Multi-indicators of environmental pollution in the Olaria system, Cananéia, São Paulo (SP), Brazil

Authors

  • Gisele Luiz da Silva
  • Vitor Gonsalez Chiozzini
  • Elisabete de Santis Braga
  • Juliana de Souza Azevedo

DOI:

https://doi.org/10.1590/

Keywords:

Water quality, Biomarkers, Fish, Estuary, Escherichia coli

Abstract

The assessment of water quality using multiple abiotic and biological indicators is very important for understanding
anthropogenic impacts and the health of the ecosystem. The Olaria is a short river system that flows into the Cananéia
estuary. This aquatic system crosses the urban center of the city of Cananéia, where it eventually receives untreated
domestic wastewater. This study aims to apply multi-indicators of environmental pollution to understand the influence of
the Olaria system on the Cananéia estuary. For this purpose, indicators of water quality and genotoxic and pathological
responses in fish were used. Data on salinity, pH, and silicates in surface water indicate a more accentuated
continental influence in the inner part of the Olaria river system. Moreover, the data recorded on the inner area of the
Olaria system, which presents lower hydrodynamic characteristics and the largest urban population, indicated the
presence of dissolved oxygen and nutrients (phosphate [P-PO4
-3], nitrite [N-NO2
-
], and ammonium [N-NH4
+
]) at levels
that exceed the established limits for water quality by the Brazilian environmental legislation (Conselho Nacional
do Meio Ambiente - CONAMA). The presence of Escherichia coli in all analyzed water samples indicates a local
or point source of domestic wastewater contamination near the Olaria system. Fish species such as Centropomus
undecimalis (Robalo Flexa) and Sphoeroides testudineus (Baiacu Pintado) showed toxicogenetic damage, indicating
clastogenic and/or aneugenic exposure in the aquatic environment. Hepatic pathologies such as pyknosis nuclei,
inflammation, hepatocyte swelling, and necrosis were found in all specimens evaluated, and C. undecimallis exhibited
all these pathological changes. These results highlight the importance of biomonitoring the effects of anthropogenic
disturbance on the aquatic biota that frequent the Olaria system and are dependent on the water quality.

References

Almeida, A. P. 1961. Memória histórica sobre Cananéia.

Revista de História, 22(45), 191–237. DOI: https://doi.org/

11606/issn.2316-9141.rh.1961.120200

Amaral, T., Miyasaki, F., Braga, E. & Azevedo, J. 2021.

Temporal and spatial toxicogenetic damage in estuarine

catfish Cathorops spixii from a marine protected area

with evidence of anthropogenic influences. Science of

The Total Environment, 799, 149409. DOI: https://doi.

org/10.1016/j.scitotenv.2021.149409

Aminot, A. & Chaussepied, M. 1983. Manuel des analyses

chimiques en milieu marin. Brest: CNEXO.

Aminot, A. & Kerouel, R. 1982. Automatic-determination

of urea in sea-water – A sensible method using

diacetilmonoxime. Canadian Journal of Fisheries and

Aquatic Sciences, 39, 174-183.

Armstrong, F. A. J. & Tibbitts, S. 1968. Photochemical

combustion of organic matter in sea water, for nitrogen,

phosphorus and carbon determination. Journal

of the Marine Biological Association of the United

Kingdom, 48(1), 143–152. DOI: https://doi.org/10.1017/

s0025315400032483

Azevedo, J. de S., Braga, E. de S. & Ribeiro, C. A. O. 2012.

Nuclear abnormalities in erythrocytes and morphometric

indexes in the catfish Cathorops spixii (Ariidae) from

different sites on the southeastern Brazilian coast.

Brazilian Journal of Oceanography, 60(3), 323–330.

Azevedo, J. S., Braga, E. S., Assis, H. C. S. de & Ribeiro,

C. A. O. 2013. Biochemical changes in the liver

and gill of Cathorops spixii collected seasonally in

two Brazilian estuaries under varying influences of

anthropogenic activities. Ecotoxicology and Environmental

Safety, 96, 220–230. DOI: https://doi.org/10.1016/j.

ecoenv.2013.06.021

Barcellos, R. L., Berbel, G. B. B., Braga, E. S. & Furtado,

V. V. 2005. Distribuição e características do fósforo

sedimentar no sistema estuarino lagunar de CananéiaIguape, Estado de São Paulo, Brasil. Geochimica

Brasiliensis, 19(1), 22–36.

Braga, E. S. 2020. Total Dissolved Nitrogen and Phosphorus

Determination inCoastal South Atlantic Water Based on

UV Oxidation Method. American Journal of Sciences

and Engineering Research, 3(6), 60–66.

Carpenter, K. E. (ed.). 2002a. The Living Marine Resources

of the Western Central Atlantic (Vol. 2: Bony fishes

part 1 (Acipenseridae to Grammatidae)). Rome: FAO.

Carpenter, K. E. (ed.). 2002b. The Living Marine Resources

of the Western Central Atlantic (Vol. 3: Bony fishes

part 2 (Opistognathidae to Molidae), sea turtles and

marine mammals). Rome: FAO.

Carrasco, K. R., Tilbury, K. L. & Myers, M. S. 1990.

Assessment of the Piscine Micronucleus Test as an

in situ Biological indicator of Chemical Contaminant

Effects. Canadian Journal of Fisheries and Aquatic

Sciences, 47(11), 2123–2136. DOI: https://doi.

org/10.1139/f90-237

Figueiredo, J. l. & Menezes, N. A. 1978. Manual de peixes

marinhos do sudeste do Brasil. II Teleostei. Museu de

Zoologia, Universidade de São Paulo.

Grasshoff, K., Kremling, K. & Ehrhardt, M. (eds.). 1983.

Methods of Seawater Analysis (2nd ed.). Hoboken:

Wiley. DOI: https://doi.org/10.1002/9783527613984

Harari, J. 2022. Tábuas das marés de Ubatuba, Santos

e Cananéia para os anosde 2022 e 2023 (resreport).

Instituto Oceanográfico, Universidade de São Paulo.

Environmental pollution in Olaria river

Ocean and Coastal Research 2023, v71(suppl 1):e23040 7

da Silva et al.

Retrieved from https://www.io.usp.br/images/publicacoes/

tabuas/tab_res_2022-2023.1.pdf

IBGE (INSTITUTO BRASILEIRO DE GEOGRAFIA E

ESTATÍSTICA). 2020. Cidades IBGE. Rio de Janeiro:

IBGE. Retrieved from: https://cidades.ibge.gov.br/

Instituto Chico Mendes de Conservação da Biodiversidade.

Plano de manejo: área de proteção ambiental

Cananeia-Iguapé-Peruíbe, SP. Brasília, DF: Ministério

do Meio Ambiente.

Instituto Nacional de Meteorologia. 2022. Catálogo de

estações automáticas. Ministério da Agricultura e

Pecuária. Brasília, DF: INMET.

Mishima, M., Yamanaka, N., Pereira, O. M., Soares, F.

C., Sinque, C., Akaboshi, S. & Jacobsen, O. 1985.

Hidrografia do complexo estuarino-lagunar de Cananéia

(25°S, 048°W). São Paulo, Brasil. I Salinidade e

temperatura (1973 a 1980). Boletim Do Instituto de

Pesca, 12(3), 109–121.

Solórzano, L. 1969. Determination of Ammonia in Natural

Waters by the Phenolhypochlorite Method. Limnology

and Oceanography, 14, 799-801.

van der Oost, R., Beyer, J. & Vermeulen, N. P. E. 2003.

Fish bioaccumulation and biomarkers in environmental

risk assessment: a review. Environmental Toxicology

and Pharmacology, 13(2), 57–149. DOI: https://doi.org/

1016/s1382-6689(02)00126-6

Strickland, J. D. H. & Parsons, T. R. 1968. A practical

handbook of seawater analyses. Ottawa: Fisheries

Research Board of Canada.

World Health Organization. 1993. Biomarkers and Risk

Assessment: Concepts and Principles. International

Programme on Chemical Safety.

Yancheva, V. 2016. Histological biomarkers in fish as a tool

in ecological risk assessment and monitoring programs:

A review. Applied Ecology and Environmental Research,

(1), 47–75. DOI: https://doi.org/10.15666/aeer/1401_047075

Downloads

Published

2024-04-10

How to Cite

Multi-indicators of environmental pollution in the Olaria system, Cananéia, São Paulo (SP), Brazil. (2024). Ocean and Coastal Research, 71(Suppl. 1). https://doi.org/10.1590/