY,

R. M., KOZYR, A., LAUVSET, S. K., LO MONACO, C.,

MATHIS, J. T., MURATA, A., OLSEN, A., PEREZ, F. F.,

SABINE, C. L., TANHUA, T. & WANNINKHOF, R. 2019.

The oceanic sink for anthropogenic CO2

from 1994

to 2007. Science, 363, 1193-1199, DOI: https://doi.

org/10.1126/science.aau5153

HEINZE, C., MEYER, S., GORIS, N., ANDERSON, L.,

STEINFELDT, R., CHANG, N., LE QUÉRÉ, C. &

BAKKER, D. C. E. 2015. The ocean carbon sink – impacts, vulnerabilities and challenges. Earth System

Dynamics, 6(1), 327-358, DOI: https://doi.org/10.5194/

esd-6-327-2015

IBÁNHEZ, J. S. P., ARAUJO, M. & LEFÈVRE, N. 2016.

The overlooked tropical oceanic CO2

sink: overlooked tropical oceanic CO2

sink. Geophysical Research Letters, 43(8), 3804-3812, DOI: https://doi.

org/10.1002/2016GL068020

CO2

fluxes in Brazilian marine ecoregions

Ocean and Coastal Research 2023, v71(suppl 2):e23017 16

Affe et al.

ITO, R. G., GARCIA, C. A. E. & TAVANO, V. M. 2016.

Net sea-air CO2

fluxes and modelled pCO2

in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011. Continental Shelf

Research, 119, 68-84, DOI: https://doi.org/10.1016/j.

csr.2016.03.013

ITO, R. G., SCHNEIDER, B. & THOMAS, H. 2005. Distribution of surface fCO2 and air-sea fluxes in the Southwestern subtropical Atlantic and adjacent continental shelf.

Journal of Marine Systems, 56(3-4), 227-242, DOI: https://doi.org/10.1016/j.jmarsys.2005.02.005

JANSEN, E., OVERPECK, J., BRIFFA, K. R., DUPLESSY,

J. C., JOOS, F., MASSON-DELMOTTE, V., OLAGO, D.,

OTTO-BLIESNER, B., PELTIER, W. R. & RAHMSTORF,

S. 2007. Climate Change 2007: The Physical Science

Basis. Contribution of Working Group I to the Fourth

Assessment Report of the Intergovernmental Panel on

Climate Change. Cambridge: IPCC (Intergovernmental

Panel on Climate Chance).

JIANG, L. Q., CAI, W. J., WANNINKHOF, R., WANG, Y. &

LÜGER, H. 2008. Air-sea CO2 fluxes on the U.S. South

Atlantic Bight: spatial and seasonal variability. Journal of

Geophysical Research Oceans, 113(C7), C07019, DOI:

https://doi.org/10.1029/2007JC004366

KALNAY, E., KANAMITSU, M., KISTLER, R., COLLINS,

W., DEAVEN, D., GANDIN, L., IREDELL, M., SAHA, S.,

WHITE, G. & WOOLLEN, J. 1996. The NCEP/NCAR

-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437-472.

KHATIWALA, S., TANHUA, T., FLETCHER, S. M., GERBER, M., DONEY, S. C., GRAVEN, H. D., GRUBER, N.,

MCKINLEY, G. A., MURATA, A., RÍOS, A. F. & SABINE,

C. L. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences, 10, 2169-2191, DOI: https://doi.

org/10.5194/bg-10-2169-2013

KÖRTZINGER, A., QUAY, P. D. & SONNERUP, R. E.

Relationship between anthropogenic CO2

and

the 13C Suess effect in the North Atlantic Ocean: ANTHROPOGENIC CO2

AND 13C SUESS EFFECT. Global Biogeochemical Cycles, 17(1), 20, DOI: https://doi.

org/10.1029/2001GB001427

LABAT, D., RONCHAIL, J., CALLEDE, J., GUYOT, J. L.,

OLIVEIRA, E. & GUIMARÃES, W. 2004. Wavelet analysis of Amazon hydrological regime variability: wavelet

analysis of amazon. Geophysical Research Letters, 31,

DOI: https://doi.org/10.1029/2003GL018741

LANDSCHÜTZER, P., GRUBER, N. & BAKKER, D. C. E.

Decadal variations and trends of the global ocean

carbon sink: decadal air-sea CO2

flux variability. Global

Biogeochemical Cycles, 30(10), 1396-1417, DOI: https://doi.org/10.1002/2015GB005359

LANDSCHÜTZER, P., GRUBER, N., BAKKER, D.

C. E. & SCHUSTER, U. 2014. Recent variability of the global ocean carbon sink. Global Biogeochemical Cycles, 28(9), 927-949, https://doi.

org/10.1002/2014GB004853

LARUELLE, G. G., CAI, W. J., HU, X., GRUBER, N., MACKENZIE, F. T. & REGNIER, P. 2018. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nature Communications, 9, 454,

DOI: https://doi.org/10.1038/s41467-017-02738-z

LE QUÉRÉ, C., ANDRES, R. J., BODEN, T., CONWAY,

T., HOUGHTON, R. A., HOUSE, J. I., MARLAND, G.,

PETERS, G. P., VAN DER WERF, G. R., AHLSTRÖM,

A., ANDREW, R. M., BOPP, L., CANADELL, J. G.,

CIAIS, P., DONEY, S. C., ENRIGHT, C., FRIEDLINGSTEIN, P., HUNTINGFORD, C., JAIN, A. K., JOURDAIN, C., KATO, E., KEELING, R. F., GOLDEWIJK,

K. K., LEVIS, S., LEVY, P., LOMAS, M., POULTER,

B., RAUPACH, M. R., SCHWINGER, J., SITCH, S.,

STOCKER, B. D., VIOVY, N., ZAEHLE, S. & ZENG,

N. 2013. The global carbon budget 1959-2011. Earth

System Science Data, 5, 165-185, DOI: https://doi.

org/10.5194/essd-5-165-2013

LE QUÉRÉ, C., ANDREW, R. M., FRIEDLINGSTEIN, P.,

SITCH, S., HAUCK, J., PONGRATZ, J., PICKERS, P.

A., KORSBAKKEN, J. I., PETERS, G. P., CANADELL, J. G., ARNETH, A., ARORA, V. K., BARBERO, L.,

BASTOS, A., BOPP, L., CHEVALLIER, F., CHINI, L. P.,

CIAIS, P., DONEY, S. C., GKRITZALIS, T., GOLL, D. S.,

HARRIS, I., HAVERD, V., HOFFMAN, F. M., HOPPEMA, M., HOUGHTON, R. A., HURTT, G., ILYINA, T.,

JAIN, A. K., JOHANNESSEN, T., JONES, C. D., KATO,

E., KEELING, R. F., GOLDEWIJK, K. K., LANDSCHÜTZER, P., LEFÈVRE, N., LIENERT, S., LIU, Z., LOMBARDOZZI, D., METZL, N., MUNRO, D. R., NABEL, J. E.

M. S., NAKAOKA, S., NEILL, C., OLSEN, A., ONO, T.,

PATRA, P., PEREGON, A., PETERS, W., PEYLIN, P.,

PFEIL, B., PIERROT, D., POULTER, B., REHDER, G.,

RESPLANDY, L., ROBERTSON, E., ROCHER, M., RÖDENBECK, C., SCHUSTER, U., SCHWINGER, J., SÉFÉRIAN, R., SKJELVAN, I., STEINHOFF, T., SUTTON,

A., TANS, P. P., TIAN, H., TILBROOK, B., TUBIELLO,

F. N., VAN DER LAAN-LUIJKX, I. T., VAN DER WERF,

G. R., VIOVY, N., WALKER, A. P., WILTSHIRE, A. J.,

WRIGHT, R., ZAEHLE, S. & ZHENG, B. 2018. Global

carbon budget 2018. Earth System Science Data, 10,

-2194, DOI: https://doi.org/10.5194/essd-10-2141-

LEÃO, Z., KIKUCHI, R., OLIVEIRA, M. D. & VASCONCELLOS, V. 2010. Status of Eastern Brazilian coral reefs in

time of climate changes. Pan-American Journal Aquatic

Sciences, 5(2), 224-35.

LEFÈVRE, N., DIVERRÉS, D. & GALLOIS, F. 2010. Origin of CO 2 undersaturation in the western tropical

Atlantic. Tellus B: Chemical and Physical Meteorology,

(5), 595-607, DOI: https://doi.org/10.1111/j.1600-

2010.00475.x

LEFÈVRE, N., MONTES, M. F., GASPAR, F. L., ROCHA,

C., JIANG, S., ARAÚJO, M. C. & IBÁNHEZ, J. S. P.

Net heterotrophy in the amazon continental shelf

changes rapidly to a sink of CO2

in the outer amazon

plume. Frontiers in Marine Science, 4, 278, DOI: https://

doi.org/10.3389/fmars.2017.00278

LIBES, S. 2011. Susan. Introduction to marine biogeochemistry. San Diego: Academic Press.

LONGHURST, A. R. 1998. Ecological geography of the sea.

San Diego: Academic Press.

LUDWIG, W., SUCHET, P. A. & PROBST, J. L. 1996. River

discharges of carbon to the world’s oceans: determining

local inputs of alkalinity and of dissolved and particulate organic carbon. Science de la Terre Planètes, 323,

-1014.

CO2

fluxes in Brazilian marine ecoregions

Ocean and Coastal Research 2023, v71(suppl 2):e23017 17

Affe et al.

MAROTTA, H., PEIXOTO, R. B., PERUZZI, V., COSTA,

R., ASSIS, C. A. M., COTRIM, L. C., MOSER, G. A.

O., POLLERY, R. C. G. & PINHO, L. 2020. Biomonitoramento contínuo de águas do peld-baía de guanabara: intensa variação nictemeral de gases metabólicos na condição eutrófica tropical. Oecologia

Australis, 24, 365-388, DOI: https://doi.org/10.4257/

oeco.2020.2402.10

MEADE, R. H., DUNNE, T., RICHEY, J. E., SANTOS, U.

M. & SALATI, E. 1985. Storage and Remobilization of

Suspended Sediment in the Lower Amazon River of

Brazil. Science, 228(4698), 488-490, DOI: https://doi.

org/10.1126/science.228.4698.488

MEARS, C. A., SCOTT, J., WENTZ, F. J., RICCIARDULLI, L., LEIDNER, S. M., HOFFMAN, R. & ATLAS,

R. 2019. A Near Real Time Version of the Cross

Calibrated Multiplatform (CCMP) ocean surface

wind velocity data set. Journal of Geophysical Research: Oceans, 124, 6997-7010, DOI: https://doi.

org/10.1029/2019JC015367

MEYBECK, M. & RAGU, A. 2012. GEMS-GLORI world river

discharge database. Paris: PANGAEA, DOI: https://doi.

org/10.1594/PANGAEA.804574

MÖLLER, O. O., PIOLA, A. R., FREITAS, A. C. & CAMPOS, E. J. D. 2008. The effects of river discharge and seasonal winds on the shelf off southeastern South America. Continental Shelf Research,

(13), 1607-1624, DOI: https://doi.org/10.1016/j.

csr.2008.03.012

MONTEIRO, T., KERR, R., ORSELLI, I. B. M. & LENCINA-

-AVILA, J. M. 2020. Towards an intensified summer CO2

sink behaviour in the Southern Ocean coastal regions.

Progress in Oceanography, 183, 102267, DOI: https://

doi.org/10.1016/j.pocean.2020.102267

MOSER, G. A. O., TAKANOHASHI, R. A., BRAZ, M., DE

LIMA, D. T., KIRSTEN, F. V., GUERRA, J. V., FERNANDES, A. M. & POLLERY, R. C. G. 2014. Phytoplankton

spatial distribution on the Continental Shelf off Rio

de Janeiro, from Paraíba do Sul River to Cabo Frio.

Hydrobiologia, 728, 1-21, DOI: https://doi.org/10.1007/

s10750-013-1791-3

MU, L., GOMES, H. R., BURNS, S. M., GOES, J. I., COLES, V. J., REZENDE, C. E., THOMPSON, F. L., MOURA, R. L., PAGE, B. & YAGER, P. L. 2021. Temporal

Variability of Air‐Sea CO2

flux in the Western Tropical

North Atlantic Influenced by the Amazon River Plume.

Global Biogeochemical Cycles, 35(6), 1-8, https://doi.

org/10.1029/2020GB006798

OLIVEIRA, R. R., AFFE, H. M. J., AVELINA, R., PINHO,

L. Q., FRANKLIN, T. V., MIGUEL, G. & CUNHA, L. C.

Fonte ou sumidouro? Uma revisão sobre os fluxos

de CO2 na Plataforma Continental Brasileira. Química

Nova, 1-12, DOI: http://dx.doi.org/10.21577/0100-

20170970

OLIVEIRA, R. R., PEZZI, L. P., SOUZA, R. B., SANTINI, M. F., CUNHA, L. C. & PACHECO, F. S. 2019.

First measurements of the ocean-atmosphere CO2

fluxes at the Cabo Frio upwelling system region,

Southwestern Atlantic Ocean. Continental Shelf Research, 181, 135-142, DOI: https://doi.org/10.1016/j.

csr.2019.05.008

PADIN, X. A., VÁZQUEZ-RODRÍGUEZ, M., CASTAÑO,

M., VELO, A., ALONSO-PÉREZ, F., GAGO, J., GILCOTO, M., ÁLVAREZ, M., PARDO, P. C., DE LA PAZ, M.,

RÍOS, A. F. & PÉREZ, F. F. 2010. Air-Sea CO2 fluxes in

the Atlantic as measured during boreal spring and autumn. Biogeosciences, 7, 1587-1606, DOI: https://doi.

org/10.5194/bg-7-1587-2010

PEREIRA, A. F., BELÉM, A. L., CASTRO, B. M. & GEREMIAS, R. 2005. Tide-topography interaction along the

eastern Brazilian shelf. Continental Shelf Research,

(12-13), 1521-1539, DOI: https://doi.org/10.1016/j.

csr.2005.04.008

PEREIRA, F. B., NOGUEIRA, M., SIMIÃO, M., CODINA,

J. C. U. & NOERNBERG, M. A. 2014. Deep chlorophyll

maximum and plankton community response to oceanic

bottom intrusions on the continental shelf in the South

Brazilian Bight. Continental Shelf Research, 89, 61-75,

DOI: https://doi.org/10.1016/j.csr.2013.08.002

PEZZI, L. P., SOUZA, R. B., ACEVEDO, O., WAINER,

I., MATA, M. M., GARCIA, C. A. & CAMARGO, R.

Multiyear measurements of the oceanic and

atmospheric boundary layers at the Brazil‐Malvinas confluence region. Journal of Geophysical Research: Atmospheres, 114(D19), DOI: https://doi.

org/10.1029/2008JD011379

PIOLA, A. R., CAMPOS, E. J. D., MÖLLER, O. O., CHARO, M. & MARTINEZ, C. 2000. Subtropical Shelf Front

off eastern South America. Journal of Geophysical Research Oceans, 105(D19), 6565-6578, DOI: https://doi.

org/10.1029/1999JC000300

PIOLA, A. R., MÖLLER, O. O., GUERRERO, R. A. & CAMPOS, E. J. D. 2008. Variability of the subtropical shelf

front off eastern South America: winter 2003 and summer 2004. Continetal Shelf Research, 28(13), 1639-

, DOI: https://doi.org/10.1016/j.csr.2008.03.013

PROBST, J. L., MORTATTI, J. & TARDY, Y. 1994. Carbon

river fluxes and weathering CO2 consumption in the

Congo and Amazon river basins. Applied Geochemistry, 9(1), 1-13, DOI: https://doi.org/10.1016/0883-

(94)90047-7

R CORE TEAM, 2022. R: A Language and Environment for

Statistical Computing. Vienna: R Foundation for Statistical Computing.

ROCHA, C. B., SILVEIRA, I. C. A., CASTRO, B. M. & LIMA,

J. A. M. 2014. Vertical structure, energetics, and dynamics of the Brazil Current System at 22°S-28°S: on

the Brazil current at 22°S-28°S. Journal of Geophysical Research Oceans, 119(1), 52-69, DOI: https://doi.

org/10.1002/2013JC009143

RÖDENBECK, C., KEELING, R. F., BAKKER, D. C. E.,

METZL, N., OLSEN, A., SABINE, C. & HEIMANN, M.

Global surface-ocean pCO2

and sea–air CO2

flux

variability from an observation-driven ocean mixed-layer

scheme. Ocean Science, 9(2), 193-216, DOI: https://

doi.org/10.5194/os-9-193-2013

ROOBAERT, A., LARUELLE, G. G., LANDSCHÜTZER,

P., GRUBER, N., CHOU, L. & REGNIER, P. 2019. The

spatiotemporal dynamics of the sources and sinks of

CO2

in the global coastal ocean. Global Biogeochemical Cycles, 33(12), 1693-1714, DOI: https://doi.

org/10.1029/2019GB006239

CO2

fluxes in Brazilian marine ecoregions

Ocean and Coastal Research 2023, v71(suppl 2):e23017 18

Affe et al.

ROY-BARMAN, M. & JEANDEL, C. 2016. Marine geochemistry: ocean circulation, carbon cycle and climate

change. Oxford: Oxford University Press.

SABINE, C., DUCKLOW, H. & HOOD, M. 2010. International Carbon Coordination: Roger Revelle’s Legacy

in the Intergovernmental Oceanographic Commission.

Oceanography, 23, 48-61, DOI: https://doi.org/10.5670/

oceanog.2010.23

SILVA, A. C., ARAÚJO, M. & BOURLÈS, B. 2010. Seasonal variability of the Amazon river plume during Revizee program. Tropical Oceanography, 38(1), 76, DOI:

https://doi.org/10.5914/tropocean.v38i1.5162

SILVEIRA, I. C. A., FLIERL, G. R. & BROWN, W. S. 2000.

Dynamics of separating Western Boundary Currents.

Journal of Physical Oceanography, 29(2), 129-144, DOI:

https://doi.org/10.1175/1520-0485(1999)029<0119:DO

SWBC>2.0.CO;2

SOCAT (Surface Ocean CO2 Atlas). 2020. Welcome to

SOCAT. Bergen: SOCAT. Available at: http://www.socat.

info. [Accessed: 2020 Out 19].

SOUZA, R. B. & ROBINSON, I. S. 2004. Lagrangian and

satellite observations of the Brazilian Coastal Current.

Continental Shelf Research, 24, 241-262, DOI: https://

doi.org/10.1016/j.csr.2003.10.001

SPALDING, M. D., FOX, H. E., ALLEN, G. R., DAVIDSON,

N., FERDAÑA, Z. A., FINLAYSON, M., HALPERN, B.

S., JORGE, M. A., LOMBANA, A., LOURIE, S. A., MARTIN, K. D., MCMANUS, E., MOLNAR, J., RECCHIA,

C. A. & ROBERTSON, J. 2007. Marine ecoregions

of the world: a bioregionalization of coastal and shelf

areas. BioScience, 57(7), 573-583, DOI: https://doi.

org/10.1641/B570707

STRAMMA, L. & SCHOTT, F. 1999. The mean flow field

of the tropical Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 46(1-

, 279-303, DOI: https://doi.org/10.1016/S0967-

-0645(98)00109-X

TAKAHASHI, T., SUTHERLAND, S. C. & KOZYR, A.

Global ocean surface water partial pressure of

CO2

database: measurements performed during 1957-

(version 2018) - NOAA/NCEI/OCADS NDP-088

(V2018). Silver Spring: NOAA (National Oceanic and

Atmospheric Administration).

TANS, P. & KEELING, R. 2020. Trends in atmospheric carbon

dioxide. Washington, DC: NOAA (National Oceanic and Atmospheric Administration) - Global Monitoring Laboratory.

VALERIO, M. A., KAMPEL, M., WARD, M. D., SAWAKUCHI,

H. O., CUNHA, A. C. & RICHEY, J. E. 2021. CO2

partial

pressure and fluxes in the Amazon River plume using in situ

and remote sensing data. Continental Shelf Research, 215,

, DOI: https://doi.org/10.1016/j.csr.2021.104348

WANG, H., HU, X., CAI, W. J. & STERBA-BOATWRIGHT,

B. 2017. Decadal f CO2

trends in global ocean margins and adjacent boundary current-influenced areas:

decadal f CO2

trends in ocean margins. Geophysical

Research Letters, 44(17), 8962-8970, DOI: https://doi.

org/10.1002/2017GL074724

WANNINKHOF, R. 2014. Relationship between wind speed

and gas exchange over the ocean revisited. Limnology

and Oceanography Methods, 12(6), 351-362, DOI: https://doi.org/10.4319/lom.2014.12.351

WEISS, R. F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3), 203-215, DOI: https://doi.org/10.1016/0304-

(74)90015-2

WEISS, R. F. & PRICE, B. A. 1980. Nitrous oxide solubility

in water and seawater. Marine Chemistry, 8(4), 347-359,

DOI: https://doi.org/10.1016/0304-4203(80)90024-9

WENTZ, F. J., SCOTT, J., HOFFMAN, R., LEIDNER, M.,

ATLAS, R. & ARDIZZONE, J. 2015. Remote Sensing

Systems Cross-Calibrated Multi-Platform (CCMP)

-hourly ocean vector wind analysis product on 0.25 deg

grid, Version 2.0. Santa Rosa: Remote Sensing Systems. Available at: at: www.remss.com/measurements/

ccmp. [Accessed: 26 August 2022].

Downloads

Published

2024-04-10

How to Cite

Sea-air CO2 fluxes along the Brazilian continental margin. (2024). Ocean and Coastal Research, 71(Suppl. 2). https://doi.org/10.1590/