Rare Earth Elements abundance, fractionation, and anomalies in the sediments of the Cananéia-Iguape Estuarine-Lagoon Complex in Brazil
DOI:
https://doi.org/10.1590/Keywords:
REE Geochemistry, Estuarine RAMSAR Area, Trace Metals, Biogeochemistry, PhosphogypsumAbstract
The Cananéia-Iguape Estuarine-Lagoon Complex (CIELC) is an extremely productive coastal ecosystem. It encloses
the Valo Grande channel, built 160 years ago, which introduces water from the Ribeira River directly into the estuarine
system, contributing to important biogeochemical changes in the region. Many nutrients arrive at the estuary through
this channel, as well as metals and other slightly soluble elements that become part of the sediments. This study
aims to evaluate the processes that govern the distribution of rare earth elements (REE) in the sediments of the
complex by using fractionation patterns, anomalies, and the geochemical signature of minerals to evaluate sources,
natural levels, and the possible anthropogenic forcing to which CIELC is subjected. ∑REE* ranged from 14.2 to 285
mg kg-1 and showed a distribution related to depositional/textural characteristics influenced by the regional and local
lithological setting and a possible contamination. The REE/Al ratio indicated enrichment in the sea adjacent to the
estuary and at stations in the Ribeira River and Valo Grande. While the Hf/Al ratio indicated natural enrichment related
to the presence of heavy minerals in most of these stations, this ratio fails to justify enrichment at some stations in
the northern part of the estuary and the Ribeira River. Fractionation patterns and anomalies allowed us to identify
the main heavy minerals related to REE enrichment at CIELC. Cerium (Ce) anomalies showed a possible relation
with biologically mediated Ce+3 to Ce+4 oxidation processes in the most productive areas of the estuary. Europium
(Eu) anomalies were strongly associated with different mineral assemblies in several CIELC sectors. Abundance,
fractionation patterns, and REE anomalies corroborate the categorization of CIELC sediments as part of a pristine
system in its southern region and as subject to anthropogenic influences in its northern area.
References
Allègre, C. & Michard, G. 1974. Introduction to Geochemistry.
Geophysics and astrophysics monographs (Vol. 10).
Boston: Reidel Publishing Company.
Al-Masri, M. S., Amin, Y., Ibrahim, S. & Al-Bich, F.
Distribution of some trace metals in Syrian
phosphogypsum. Applied Geochemistry, 19(5), 747–753.
DOI: https://doi.org/10.1016/j.apgeochem.2003.09.014
Almeida, F. F. M. 1976. The system of continental rifts
bordering the Santos Basin. Brazilian Academy of
Sciences, 48, 15–26.
Armstrong-Altrin, J., Lee, Y., Kasper-Zubillaga, J.,
Carranza-Edwards, A., Garcia, D., Eby, G., Balaram, V.
& Cruz-Ortiz, N. 2012. Geochemistry of beach sands
along the western Gulf of Mexico, Mexico: Implication
for provenance. Geochemistry, 72(4), 345–362. DOI:
https://doi.org/10.1016/j.chemer.2012.07.003
Balashov, Y. A., Ronov, A. B., Migdisov, A. A. & Turanskaya,
N. V. 1964. The effect of climate and facies environment in
the fractionation of the rare earths during sedimentation.
Geochemistry International, 10, 951–969.
REE abundance in estuarine sediments
Ocean and Coastal Research 2023, v71(suppl 1):e23041 21
Chiozzini et al.
Barcellos, R. L., Berbel, G. B. B., Braga, E. S. & Furtado,
V. V. 2005. Distribuição e características do fósforo
sedimentar do Sistema Estuarino Lagunar CananéiaIguape, Estado de São Paulo, Brasil. Geochimica
Brasiliensis, 19(1), 22–36.
Barcellos, R. L., Camargo, P. B., Galvão, A. & Weber, R. R.
Sedimentary organic matter in cores of the CananéiaIguape lagoonal-estuarine system, São Paulo estate,
Brazil. Journal of Coastal Research, (56), 1335–1339.
Bau, M. 1999. Scavenging of dissolved yttrium and rare
earths by precipitating iron oxyhydroxide: experimental
evidence for Ce oxidation, Y-Ho fractionation, and
lanthanide tetrad effect. Geochimica et Cosmochimica
Acta, 63(1), 67–77. DOI: https://doi.org/10.1016/s0016-
(99)00014-9
Bau, M. & Koschinsky, A. 2009. Oxidative scavenging
of cerium on hydrous Fe oxide: Evidence from
the distribution of rare earth elements and yttrium
between Fe oxides and Mn oxides in hydrogenetic
ferromanganese crusts. Geochemical Journal, 43(1),
–47. DOI: https://doi.org/10.2343/geochemj.1.0005
Benes, P., Stamberg, K., Vopalka, D., Siroky, L. &
Prochazkova, S. 2003. Kinetics of radioeuropium
sorption on Gorelben sand from aqueous solutions
and groundwater. Journal of Radioanalytical and
Nuclear Chemistry, 256, 465–472. DOI: https://doi.
org/10.1023/A:1024595515126
Bérgamo, A. L. 2000. Características da hidrografia,
circulação e transporte de sal: Barra de Cananéia, Sul
do Mar de Cananéia e Baía do Trapandé (MSc Thesis).
Universidade de Sao Paulo, Agencia USP de Gestao da
Informacao Academica (AGUIA), São Paulo. https://doi.
org/10.11606/d.21.2000.tde-27052004-190010
Borrego, J., López-González, N., Carro, B., Grande, J. A.,
De la Torre, M. L. & Valente, T. M. F. 2012. Rare-earthelement fractionation patterns in estuarine sediments as
a consequence of acid mine drainage: a case study in
SW Spain. Boletín Geológico y Minero, 123(1), 55–64.
Borrego, J., López-González, N., Carro, B. & Lozano-Soria,
O. 2004. Origin of the anomalies in light and middle REE
in sediments of an estuary affected by phosphogypsum
wastes (south-western Spain). Marine Pollution Bulletin,
(11–12), 1045–1053. DOI: https://doi.org/10.1016/j.
marpolbul.2004.07.009
Braga, E. S. & Chiozzini, V. G. 2012. Alteration on the
nitrogen balance on the Cananéia-Iguape estuarinelagoon complex (Brazil) in function of the anthropogenic
influence. In: Anais do II Workshop Antropicosta
Iberoamerica. Montevideo.
Burkov, V. V. & Podporina, E. K. 1967. Rare Earths in the
weathering crusts of granitoids: Doklady Akademii
Kauk, 177, 691–694. DOI: https://doi.org/10.1007/
s12583-014-0449-z
Buynevich, I., Fitzgerald, D. & Van Heteren, S. 2004.
Sedimentary records of intense storms in Holocene barrier
sequences, Maine, USA. Marine Geology, 210(1–4),
–148. DOI: https://doi.org/10.1016/j.margeo.2004.05.007
Byrne, R. & Kim, K.-H. 1990. Rare earth element scavenging
in seawater. Geochimica et Cosmochimica Acta,
(10), 2645–2656. DOI: https://doi.org/10.1016/0016-
(90)90002-3
Calvert, S. . & Pedersen, T. F. 2007. Elemental proxies
for paleoclimatic and palaeoceanographic variability in
marine sediments: interpretation and application. Dev.
Developments in Marine Geology, 1, 567–644. DOI:
https://doi.org/org/10.1016/S1572-5480(07)01019-6
Chaillou, G., Anschutz, P., Lavaux, G. & Blanc, G. 2006.
Rare earth elements in the modern sediments of the Bay
of Biscay (France). Marine Chemistry, 100(1–2), 39–52.
DOI: https://doi.org/10.1016/j.marchem.2005.09.007
CETESB (COMPANHIA DE TECNOLOGIA DE
SANEAMENTO AMBIENTAL DE SÃO PAULO). 2013.
Relatório de Qualidade das Águas Interiores do Estado
de São Paulo, 2012 (resreport). São Paulo: Secretaria
do Meio Ambiente.
Cunha-Lignon, M. 2001. Dinâmica do Manguezal no
Sistema Cananéia-Iguape, Estado de São Paulo –
Brasil. (mathesis). Instituto Oceanográfico, Universidade
de São Paulo, São Paulo.
Dellwig, O., Hinrichs, J., Hild, A. & Brumsack, H.-J. 2000.
Changing sedimentation in tidal flat sediments of the
southern North Sea from the Holocene to the present:
a geochemical approach. Journal of Sea Research,
(3–4), 195–208. DOI: https://doi.org/10.1016/s1385-
(00)00051-4
Elbaz-Poulichet, F. & Dupuy, C. 1999. Behaviour of rare
earth elements at the freshwater–seawater interface
of two acid mine rivers: the Tinto and Odiel (Andalucia,
Spain). Applied Geochemistry, 14(8), 1063–1072. DOI:
https://doi.org/10.1016/s0883-2927(99)00007-4
Elderfield, H., Upstill-Goddard, R. & Sholkovitz, E. 1990.
The rare earth elements in rivers, estuaries, and
coastal seas and their significance to the composition
of ocean waters. Geochimica et Cosmochimica Acta,
(4), 971–991. DOI: https://doi.org/10.1016/0016-
(90)90432-k
Elias, Md. S., Ibrahim, S., Samuding, K., Kantasamy, N.,
Rahman, S. & Hashim, A. 2019. Rare earth elements
(REEs) as pollution indicator in sediment of Linggi River,
Malaysia. Applied Radiation and Isotopes, 151, 116–123.
DOI: https://doi.org/10.1016/j.apradiso.2019.05.038
Erel, Y. & Stolper, E. 1993. Modeling of rare-earth element
partitioning between particles and solution in aquatic
environments. Geochimica et Cosmochimica Acta,
(3), 513–518. DOI: https://doi.org/10.1016/0016-
(93)90363-2
Fiket, Ž., Mikac, N. & Kniewald, G. 2017. Influence of the
geological setting on the REE geochemistry of estuarine
sediments: A case study of the Zrmanja River estuary
(eastern Adriatic coast). Journal of Geochemical
Exploration, 182, 70–79. DOI: https://doi.org/10.1016/j.
gexplo.2017.09.001
Folk, R.L. & Ward, W.C. 1957. A Study in the Significance
of Grain-Size Parameters. Journal of Sedimentary
Petrology, 27, 3–26.
Gianini, P. C. F. 1987. Sedimentação quaternária na
planície costeira de Peruíbe-Itanhaém (SP) (mathesis).
Instituto de Geociências, Universidade de São Paulo,
São Paulo.
Godwyn-Paulson, P., Jonathan, M., Rodríguez-Espinosa,
P. & Rodríguez-Figueroa, G. 2022. Rare earth element
enrichments in beach sediments from Santa Rosalia
REE abundance in estuarine sediments
Ocean and Coastal Research 2023, v71(suppl 1):e23041 22
Chiozzini et al.
mining region, Mexico: An index-based environmental
approach. Marine Pollution Bulletin, 174, 113271. DOI:
https://doi.org/10.1016/j.marpolbul.2021.113271
Goldstein, S. & Jacobsen, S. 1988. REE in the Great Whale
River estuary, northwest Quebec. Earth and Planetary
Science Letters, 88(3–4), 241–252. DOI: https://doi.
org/10.1016/0012-821x(88)90081-7
Guimarães, V. & Sígolo, J. B. 2008. Associação de
resíduos da metalurgia com sedimentos em suspensão
- Rio Ribeira de Iguape. Geologia USP. Série Científica,
(2), 1–10. DOI: https://doi.org/10.5327/z1519-
x2008000200001
Haley, B., Klinkhammer, G. & Mcmanus, J. 2004. Rare
earth elements in pore waters of marine sediments.
Geochimica et Cosmochimica Acta, 68(6), 1265–1279.
DOI: https://doi.org/10.1016/j.gca.2003.09.012
Hannigan, R., Dorval, E. & Jones, C. 2010. The rare earth
element chemistry of estuarine surface sediments in the
Chesapeake Bay. Chemical Geology, 272(1–4), 20–30.
DOI: https://doi.org/10.1016/j.chemgeo.2010.01.009
Henderson, P. 1984. General Geochemical Properties and
Abundances of the Rare Earth Elements. In: Henderson,
P. (ed.), Rare Earth Element Geochemistry (pp. 1–32).
Amsterdam, Netherlands: Elsevier. DOI: https://doi.
org/10.1016/b978-0-444-42148-7.50006-x
Hinrichs, J., Dellwig, O. & Brumsack, H. 2002. Lead in
sediments and suspended particulate matter of the
German Bight: natural versus anthropogenic origin.
Applied Geochemistry, 17(5), 621–632.
Hull, C. & Burnett, W. 1996. Radiochemistry of
Florida phosphogypsum. Journal of Environmental
Radioactivity, 32(3), 213–238. DOI: https://doi.
org/10.1016/0265-931x(95)00061-e
Humphris, S. 1984. The Mobility of the Rare Earth Elements
in the Crust. In: Henderson, P. (ed.), Rare Earth Element
Geochemistry (pp. 317–342). Amsterdam, Netherlands:
Elsevier. DOI: https://doi.org/10.1016/b978-0-444-42148-
50014-9
Johannesson, K. & Zhou, X. 1999. Origin of middle rare earth
element enrichments in acid waters of a Canadian High
Arctic lake. Geochimica et Cosmochimica Acta, 63(1), 153–
DOI: https://doi.org/10.1016/s0016-7037(98)00291-9
Kalis, A., Merkt, J. & Wunderlich, J. 2003. Environmental
changes during the Holocene climatic optimum in
central Europe - human impact and natural causes.
Quaternary Science Reviews, 22(1), 33–79. DOI:
https://doi.org/10.1016/s0277-3791(02)00181-6
Kechiched, R., Laouar, R., Bruguier, O., Kocsis, L., SalmiLaouar, S., Bosch, D., Ameur-Zaimeche, O., Foufou,
A. & Larit, H. 2020. Comprehensive REE + Y and
sensitive redox trace elements of Algerian phosphorites
(Tébessa, eastern Algeria): A geochemical study
and depositional environments tracking. Journal of
Geochemical Exploration, 208, 106396. DOI: https://doi.
org/10.1016/j.gexplo.2019.106396
Kolditz, K., Dellwig, O., Barkowski, J., Bahlo, R., Leipe,
T., Freund, H. & Brumsack, H.-J. 2012. Geochemistry
of Holocene salt marsh and tidal flat sediments on a
barrier island in the southern North Sea (Langeoog,
North-west Germany). Sedimentology, 59(2), 337–355.
DOI: https://doi.org/10.1111/j.1365-3091.2011.01252.x
Larsonneur, C., Bouysse, P. & Auffret, J.-P. 1982. The
superficial sediments of the English Channel and its
Western Approaches. Sedimentology, 29(6), 851–864.
DOI: https://doi.org/10.1111/j.1365-3091.1982.tb00088.x
Lawrence, M. & Kamber, B. 2006. The behaviour of the
rare earth elements during estuarine mixing—revisited.
Marine Chemistry, 100(1–2), 147–161. DOI: https://doi.
org/10.1016/j.marchem.2005.11.007
Leroy, J. & Turpin, L. 1988. REE, Th and U behaviour during
hydrothermal and supergene processes in a granitic
environment. Chemical Geology, 68(3–4), 239–251.
DOI: https://doi.org/org/10.1016/0009-2541(88)90024-1
Liu, J., Xiang, R., Chen, Z., Chen, M., Yan, W., Zhang, L.
& Chen, H. 2013. Sources, transport and deposition of
surface sediments from the South China Sea. Deep Sea
Research Part I: Oceanographic Research Papers, 71,
–102. DOI: https://doi.org/10.1016/j.dsr.2012.09.006
Ma, J.-L., Wei, G.-J., Xu, Y.-G., Long, W.-G. & Sun, W.-D.
Mobilization and re-distribution of major and trace
elements during extreme weathering of basalt in Hainan
Island, South China. Geochimica et Cosmochimica
Acta, 71(13), 3223–3237. DOI: https://doi.org/10.1016/j.
gca.2007.03.035
Mahiques, M. de, Figueira, R., Salaroli, A., Alves, D. &
Gonçalves, C. 2013. 150 years of anthropogenic metal
input in a Biosphere Reserve: the case study of the
Cananéia–Iguape coastal system, Southeastern Brazil.
Environmental Earth Sciences, 68(4), 1073–1087. DOI:
https://doi.org/10.1007/s12665-012-1809-6
Marmolejo-Rodríguez, A., Prego, R., Meyer-Willerer,
A., Shumilin, E. & Sapozhnikov, D. 2007. Rare earth
elements in iron oxy−hydroxide rich sediments from
the Marabasco River-Estuary System (pacific coast of
Mexico). REE affinity with iron and aluminium. Journal of
Geochemical Exploration, 94(1–3), 43–51. DOI: https://
doi.org/10.1016/j.gexplo.2007.05.003
Maulana, A., Yonezu, K. & Watanabe, K. 2014. Geochemistry
of rare earth elements (REE) in the weathered crusts
from the granitic rocks in Sulawesi Island, Indonesia.
Journal of Earth Science, 25(3), 460–472. DOI: https://
doi.org/10.1007/s12583-014-0449-z
Mclennan, S. 1989. Rare earth elements in sedimentary
rocks: influence of provenance and sedimentary
processes. In: Lipin, D. R. & McKay, G. A. (eds.),
Geochemistry and Mineralogy of Rare Earth Elements
(Vol. 21, pp. 169–200). Berlin: De Gruyter. DOI: https://
doi.org/10.1515/9781501509032-010
Miyao, S. Y., Nishihara, L. & Sarti, C. C. 1986.
Características físicas e químicas do sistema estuarinolagunar de Cananéia-Iguape. Boletim Do Instituto
Oceanográfico, 34, 23–26. DOI: https://doi.org/10.1590/
s0373-55241986000100003
Moeller, T. 1985. The chemistry of the lanthanides. New
York: Pergamon.
Nesbitt, H. W. 1979. Mobility and fractionation of rare
earth elements during weathering of a granodiorite.
Nature, 279(5710), 206–210. DOI: https://doi.
org/10.1038/279206a0
Oliveira, S., Silva, P., Mazzilli, B., Favaro, D. & Saueia,
C. 2007. Rare earth elements as tracers of sediment
contamination by phosphogypsum in the Santos estuary,
REE abundance in estuarine sediments
Ocean and Coastal Research 2023, v71(suppl 1):e23041 23
Chiozzini et al.
southern Brazil. Applied Geochemistry, 22(4), 837–850.
DOI: https://doi.org/10.1016/j.apgeochem.2006.12.017
Pérez-López, R., Macías, F., Cánovas, C., Sarmiento,
A. & Pérez-Moreno, S. 2016. Pollutant flows from
a phosphogypsum disposal area to an estuarine
environment: An insight from geochemical signatures.
Science of The Total Environment, 553, 42–51. DOI:
https://doi.org/10.1016/j.scitotenv.2016.02.070
Prajith, A., Rao, V. & Kessarkar, P. 2015. Controls on the
distribution and fractionation of yttrium and rare earth
elements in core sediments from the Mandovi estuary,
western India. Continental Shelf Research, 92, 59–71.
DOI: https://doi.org/10.1016/j.csr.2014.11.003
Prego, R., Caetano, M., Vale, C. & Marmolejo-Rodríguez,
J. 2009. Rare earth elements in sediments of the Vigo
Ria, NW Iberian Peninsula. Continental Shelf Research,
(7), 896–902. DOI: https://doi.org/10.1016/j.
csr.2009.01.009
Rao, W., Mao, C., Wang, Y., Huang, H. & Ji, J. 2017.
Using Nd-Sr isotopes and rare earth elements to
study sediment provenance of the modern radial
sand ridges in the southwestern Yellow Sea. Applied
Geochemistry, 81, 23–35. DOI: https://doi.org/10.1016/j.
apgeochem.2017.03.011
Rasmussen, B., Buick, R. & Taylor, W. 1998. Removal of
oceanic REE by authigenic precipitation of phosphatic
minerals. Earth and Planetary Science Letters,
(1–2), 135–149. DOI: https://doi.org/10.1016/s0012-
x(98)00199-x
Ribeira de Iguape and South Coast Hydrographic Basin
Committee, 2008. Relatório de Situação dos Recursos
Hídricos da Unidade de Gerenciamento n. 11: Bacia
Hidrográfica do Ribeira de Iguape e Litoral Sul. São
Paulo – SP.
Rolland, Y., Cox, S., Boullier, A.-M., Pennacchioni, G. &
Mancktelow, N. 2003. Rare earth and trace element
mobility in mid-crustal shear zones: insights from the
Mont Blanc Massif (Western Alps). Earth and Planetary
Science Letters, 214(1–2), 203–219. DOI: https://doi.
org/10.1016/s0012-821x(03)00372-8
Ross, J. L. S. 2002. A morfogênese da Bacia do Ribeira de
Iguape e os sistemas ambientais. GEOUSP – Espaço
e Tempo, 12.
Rutherford, P., Dudas, M. & Arocena, J. 1995. Radioactivity
and Elemental Composition of Phosphogypsum
Produced From Three Phosphate Rock Sources.
Waste Management & Research: The Journal for
a Sustainable Circular Economy, 13(5), 407–423. DOI:
https://doi.org/10.1177/0734242x9501300502
Rutherford, P., Dudas, M. & Samek, R. 1994. Environmental
impacts of phosphogypsum. Science of The Total
Environment, 149(1–2), 1–38. DOI: https://doi.
org/10.1016/0048-9697(94)90002-7
Saueia, C. H. R., Bourlegat, F. M. L., Mazzilli, B. P. & Fávaro,
D. I. T. 2012. Availability of metals and radionuclides
present in phosphogypsum and phosphate fertilizers
used in Brazil. Journal of Radioanalytical and Nuclear
Chemistry, 297(2), 189–195. DOI: https://doi.
org/10.1007/s10967-012-2361-2
Schäfer, J., Coynel, A., Turner, A. & Koch, B. 2016. The 13th
International Estuarine Biogeochemistry Symposium:
‘Estuaries and bays under anthropogenic pressure:
past-present-future’. Marine Chemistry, 185, 1–2. DOI:
https://doi.org/10.1016/j.marchem.2016.05.012
Schropp, S. J. & Windom, H. L. (eds.). 1988. Guide
to the Interpretation of Metal Concentrations in
Estuarine Sediments. Florida: Florida Department of
Environmental Protection.
Sholkovitz, E. 1993. The geochemistry of rare earth
elements in the Amazon River estuary. Geochimica et
Cosmochimica Acta, 57(10), 2181–2190. DOI: https://
doi.org/10.1016/0016-7037(93)90559-f
Shynu, R., Rao, V., Kessarkar, P. & Rao, T. 2011. Rare earth
elements in suspended and bottom sediments of the
Mandovi estuary, central west coast of India: Influence of
mining. Estuarine, Coastal and Shelf Science, 94(4), 355–
DOI: https://doi.org/10.1016/j.ecss.2011.07.013
Silva, P., Mazzilli, B. & Fávaro, D. 2005. Distribution of U and
Th decay series and rare earth elements in sediments of
Santos Basin: correlation with industrial activities. Journal
of Radioanalytical and Nuclear Chemistry, 264, 449–455.
DOI: https://doi.org/10.1007/s10967-005-0736-3
Slukovskii, Z., Guzeva, A. & Dauvalter, V. 2022. Rare earth
elements in surface lake sediments of Russian arctic:
Natural and potential anthropogenic impact to their
accumulation. Applied Geochemistry, 142, 105325.
DOI: https://doi.org/10.1016/j.apgeochem.2022.105325
Souza, L. A. P., Tessler, M. G. & Galli, V. L. 1996. O gráben
de Cananéia. Revista Brasileira de Geociências,
(3), 139–150. DOI: https://doi.org/10.25249/0375-
1996139150
Su, N., Yang, S., Guo, Y., Yue, W., Wang, X., Yin, P. & Huang,
X. 2017. Revisit of rare earth element fractionation during
chemical weathering and river sediment transport.
Geochemistry, Geophysics, Geosystems, 18(3),
–955. DOI: https://doi.org/10.1002/2016gc006659
SUDELPA (Superintendência do Desenvolvimento do Litoral
Paulista). 1987. Plano Básico de desenvolvimento autosustentado para a região lagunar de Iguape e Cananéia.
São Paulo: Superintendência do Desenvolvimento do
Litoral Paulista.
Suguio, K., Tessler, M. G., Furtado, V. V., Esteves, C.
A. & Souza, L. A. P. 1987. Perfilagens geofísicas e
sedimentação na área submersa entre Cananéia e
Barra de Cananéia. In: Simpósio sobre ecossistemas
da Costa Sul e Sudeste Brasileira (pp. 234–241). São
Paulo: Academia de Ciências do estado de São Paulo.
Tessler, M. G. 1988. Dinâmica sedimentar quaternária no
litoral sul paulista (phdthesis). Instituto de Geociências,
Universidade de São Paulo, São Paulo.
Tessler, M. G. & Furtado, V. V. 1983. Dinâmica de
sedimentação das feições de assoreamento da região
lagunar Cananéia-Iguape, Estado de São Paulo. Boletim
Do Instituto Oceanográfico, 32(2), 117–124. DOI:
https://doi.org/10.1590/s0373-55241983000200002
Tessler, M. G. & Souza, L. A. P. de. 1998. Dinâmica
sedimentar e feições sedimentares identificadas na
superfície de fundo do sistema Cananéia-Iguape, SP.
Revista Brasileira de Oceanografia, 46(1), 69–83. DOI:
https://doi.org/10.1590/s1413-77391998000100006
Tramonte, K., Figueira, R., De Lima Ferreira, P., Ribeiro,
A., Batista, M. & De Mahiques, M. 2016. Environmental
REE abundance in estuarine sediments
Ocean and Coastal Research 2023, v71(suppl 1):e23041 24
Chiozzini et al.
availability of potentially toxic elements in estuarine
sediments of the Cananéia–Iguape coastal system,
Southeastern Brazil. Marine Pollution Bulletin,
(1–2), 260–269. DOI: https://doi.org/10.1016/j.
marpolbul.2015.12.011
Tramonte, K., Figueira, R., Majer, A., De Lima Ferreira,
P., Batista, M., Ribeiro, A. & De Mahiques, M. 2018.
Geochemical behavior, environmental availability,
and reconstruction of historical trends of Cu, Pb,
and Zn in sediment cores of the Cananéia-Iguape
coastal system, Southeastern Brazil. Marine Pollution
Bulletin, 127, 1–9. DOI: https://doi.org/10.1016/j.
marpolbul.2017.11.016
Tranchida, G., Oliveri, E., Angelone, M., Bellanca, A.,
Censi, P., D’elia, M., Neri, R., Placenti, F., Sprovieri,
M. & Mazzola, S. 2011. Distribution of rare earth
elements in marine sediments from the Strait of
Sicily (western Mediterranean Sea): Evidence of
phosphogypsum waste contamination. Marine Pollution
Bulletin, 62(1), 182–191. DOI: https://doi.org/10.1016/j.
marpolbul.2010.11.003
Um, I. kwon., Man, S. C., Bahk, J. J. & Song, Y. H. 2013.
Discrimination of sediment provenance using rare earth
elements in the Ulleung Basin, East/Japan Sea. Marine
Geology, 346, 208–219. DOI: https://doi.org/10.1016/j.
margeo.2013.09.007
Veloso, H. P., Rangel-Filho, A. L. R. & Lima, J. C. A. 1991.
Classificação da vegetação brasileira, adaptada a um
sistema universal. Rio de Janeiro: IBGE.
Vinnarasi, F., Srinivasamoorthy, K., Saravanan, K.,
Gopinath, S., Prakash, R., Ponnumani, G. & Babu, C.
Rare earth elements geochemistry of groundwater
from Shanmuganadhi, Tamilnadu, India: Chemical
weathering implications using geochemical massbalance calculations. Geochemistry, 80(4), 125668.
DOI: https://doi.org/10.1016/j.chemer.2020.125668
Weber, W. 1998. Geologia e Geocronologia da Ilha do
Cardoso, sudeste do Estado de São Paulo (mathesis).
Universidade de Sao Paulo, Agencia USP de Gestao da
Informacao Academica (AGUIA), São Paulo. https://doi.
org/10.11606/d.44.1998.tde-14102015-155051
Wedepohl, K. H. 1995. The composition of the
continental crust. Geochimica et Cosmochimica
Acta, 59(7), 1217–1232. DOI: https://doi.org/10.1180/
minmag.1994.58a.2.234
Wu, K., Liu, S., Kandasamy, S., Jin, A., Lou, Z., Li, J., Wu,
B., Wang, X., Abdrahim Mohamed, C. & Shi, X. 2019.
Grain-size effect on rare earth elements in Pahang River
and Kelantan River, Peninsular Malaysia: Implications
for sediment provenance in the southern South China
Sea. Continental Shelf Research, 189, 103977. DOI:
https://doi.org/10.1016/j.csr.2019.103977
Yang, S. Y., Jung, H. S., Choi, M. S. & Li, C. X. 2002. The
rare earth element compositions of the Changjiang
(Yangtze) and Huanghe (Yellow) river sediments. Earth
and Planetary Science Letters, 201(2), 407–419. DOI:
https://doi.org/10.1016/s0012-821x(02)00715-x
Yusoff, Z., Ngwenya, B. & Parsons, I. 2013. Mobility and
fractionation of REEs during deep weathering of
geochemically contrasting granites in a tropical setting,
Malaysia. Chemical Geology, 349–350, 71–86. DOI:
Downloads
Published
Issue
Section
License
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.