Sinking particles in the photic zone: relations with biogeochemical properties in different sectors of the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC)-Brazil
DOI:
https://doi.org/10.1590/Keywords:
Sinking particles, Subtropical estuary, Trophic status, Photosynthetic pigments, Anthropogenic influenceAbstract
Over the last decades, regional climate changes, erosion, and heightened agricultural runoffs have increased
nutrient and particle input in rivers, unbalancing the biogeochemical cycle of this suspended material along
estuaries. In this context, particle fluxes in the euphotic zone, a very productive layer and important to
maintain the food chain and estuarine preservation, require better understanding. This study aims to evaluate
particle sedimentation fluxes in the photic zone of the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC),
considering sectors under different salinities and trophic statuses. A cylindrical sediment trap was installed at
the base of the photic layer to measure particle fluxes and photopigments. Meanwhile, water samples were
taken to measure temperature, salinity, pH, dissolved oxygen, and nutrients. Valo Grande (a freshwater domain)
showed high nutrient concentrations, in which high fluxes of phaeopigments and chlorophyll-b highlighted the
contribution of vegetable detritus to particle sinking. In the Batatais mangrove creek, the high fluxes of organic
particles (675.32 mg m-2 d-1) and chlorophyll-a (98.40 mg m-2 d-1) evinced a high contribution of microplankton
to carbon sinking. During the winter of 2018, flocculation processes were evinced in the flood tide of the
Cananéia Bay as an important driver of sedimentation rates, with considerable fluxes of inorganic particles
(1161.20 mg m-2 d-1) and chlorophyll-a (83.27 mg m-2 d-1). In the summer of 2019, we observed a lower flux in
total particles (451.24 mg m-2 d-1) in a period of haline stratification. In the Ararapira Channel, the lowest organic
particle fluxes (<100 mg m-2 d-1) were associated with ultra-oligotrophic conditions, indicating a low influence
of microplankton on sinking particles. These findings suggest that freshwater input, tidal variation, and trophic
status are relevant controls of sinking particles in different CIELC sectors.
References
Alldredge, A. L., Passow, U. & Logan, B. E. 1993.
The abundance and significance of a class of large,
transparent organic particles in the ocean. Deep Sea
Research Part I: Oceanographic Research Papers,
(6), 1131–1140. DOI: https://doi.org/10.1016/0967-
(93)90129-q
Almeida Prado, M. S., Pompeu, M. & Porto, F. D. 1989.
Environmental quality and ecosystem stability.
In: Spanier, Y., Steinberg, S., & Luria, M. (eds.).
Jerusalem: ISEEQS Pub.
Aminot, A. & Chaussepied, M. 1983. Manuel des analyses
chimiques en milieu marin. Paris: Editions Jouve.
Anderson, J. M. 1986. Photoregulation of the Composition,
Function, and Structure of Thylakoid Membranes.
Annual Review of Plant Physiology, 37(1), 93–136. DOI:
https://doi.org/10.1146/annurev.pp.37.060186.000521
Angulo, R. J., Souza, M. C. de, Sielski, L. H., Nogueira, R. A. &
Müller, M. E. J. 2019. Morphology, bedforms andbottom
sediments of Mar do Ararapira, southern Brazil.
Quaternary and Environmental Geoscience, 10(1), 1–9.
Ara, K. 2001a. Daily egg production rate of the planktonic
calanoid copepod Acartia lilljeborgi Giesbrecht in the
Cananéia Lagoon estuarine system, São Paulo, Brazil.
Hydrobiologia, 445(1/3), 205–215. DOI: https://doi.org/
1023/a:1017573917281
Ara, K. 2001b. Temporal variability and production of the
planktoniccopepods in the Cananeia Lagoon estuarine
system,Sao Paulo, Brazil. II. Acartia lilljeborgi. Plankton
Biology & Ecology, 48(1), 35–45.
Arasaki, E. & Alfredini, P. 2009. Obras e gestão de portos
e costas (2nd ed.). São Paulo: Blucher.
Armstrong, F. A. J., Williams, P. M. & Strickland, J. D. H.
Photooxidation of organic matter in seawater by
ultraviolet radiation analytical and application. Nature,
, 463-481
Azevedo, J. de S. & Braga, E. S. 2011. Caracterização
hidroquímica para qualificação ambiental dos estuários
de Santos-São Vicente e Cananéia. Arquivos de
Ciências Do Mar, 44(2), 52–61.
Baker, E. T., Milburn, H. B. & Tennant, D. A. 1988. Field
assessment of sediment trap efficiency under varying
flow conditions. Journal of Marine Research, 46, 573–592.
Bale, A. J. 1998. Sediment trap performance in tidal
waters: comparison of cylindrical and conical collectors.
Continental Shelf Research, 18(11), 1401–1418. DOI:
https://doi.org/10.1016/s0278-4343(98)00050-8
Barlow, R. G., Mantoura, R. F. C., Peinert, R. D.,
Miller, A. E. J. & Fileman, T. W. 1995. Distribution,
sedimentation and fate of pigment biomarkers following
thermal stratification in the western Alboran Sea. Marine
Ecology Progress Series, 125(1/3), 279–291.
Barrera-Alba, J. J., Gianesella, S. M. F., Moser, G. A. O. &
Saldanha-Corrêa, F. M. P. 2008. Bacterial and
phytoplankton dynamics in a sub-tropical estuary.
Hydrobiologia, 598(1), 229–246. DOI: https://doi.org/
1007/s10750-007-9156-4
Barrera-Alba, J. J., Gianesella, S. M. F., Saldanha-Corrêa,
F. M. P. & Moser, G. A. O. 2007. Influence of an Artificial
Channel in a Well-Preserved Sub-Tropical Estuary.
Journal of Coastal Research, (50), 1137–1141.
Barrera-Alba, J. J. & Moser, G. A. O. 2016. Short-term
response of phytoplankton community to over-enrichment
of nutrients in a well-preserved subtropical estuary.
Brazilian Journal of Oceanography, 64(2), 191-196.
Bartoli, M., Nizzoli, D., Zilius, M., Bresciani, M.,
Pusceddu, A., Bianchelli, S., Sundbäck, K., RazinkovasBaziukas, A. & Viaroli, P. 2021. Denitrification, Nitrogen
Uptake, and Organic Matter Quality Undergo Different
Seasonality in Sandy and Muddy Sediments of a Turbid
Estuary. Frontiers in Microbiology, 11. DOI: https://
doi.org/10.3389/fmicb.2020.612700
Becker, C. C., Weber, L., Suca, J. J., Llopiz, J. K.,
Mooney, T. A. & Apprill, A. 2020. Microbial and nutrient
dynamics in mangrove, reef, and seagrass waters over
tidal and diurnal time scales. Aquatic Microbial Ecology,
, 101–119. DOI: https://doi.org/10.3354/ame01944
Beltran, E. V., Sutti, B. O., Gonçalves, E. L.,
Reis, F. C., Oliveira, W. R. L. de, Schaefer, F.,
Clara, M. M., Giordano, F. & Barrella, W. 2012.
Estimativa do Sequestro de Carbono por Árvores
de Manguezal no RioBoturoca – São Vicente/SP.
UNISANTA BioScience, 1(1), 11–15.
Bertilsson, S., Berglund, O., Karl, D. M. & Chisholm, S. W.
Elemental composition of marine Prochlorococcus
and Synechococcus: Implications for the ecological
stoichiometry of the sea. Limnology and Oceanography,
(5), 1721–1731. DOI: https://doi.org/10.4319/lo.
48.5.1721
Bianchi, T. S. 2006. Biogeochemistry of Estuaries.
Oxford University Press. DOI: https://doi.org/10.1093/
oso/9780195160826.001.0001
Billen, G. & Garnier, J. 2006. River basin nutrient delivery to
the coastal sea: Assessing its potential to sustain new
production of non-siliceous algae. Marine Chemistry,
(1–2), 148–160. DOI: https://doi.org/10.1016/j.
marchem.2006.12.017
Braga, E. de S. 2020. Total Dissolved Nitrogen and
Phosphorus Determination inCoastal South Atlantic
Water Based on UV Oxidation Method. American Journal
of Sciences and Engineering Research, 3(6), 60–66.
Braga, E. de S., Berbel, G. B. B., Chiozzini, V. G. & Andrade,
N. C. G. 2017. Dissolved organic nutrients (C, N, P) in
seawater on the continental shelf in the Southwestern
South Atlantic with emphasis State Marine Park of
Laje de Santos (SMPLS) - São Paulo - Brazil. Brazilian
Journal of Oceanography, 65(4), 614–627. DOI: https://
doi.org/10.1590/s1679-87592017136506504
Braga, E. S. 1995. Distribuição sazonal da ureia na região
de Ubatuba 45° 04´W e 23° 32´S. Boletim Do Instituto
Oceanográfico, 11, 91–98.
Braga, E. S., Bonetti, C. V. D. H., Burone, L. & Filho, J. B.
Eutrophication and Bacterial Pollution Caused by
Sinking particles in CIELC euphotic zone
Ocean and Coastal Research 2023, v71(suppl 1):e23038 31
Sutti et al.
Industrial and Domestic Wastes at the Baixada Santista
Estuarine System – Brazil. Marine Pollution Bulletin,
(2), 165–173. DOI: https://doi.org/10.1016/s0025-
x(99)00199-x
Brandini, N., Rodrigues, A. P. de C., Abreu, I. M., Junior, L.
C. C., Knoppers, B. A. & Machado, W. 2016. Nutrient
behavior in a highly-eutrophicated tropical estuarine
system. Acta Limnologica Brasiliensia, 28(0). DOI:
https://doi.org/10.1590/s2179-975x3416
Breitburg, D. 2002. Effects of hypoxia, and the balance
between hypoxia and enrichment, on coastal fishes
and fisheries. Estuaries, 25(4), 767–781. DOI: https://
doi.org/10.1007/bf02804904
Brewin, R. J. W., Sathyendranath, S., Platt, T., Bouman, H.,
Ciavatta, S., Dall’Olmo, G., Dingle, J., Groom, S., Jönsson, B.,
Kostadinov, T. S., Kulk, G., Laine, M., Martínez-Vicente, V.,
Psarra, S., Raitsos, D. E., Richardson, K., Rio, M.-H.,
Rousseaux, C. S., Salisbury, J., Shutler, J. D. & Walker, P.
Sensing the ocean biological carbon pump from
space: A review of capabilities, concepts, research
gaps and future developments. Earth-Science
Reviews, 217, 103604. DOI: https://doi.org/10.1016/j.
earscirev.2021.103604
Brzezinski, M. A. 1985. The Si:C:N ratio of marine
diatoms: interspecific variability and the effect of
some environmental variables. Journal of Phycology,
(3), 347–357. DOI: https://doi.org/10.1111/j.0022-
1985.00347.x
Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S. W., Gardner,
W. D., Gustafsson, O., Harada, K., Michaels, A. F., Loeff,
M. R. van der, Sarin, M., Steinberg, D. K. & Trull, T.
An assessment of the use of sediment traps for
estimatingupper ocean particle fluxes. Journal of Marine
Research, 65, 345–416.
Chai, C., Jiang, T., Cen, J., Ge, W. & Lu, S. 2016.
Phytoplankton pigments and functional community
structure in relation to environmental factors in the
Pearl River Estuary. Oceanologia, 58(3), 201–211. DOI:
https://doi.org/10.1016/j.oceano.2016.03.001
Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. 2013.
Eutrophication: Causes, Consequences, and Controls
in Aquatic Ecosystems. Nature Education Knowledge,
(4), 10.
Choudhury, A. K. & Bhadury, P. 2015. Relationship
between N : P : Si ratio and phytoplankton community
composition in a tropical estuarine mangrove ecosystem.
Biogeosciences Discussions, 12, 2307–2355. DOI:
https://doi.org/10.5194/bgd-12-2307-2015
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H.,
Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P.,
Downing, J. A., Middelburg, J. J. & Melack, J. 2007.
Plumbing the Global Carbon Cycle: Integrating Inland
Waters into the Terrestrial Carbon Budget. Ecosystems,
(1), 172–185. DOI: https://doi.org/10.1007/s10021-
-9013-8
Conley, D. J., Kilham, S. S. & Theriot, E. 1989. Differences in
silica content between marine and freshwater diatoms.
Limnology and Oceanography, 34(1), 205–212. DOI:
https://doi.org/10.4319/lo.1989.34.1.0205
Conley, D. J. & Malone, T. C. 1992. Annual Cycle of
Dissolved Silicate in Chesapeake Bay: Implications for
the Production and Fate of Phytoplankton Biomass.
Marine Ecology Progress Series, 81, 121–128.
Conley, D. J., Schelske, C. L. & Stoermer, E. F. 1993.
Modification of the biogeochemical cycle of silica with
eutrophication. Marine Ecologogy Progress Series, 101,
–192.
Cordeiro, P. F., Goulart, F. F., Macedo, D. R., Campos,
M. D. C. S. & Castro, S. R. 2020. Modeling of the
potential distribution of Eichhornia crassipes on a global
scale: risks and threats to water ecosystems. Ambiente
e Agua - An Interdisciplinary Journal of Applied Science,
(2), 1. DOI: https://doi.org/10.4136/ambi-agua.2421
Cotovicz Junior, L. C., Brandini, N., Knoppers, B. A.,
Mizerkowski, B. D., Sterza, J. M., Ovalle, A. R. C. &
Medeiros, P. R. P. 2012. Assessment of the trophic
status of four coastal lagoons and one estuarine
delta, eastern Brazil. Environmental Monitoring
and Assessment, 185(4), 3297–3311. DOI: https://
doi.org/10.1007/s10661-012-2791-x
Cugier, P., Billen, G., Guillaud, J. F., Garnier, J. &
Ménesguen, A. 2005. Modelling the eutrophication of
the Seine Bight (France) under historical, present and
future riverine nutrient loading. Journal of Hydrology,
(1–4), 381–396. DOI: https://doi.org/10.1016/j.
jhydrol.2004.07.049
Damar, A., Colijn, F., Hesse, K.-J. & Kurniawan, F. 2020.
Coastal Phytoplankton Pigments Composition in Three
Tropical Estuaries of Indonesia. Journal of Marine
Science and Engineering, 8(5), 311. DOI: https://
doi.org/10.3390/jmse8050311
Dell’Anno, A., Fabiano, M., Bompadre, S., Armeni, M.,
Leone, L. & Danovaro, R. 1999. Phytopigment and DNA
determinations in long-time formalin-preserved trap
samples. Marine Ecology Progress Series, 191, 71–77.
Dittmar, T. & Lara, R. J. 2001. Driving Forces Behind
Nutrient and Organic Matter Dynamics in a Mangrove
Tidal Creek in North Brazil. Estuarine, Coastal and Shelf
Science, 52(2), 249–259. DOI: https://doi.org/10.1006/
ecss.2000.0743
D’Souza, A. M. & Gauns, M. U. 2018. Temporal variability
in copepod gut pigments over the central western
continental shelf of India. Journal of the Marine Biological
Association of the United Kingdom, 98(1), 149–159.
DOI: https://doi.org/10.1017/s0025315416001144
Emerson, S. & Hedges, J. 2008. Life processes in the
ocean. In: Emerson, S. & Hedges, J. (eds.), Chemical
Oceanography and the Marine Carbon Cycle
(pp. 173–218). Cambridge University Press. DOI:
https://doi.org/10.1017/cbo9780511793202.007
Farhadian, O. & Pouladi, M. 2014. Seasonal changes in the
abundance and biomass of zooplankton from shallow
mudflat river-estuarine system in Persian Gulf. Brazilian
Journal of Aquatic Science and Technology, 18(2),
–29. DOI: https://doi.org/10.14210/bjast.v18n2.p19-29
Fernandes, S. O., Michotey, V. D., Guasco, S., Bonin,
P. C. & Bharathi, P. A. L. 2012. Denitrification prevails
over anammox in tropical mangrove sediments (Goa,
India). Marine Environmental Research, 74, 9–19. DOI:
https://doi.org/10.1016/j.marenvres.2011.11.008
Fortune, J., Kaestli, M., Butler, E. C. V. & Gibb, K. 2022.
Denitrification in intertidal sediments of a tropical
estuary subject to increasing development pressures.
Aquatic Sciences, 84(4). DOI: https://doi.org/10.1007/
s00027-022-00885-0
Sinking particles in CIELC euphotic zone
Ocean and Coastal Research 2023, v71(suppl 1):e23038 32
Sutti et al.
Frigstad, H., Andersen, T., Hessen, D. O., Naustvoll, L.-J.,
Johnsen, T. M. & Bellerby, R. G. J. 2011. Seasonal
variation in marine C:N:P stoichiometry: can the
composition of seston explain stable Redfield ratios?
Biogeosciences, 8(10), 2917–2933. DOI: https://
doi.org/10.5194/bg-8-2917-2011
Froján, M., Figueiras, F. G., Zúñiga, D., Alonso-Pérez, F.,
Arbones, B. & Castro, C. G. 2016. Influence of Mussel
Culture on the Vertical Export of Phytoplankton Carbon
in a Coastal Upwelling Embayment (Ría de Vigo, NW
Iberia). Estuaries and Coasts, 39(5), 1449–1462. DOI:
https://doi.org/10.1007/s12237-016-0093-1
Furlong, E. T. & Carpenter, R. 1988. Pigment preservation
and remineralization in oxic coastal marine sediments.
Geochimica et Cosmochimica Acta, 52(1), 87–99. DOI:
https://doi.org/10.1016/0016-7037(88)90058-0
Gardner, W. D., Biscaye, P. E. & Richardson, J. M. 1997.
A sediment trap experiment in the Vema Channel
to evaluate the effect of horizontal particle fluxes on
measured vertical fluxes. Journal of Marine Research,
, 995–1028.
Garnier, J., Beusen, A., Thieu, V., Billen, G. &
Bouwman, L. 2010. N:P:Si nutrient export ratios and
ecological consequences in coastal seas evaluated
by the ICEP approach. Global Biogeochemical Cycles,
(4). DOI: https://doi.org/10.1029/2009gb003583
Giannini, P. C. F., Guedes, C. C. F., Nascimento Jr, D. R. do,
Tanaka, A. P. B., Angulo, R. J., Souza, M. C. de & Assine,
M. L. 2009. Sedimentology and Morphological Evolution
of the Ilha Comprida Barrier System, Southern São
Paulo Coast. In: Dillenburg, S. R. & Hesp, P. A. (eds.),
Geology and Geomorphology of Holocene Coastal
Barriers of Brazil (pp. 177–224). Berlin: Springer.
Giovanardi, F. & Vollenweider, R. A. 2004. Trophic conditions
of marine coastal waters: experience in applying the
Trophic Index TRIX to two areas of the Adriatic and
Tyrrhenian seas. Journal of Limnology, 63(2), 199–218.
DOI: https://doi.org/10.4081/jlimnol.2004.199
Grashoff, K.; Kremling. K. & Ehrhardt. M. 1983. Methods of
seawater analysis. 2ed. Florida: Verlagie Chemie. 419p.
Groß, E., Pane, J. D., Boersma, M. & Meunier, C. L. 2022.
River discharge-related nutrient effects on North Sea
coastal and offshore phytoplankton communities.
Journal of Plankton Research, 44(6), 947–960. DOI:
https://doi.org/10.1093/plankt/fbac049
Hamilton, S. K., Sippel, S. J. & Bunn, S. E. 2005. Separation
of algae from detritus for stable isotope or ecological
stoichiometry studies using density fractionation in colloidal
silica. Limnology and Oceanography: Methods, 3(3),
–157. DOI: https://doi.org/10.4319/lom.2005.3.149
Hao, Y.-Y., Zhu, Z.-Y., Fang, F.-T., Novak, T.,
Čanković, M., Hrustić, E., Ljubešić, Z., Li, M., Du, J.-Z.,
Zhang, R.-F. & Gašparović, B. 2021. Tracing Nutrients
and Organic Matter Changes in Eutrophic Wenchang
(China) and Oligotrophic Krka (Croatia) Estuaries:
A Comparative Study. Frontiers in Marine Science, 8.
DOI: https://doi.org/10.3389/fmars.2021.663601
Harari, J., França, C. A. S. & Camargo, R. 2008.
Perspectives on Integrated Coastal Zone Management
in South America. In: Neves, R., Baretta, J., Mateus, M.
(ed.) Climatology and hydrography of Santos Estuary
(pp. 147–160). Lisboa: IST Press.
Head, E. J. H. & Harris, L. R. 1996. Chlorophyll destruction
by Calanus spp. grazing onphytoplankton: kinetics,
effects of ingestion rate andfeeding history, and a
mechanistic interpretation. Marine Ecology Progress
Series, 135, 223–235.
Ho, T.-Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K.,
Falkowski, P. G. & Morel, F. M. M. 2003. The elemental
composition od some marine phytoplankton. Journal
of Phycology, 39(6), 1145–1159. DOI: https://doi.org/
1111/j.0022-3646.2003.03-090.x
Honjo, S., Manganini, S. J., Krishfield, R. A. & Francois, R.
Particulate organic carbon fluxes to the ocean
interior and factors controlling the biological pump:
A synthesis of global sediment trap programs since
Progress in Oceanography, 76(3), 217–285. DOI:
https://doi.org/10.1016/j.pocean.2007.11.003
Hopkins, J., Henson, S. A., Poulton, A. J. & Balch,
W. M. 2019. Regional Characteristics of the Temporal
Variability in the Global Particulate Inorganic Carbon
Inventory. Global Biogeochemical Cycles, 33(11),
–1338. DOI: https://doi.org/10.1029/2019gb006300
Huang, J., Wang, S., Li, X., Xie, R., Sun, J., Shi, B., Liu, F.,
Cai, H., Yang, Q. & Zheng, Z. 2022. Effects of Shear
Stress and Salinity Stratification on Floc Size Distribution
During the Dry Season in the Modaomen Estuary
of the Pearl River. Frontiers in Marine Science, 9.
DOI: https://doi.org/10.3389/fmars.2022.836927
Humborg, C., Smedberg, E., Medina, M. R. & Mörth, C.-M.
Changes in dissolved silicate loads to the Baltic
Sea — The effects of lakes and reservoirs. Journal
of Marine Systems, 73(3–4), 223–235. DOI: https://
doi.org/10.1016/j.jmarsys.2007.10.014
INMET. 2020. Portal INMET. Accessed: http://www.inmet.
gov.br/portal
IO-USP. 2006. MAPTOLAB. Accessed: http://www.mares.
io.usp.br/
Italiani, D., Siegle, E. & Noernberg, M. A. 2020. Tidal inlet
migration and formation: the case of the Ararapira inlet -
Brazil. Ocean and Coastal Research, 68. DOI: https://
doi.org/10.1590/s2675-28242020068314
Jeffrey, S. W. & Humphrey, G. F. 1975. New
spectrophotometric equations for determining
chlorophylls a, b, c1 and c2 in higher plants,
algae and natural phytoplankton. Biochemie
Und Physiologie Der Pflanzen, 167(2), 191–194.
DOI: https://doi.org/10.1016/s0015-3796(17)30778-3
Joesoef, A., Huang, W.-J., Gao, Y. & Cai, W.-J. 2015.
Air–water fluxes and sources of carbon dioxide in the
Delaware Estuary: spatial and seasonal variability.
Biogeosciences, 12(20), 6085–6101. DOI: https://
doi.org/10.5194/bg-12-6085-2015
Johannessen, S. C., O’Brien, M. C., Denman, K. L. &
Macdonald, R. W. 2005. Seasonal and spatial variations
in the source and transport of sinking particles in
the Strait of Georgia, British Columbia, Canada.
Marine Geology, 216(1–2), 59–77. DOI: https://
doi.org/10.1016/j.margeo.2005.01.004
John, D. M. 2003. Filamentous and Plantlike Green Algae.
In: Wehr, J. D., Sheath, R. G., & Kociolek, J. P. (eds.),
Aquatic Ecology, Freshwater Algae of North America
(pp. 375–427). Elsevier. DOI: https://doi.org/10.1016/
b978-0-12-385876-4.00008-6
Sinking particles in CIELC euphotic zone
Ocean and Coastal Research 2023, v71(suppl 1):e23038 33
Sutti et al.
Kähler, P. & Bauerfeind, E. 2001. Organic particles in a
shallow sediment trap: Substantial loss to the dissolved
phase. Limnology and Oceanography, 46(3), 719–723.
DOI: https://doi.org/10.4319/lo.2001.46.3.0719
Karlusich, J. J. P., Ibarbalz, F. M. & Bowler, C. 2020.
Phytoplankton in the Tara Ocean. Annual Review
of Marine Science, 12(1), 233–265. DOI: https://
doi.org/10.1146/annurev-marine-010419-010706
Kathiresan, K. 2003. How do mangrove forests induce
sedimentation? Revista de Biología Tropical, 51(2),
–359.
Kostadinov, T. S., Siegel, D. A., Maritorena, S. &
Guillocheau, N. 2012. Optical assessment of particle
size and composition in the Santa Barbara Channel,
California. Applied Optics, 51(16), 3171–3189. DOI:
https://doi.org/10.1364/ao.51.003171
Kutner, M. B. B. 1972. Variação estacional e distribuição
do fitoplâncton na região de Cananéia (phdthesis).
Universidade de São Paulo, Instituto Oceanográfico,
São Paulo.
Lopes, R. M., Vale, R. do & Brandini, F. P. 1998.
Composição, abundância e distribuição espacial do
zooplâncton no complexo estuarino de Paranaguá
durante o inverno de 1993 e o verão de 1994. Revista
Brasileira de Oceanografia, 46(2), 195–211. DOI:
https://doi.org/10.1590/s1413-77391998000200008
Louda, J. W., Liu, L. & Baker, E. W. 2002. Senescence- and
death-related alteration of chlorophylls and carotenoids
in marine phytoplankton. Organic Geochemistry,
(12), 1635–1653. DOI: https://doi.org/10.1016/s0146-
(02)00106-7
Lorenzen, C. J. 1965. A note on the chlorophyll and
phaeophytin content of the chlorophyll maximum.
Limnology and Oceanography, 10, 482-483.
Mari, X., Torréton, J.-P., Trinh, C. B.-T., Bouvier, T., Thuoc,
C. V., Lefebvre, J.-P. & Ouillon, S. 2012. Aggregation
dynamics along a salinity gradient in the Bach Dang
estuary, North Vietnam. Estuarine, Coastal and Shelf
Science, 96, 151–158. DOI: https://doi.org/10.1016/j.
ecss.2011.10.028
Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A.,
Moore, J. K., Levin, S. A. & Lomas, M. W. 2013. Strong
latitudinal patterns in the elemental ratios of marine
plankton and organic matter. Nature Geoscience, 6(4),
–283. DOI: https://doi.org/10.1038/ngeo1757
Mesquita, H. de S. L. & Peres, C. de A. 1985. Numerical
contribution of phytoplanktonic cells, heterotrophic
particles and bacteria to size fractionated POC in the
Cananéia estuary (25o
S 48o
W), Brazil. Boletim Do
Instituto Oceanográfico, 33(1), 69–78.
Millo, C., Bravo, C., Covelli, S., Pavoni, E., Petranich, E.,
Contin, M., Nobili, M. D., Crosera, M., Sutti, B. O.,
Silva, C. das M. & Braga, E. de S. 2021. Metal Binding
and Sources of Humic Substances in Recent Sediments
from the Cananéia-Iguape Estuarine-Lagoon Complex
(South-Eastern Brazil). Applied Sciences, 11(18), 8466.
DOI: https://doi.org/10.3390/app11188466
Miranda, L. B. de & Castro Filho, B. M. de. 1996. On the
salt transport in the Cananéia sea during a spring tide
experiment. Revista Brasileira de Oceanografia, 44(2),
–133.
Miyao, S. Y. & Harari, J. 1989. Estudo preliminar da maré e
das correntes de maré da região estuarina de Cananéia
(25o
S-48o
W). Boletim Do Instituto Oceanográfico, 37(2),
–123.
Miyao, S. Y., Nishihara, L. & Sarti, C. C. 1986. Características
físicas e químicas do Sistema Estuarino-Lagunar de
Cananéia-Iguape. Boletim Do Instituto Oceanográfico,
, 23–36.
Moraes, P. C., Zilius, M., Benelli, S. & Bartoli, M. 2018.
Nitrification and denitrification in estuarine sediments
with tube-dwelling benthic animals. Hydrobiologia,
(1), 217–230. DOI: https://doi.org/10.1007/s10750-
-3639-3
Moser, G. A. O., Gianesella, S. M. F., Alba, J. J. B.,
Bérgamo, A. L., Saldanha-Corrêa, F. M. P., Miranda,
L. B. de & Harari, J. 2005. Instantaneous transport of
salt, nutrients, suspended matter and chlorophyll-a
in the tropical estuarine system of Santos. Brazilian
Journal of Oceanography, 53(3/4), 115–127.
Mostofa, K. M. G., Liu, C., Pan, X., Vione, D., Hayakawa, K.,
Yoshioka, T. & Komissarov, G. G. 2013. Chlorophylls
and their Degradation in Nature. In: Mostofa, K. M.
G., Yoshioka, T., Mottaleb, A., & Vione, D. (eds.),
Photobiogeochemistry of Organic Matter (pp. 687–768).
Berlin: Springer Berlin Heidelberg. DOI: https://doi.
org/10.1007/978-3-642-32223-5_8
Nunes, L. H. 1990. Impacto pluvial na serra do paranapiacaba
e baixada santista (phdthesis). Universidade de São
Paulo, São Paulo.
Odebrecht, C., Villac, M. C., Abreu, P. C., Haraguchi, L.,
Gomes, P. D. F. & Tenenbaum, D. R. 2018. Flagellates
Versus Diatoms: Phytoplankton Trends in Tropical
and Subtropical Estuarine-Coastal Ecosystems. In:
Hoffmeyer, M., Sabatini, M., Brandini, F., Calliari, D. &
Santinelli, N. (eds.), Plankton Ecology of the Southwestern
Atlantic (pp. 249–267). Springer International Publishing.
DOI: https://doi.org/10.1007/978-3-319-77869-3_12
Pandolfini, E. 2000. Grazing experiments with two freshwater
zooplankters: fate of chlorophyll and carotenoid
pigments. Journal of Plankton Research, 22(2), 305–
DOI: https://doi.org/10.1093/plankt/22.2.305
Passow, U., Shipe, R. F., Murray, A., Pak, D. K., Brzezinski,
M. A. & Alldredge, A. L. 2001. The origin of transparent
exopolymer particles (TEP) and their role in the
sedimentation of particulate matter. Continental Shelf
Research, 21(4), 327–346. DOI: https://doi.org/10.1016/
s0278-4343(00)00101-1
Paula Filho, F. J., Marins, R. V., Chicharo, L., Souza, R. B.,
Santos, G. V. & Braz, E. M. A. 2020. Evaluation of
water quality and trophic state in the Parnaíba River
Delta, northeast Brazil. Regional Studies in Marine
Science, 34, 101025. DOI: https://doi.org/10.1016/j.
rsma.2019.101025
Pilskaln, C. H., Padua, J. B., Chavez, F. P., Anderson, R. Y. &
Berelson, W. M. 1996. Carbon export and regeneration
in the coastal upwellingsystem of Monterey Bay, central
California. Journal of Marine Research, 54, 1149–1178.
Prado, H. M., Schlindwein, M. N., Murrieta, R. S. S.,
Júnior, D. R. do N., Souza, E. P. de, Cunha-Lignon, M.,
Mahiques, M. M. de, Giannini, P. C. F. & Contente, R. F.
The Valo Grande Channel in theCananéia-Iguape
Estuary-Lagoon Complex (SP, Brazil): Environmental
Sinking particles in CIELC euphotic zone
Ocean and Coastal Research 2023, v71(suppl 1):e23038 34
Sutti et al.
History, Ecology, and Future Perspectives. Ambiente &
Sociedade, 22. DOI: https://doi.org/10.1590/1809-
asoc0182r2vu19l4td
Primpas, I. & Karydis, M. 2010. Scaling the trophic
index (TRIX) in oligotrophic marine environments.
Environmental Monitoring and Assessment, 178(1–4),
–269. DOI: https://doi.org/10.1007/s10661-010-1687-x
Raimonet, M., Thieu, V., Silvestre, M., Oudin, L.,
Rabouille, C., Vautard, R. & Garnier, J. 2018. Landward
Perspective of Coastal Eutrophication Potential
Under Future Climate Change: The Seine River Case
(France). Frontiers in Marine Science, 5. DOI: https://
doi.org/10.3389/fmars.2018.00136
RAMSAR. 2017. Ramsar Sites Information Service.
Accessed: https://rsis.ramsar.org/ris/2310
Rassmann, J., Lansard, B., Pozzato, L. & Rabouille, C.
Carbonate chemistry in sediment porewaters
of the Rhône River delta driven by early diagenesis
(northwestern Mediterranean). Biogeosciences, 13(18),
–5394. DOI: https://doi.org/10.5194/bg-13-5379-2016
Redfield, A. C. 1958. The biological control of chemical
factors in the environment. American Scientist, 46(3),
–221.
Redfield, A. C., Ketchum, B. H. & Richards, F. A. 1963.
The sea: ideas and observations on progress in the
study of the seas. In: Hill, M. N. (ed.) The Sea. (2nd ed.,
pp. 26–77). New York: Wiley.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie,
F. T., Gruber, N., Janssens, I. A., Laruelle, G. G.,
Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S.,
Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C.,
Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J., Meysman,
F. J. R., Munhoven, G., Raymond, P. A., Spahni, R.,
Suntharalingam, P. & Thullner, M. 2013. Anthropogenic
perturbation of the carbon fluxes from land to ocean.
Nature Geoscience, 6(8), 597–607. DOI: https://
doi.org/10.1038/ngeo1830
Saavedra-Hortua, D. A., Friess, D. A., Zimmer, M. &
Gillis, L. G. 2020. Sources of Particulate Organic Matter
across Mangrove Forests and Adjacent Ecosystems in
Different Geomorphic Settings. Wetlands, 40(5), 1047–
DOI: https://doi.org/10.1007/s13157-019-01261-9
Saderne, V., Geraldi, N. R., Macreadie, P. I., Maher, D. T.,
Middelburg, J. J., Serrano, O., Almahasheer, H., AriasOrtiz, A., Cusack, M., Eyre, B. D., Fourqurean, J. W.,
Kennedy, H., Krause-Jensen, D., Kuwae, T., Lavery,
P. S., Lovelock, C. E., Marba, N., Masqué, P., Mateo,
M. A., Mazarrasa, I., McGlathery, K. J., Oreska, M. P. J.,
Sanders, C. J., Santos, I. R., Smoak, J. M., Tanaya, T.,
Watanabe, K. & Duarte, C. M. 2019. Role of carbonate
burial in Blue Carbon budgets. Nature Communications,
(1), 1106. DOI: https://doi.org/10.1038/s41467-019-
-6
Sanders, T. & Laanbroek, H. J. 2018. The distribution of
sediment and water column nitrification potential in the
hyper-turbid Ems estuary. Aquatic Sciences, 80(4).
DOI: https://doi.org/10.1007/s00027-018-0584-1
Santos, A. K. D. dos S., Cutrim, M. V. J., Costa, D. S.,
Cavalcanti, L. F., Ferreira, F. S., Oliveira, A. L. L. &
Serejo, J. H. F. 2021. Algal blooms and trophic state in a
tropical estuary blocked by a dam (northeastern Brazil).
Ocean and Coastal Research, 69, 21009. DOI: https://
doi.org/10.1590/2675-2824069.20-006akddss
Santos, A. L. dos, Gourvil, P., Tragin, M., Noël, M.-H.,
Decelle, J., Romac, S. & Vaulot, D. 2016. Diversity
and oceanic distribution of prasinophytes clade VII,
the dominant group of green algae in oceanic waters.
The ISME Journal, 11(2), 512–528. DOI: https://
doi.org/10.1038/ismej.2016.120
Sarma, V. V. S. S., Arya, J., Subbaiah, C. V., Naidu, S. A.,
Gawade, L., Kumar, P. P. & Reddy, N. P. C. 2012. Stable
isotopes of carbon and nitrogen in suspended matter
and sediments from the Godavari estuary. Journal of
Oceanography, 68(2), 307–319. DOI: https://doi.org/
1007/s10872-012-0100-5
Schagerl, M., Pichler, C. & Donabaum, K. 2003. Patterns
of major photosynthetic pigments in freshwater
algae. 2. Dinophyta, Euglenophyta, Chlorophyceae
and Charales. Annales de Limnologie - International
Journal of Limnology, 39(1), 49–62. DOI: https://
doi.org/10.1051/limn/2003005
Schulz, G., Sanders, T., Beusekom, J. E. E. van, Voynova,
Y. G., Schöl, A. & Dähnke, K. 2022. Suspended
particulate matter drives the spatial segregation of
nitrogen turnover along the hyper-turbid Ems estuary.
Biogeosciences, 19(7), 2007–2024. DOI: https://
doi.org/10.5194/bg-19-2007-2022
Sharoni, S. & Halevy, I. 2020. Nutrient ratios in marine
particulate organic matter are predicted by the
population structure of well-adapted phytoplankton.
Science Advances, 6(29). DOI: https://doi.org/10.1126/
sciadv.aaw9371
Silva, I. F. 1989. Dados climatológicos de Cananéia e
Ubatuba (Estado de São Paulo). Série de 1956-1985.
Boletim Climatológicodo Instituto Oceanográfico, 6, 1–21.
Sutti, B. O., Guimarães, L. L. & Borges, E. S. 2022. River Flows
Influence on Nutrients (Si, N and P) and Fecal Coliforms
(E. coli) in Two Tributaries of the Estuarine Channel of
Bertioga (Santos Estuary, São Paulo, Brazil). Journal of
Geoscience and Environment Protection, 10, 26-46.
Sutti, B. O., Guimarães, L. L., Borges, R. P. & Schmiegelow,
J. M. M. 2015. Avaliação do silicato dissolvido como
sinalizador de processos erosivos nabacia de drenagem
de sistemas estuarinos. UNISANTA BioScience, 4(2),
–110.
Thill, A., Moustier, S., Garnier, J.-M., Estournel, C., Naudin,
J.-J. & Bottero, J.-Y. 2001. Evolution of particle size and
concentration in the Rhône river mixing zone: influence of salt
flocculation. Continental Shelf Research, 21 (18–19), 2127–
DOI: https://doi.org/10.1016/s0278-4343(01)00047-4
Tréguer, P. & Le Corre, P. 1975. Manuel d’analyse des
sels nutritifs dans l’eau de mer (2nd ed.). Brest:
Université de Bretage Occidentale.
Tundisi, J. G. & Matsumura-Tundisi, T. 2001. Coastal
Marine Ecosystems of Latin America. In: Seeliger, U. &
Kjerfve, B. (eds.), Ecological Studies (pp. 119–130).
Berlin: Springer Berlin Heidelberg. DOI: https://doi.org/
1007/978-3-662-04482-7_10
Turner, J. T. 2015. Zooplankton fecal pellets, marine snow,
phytodetritus and the ocean’s biological pump.
Progress in Oceanography, 130, 205–248. DOI: https://
doi.org/10.1016/j.pocean.2014.08.005
Sinking particles in CIELC euphotic zone
Ocean and Coastal Research 2023, v71(suppl 1):e23038 35
Sutti et al.
Turner, R. E., Qureshi, N., Rabalais, N. N., Dortch, Q.,
Justic, D., Shaw, R. F. & Cope, J. 1998. Fluctuating
silicate:nitrate ratios and coastal plankton food webs.
Proceedings of the National Academy of Sciences,
(22), 13048–13051. DOI: https://doi.org/10.1073/
pnas.95.22.13048
UNESCO. 1999. Decision of the world heritage committee
(resreport No. 23 Session of the World Heritage).
Geneva: UNESCO.
Verney, R., Lafite, R. & Brun-Cottan, J.-C. 2009. Flocculation
Potential of Estuarine Particles: The Importance
of Environmental Factors and of the Spatial and
Seasonal Variability of Suspended Particulate Matter.
Estuaries and Coasts, 32(4), 678–693. DOI: https://
doi.org/10.1007/s12237-009-9160-1
Wang, A., Liu, J. T., Ye, X., Zheng, B., Li, Y. & Chen, J.
Settling fluxes of cohesive sediments measured
by sediment traps in a semi-enclosed embayment
with strong tidal environments. Continental Shelf
Research, 106, 17–26. DOI: https://doi.org/10.1016/j.
csr.2015.04.026
Yacobi, Y. Z. & Ostrovsky, I. 2008. Downward flux
of organic matter and pigments in Lake Kinneret
(Israel): relationships between phytoplankton and
the material collected in sediment traps. Journal of
Plankton Research, 30(10), 1189–1202. DOI: https://
doi.org/10.1093/plankt/fbn070
Yadav, A. & Pandey, J. 2018. The pattern of N/P/Si
stoichiometry and ecological nutrient limitation in Ganga
River: up- and downstream urban influences. Applied
Water Science, 8(3), 94. DOI: https://doi.org/10.1007/
s13201-018-0734-6
Yao, Y., Liu, H., Han, R., Li, D. & Zhang, L. 2021. Identifying
the Mechanisms behind the Positive Feedback Loop
between Nitrogen Cycling and Algal Blooms in a
Shallow Eutrophic Lake. Water, 13(4), 524. DOI: https://
doi.org/10.3390/w13040524
Zajączkowski, M. 2002. On the use of sediment traps in
sedimentationmeasurements in glaciated fjords. Polish
Polar Research, 23(2), 161–174.
Zhang, P., Peng, C.-H., Zhang, J.-B., Zou, Z.-B., Shi,
Y.-Z., Zhao, L.-R. & Zhao, H. 2020. Spatiotemporal
Urea Distribution, Sources, and Indication of DON
Bioavailability in Zhanjiang Bay, China. Water, 12(3),
DOI: https://doi.org/10.3390/w12030633
Zhang, X., Stavn, R. H., Falster, A. U., Gray, D. &
Gould, R. W. 2014. New insight into particulate
mineral and organic matter in coastal ocean waters
through optical inversion. Estuarine, Coastal and Shelf
Science, 149, 1–12. DOI: https://doi.org/10.1016/j.
ecss.2014.06.003
Zhu, W., Wang, C., Hill, J., He, Y., Tao, B., Mao, Z. &
Wu, W. 2018. A missing link in the estuarine nitrogen
cycle?: Coupled nitrification-denitrification mediated by
suspended particulate matter. Scientific Reports, 8(1),
DOI: https://doi.org/10.1038/s41598-018-20688-4
Zilli, M. T., Carvalho, L. M. V., Liebmann, B. & Dias,
M. A. S. 2016. A comprehensive analysis of trends in
extreme precipitation over southeastern coast of Brazil.
International Journal of Climatology, 37(5), 2269–2279.
DOI: https://doi.org/10.1002/joc.4840
Zúñiga, D., Villacieros-Robineau, N., Salgueiro, E., AlonsoPérez, F., Rosón, G., Abrantes, F. & Castro, C. G. 2016.
Particle fluxes in the NW Iberian coastal upwelling
system: Hydrodynamical and biological control.
Continental Shelf Research, 123, 89-98.
Downloads
Published
Issue
Section
License
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.