Specific alkaline phosphatase activity as an indicator of phosphorus status in the plankton community of a
DOI:
https://doi.org/10.1590/Keywords:
Alkaline phosphatase, Nutrients, Estuaries, Phytoplankton, Adriatic SeaAbstract
We evaluated the seasonal phosphorus (P) status of the plankton community in the Ombla Estuary (OE) by
using its specific alkaline phosphatase activity (sAPA). Microphytoplankton (MICRO) indicated a substantially
higher P deficiency than nanophytoplankton (NANO) and picoplankton (PICO). We found that the prolonged
increase in the temperature of the surface estuarine water supported a notable growth of the dinoflagellate
Prorocentrum spp. in late spring-early summer (June). In the summer (August), we found the maximum
microphytoplankton sAPA (MICRO sAPA) (307.8 nmol μg C-1 h-1) in the surface water, in which (84%)
dinoflagellates predominated within MICRO with the maximum alkaline phosphatase activity (APA) in all size
fractions, including free enzymes. Persistently low discharge of Ombla during summer-early autumn caused
a transition from phosphorus- to potentially nitrogen-limited MICRO in the surface water in early autumn
(October). Nutrient stress disappeared in winter, in which a significant amount of dissolved orthosilicate,
dissolved inorganic nitrogen (DIN), and soluble reactive phosphorus (SRP) enriched the estuary via maximal
river discharge and inflow of nutrient-rich coastal waters. MICRO (coccolithophorids and diatoms) had very
low APA (surface water) and quantitatively undetectable APA (bottom water) in the nutrient-rich water column
in January. This study shows a more significant impact of nutrient concentrations on MICRO than other size
classes of the plankton community. Because of the similarity in seasonal hydrological features, we assume
that the general pattern of switching from P- to N-limitation of phytoplankton growth also occurs in other highly
stratified estuaries along the coastal karst of the eastern Adriatic Sea during the lowest river discharges and
groundwater activities in summer-early autumn before the rainy season. This study indicates that a common
highly stratified estuary on the eastern Adriatic coast can serve as a natural laboratory to explore connections
between nutrient limitations and phytoplankton successions.
References
Antia, N. J., McAllister, C. D., Parsons, T. R., Stephens, K.
& Strickland, J. D. H. 1963. Further measurements of
primary production using a large-volume plastic sphere.
Limnology and Oceanography, 8(2), 166–183. DOI:
https://doi.org/10.4319/lo.1963.8.2.0166
Batistić, M., Jasprica, N., Carić, M., Čalić, M., Kovačević,
V., Garić, R., Njire, J., Mikuš, J. & Bobanović-Ćolić, S.
Biological evidence of a winter convection event
in the South Adriatic: A phytoplankton maximum in
the aphotic zone. Continental Shelf Research, 44(1),
–71. DOI: https://doi.org/10.1016/j.csr.2011.01.004
Berman, D. W., T., Walline, P. D., Schneller, A., Rothenberg,
J. & Townsend, D. W. 1985. Secchi disk record: A
claim for the eastern Mediterranean. Limnology and
Oceanography, 30(2), 447–448.
Boekel, W. H. M. van & Veldhuis, M. J. W. 1990. Regulation
of alkaline phosphatase synthesis in Phaeocystis sp.
Marine Ecology Progress Series, 61(3), 281–289.
Bogé, G., Jamet, J. L., Richard, S., Jamet, D. & Jean,
N. 2002. Contribution of copepods, cladocerans and
cirripeds to phosphatase activity in mediterranean
zooplankton. Hydrobiologia, 468(1/3), 147–154. DOI:
https://doi.org/10.1023/a:1015266722757
Bonacci, O. 2001. Analysis of the maximum discharge of
karst springs. Hydrogeology Journal, 9(4), 328–338.
DOI: https://doi.org/10.1007/s100400100142
Børsheim, K. Y. & Bratbak, G. 1987. Cell volume to cell
carbon conversion factors for a bacterivorous Monas
sp. enriched from seawater. Marine Ecology Progress
Series, 36(2), 171–175.
Calbet, A., Landry, M. R. & Scheinberg, R. D. 2000.
Copepod grazing in a subtropical bay: species-specific
responses to a midsummerincrease in nanoplankton
standing stock. Marine Ecology Progress Series, 193,
–84.
Carić, M., Jasprica, N., Kršinić, F., Vilibić, I. & Batistić, M.
Hydrography, nutrients, and plankton along the
longitudinal section of the Ombla Estuary (south-eastern
Adriatic). Journal of the Marine Biological Association of
the United Kingdom, 92(6), 1227–1242. DOI: https://doi.
org/10.1017/s002531541100213x
Civitarese, G., Gačić, M., Lipizer, M. & Eusebi Borzelli,
G. 2010. On the impact of the Bimodal Oscillating
System (BiOS) on the biogeochemistry and biology of
the Adriatic and Ionian Seas (Eastern Mediterranean).
Biogeosciences, 7(12), 3987–3997. DOI: https://doi.
org/10.5194/bg-7-3987-2010
Domingues, R. B., Barbosa, A. B., Sommer, U. & Galvão,
H. M. 2011. Ammonium, nitrate and phytoplankton
interactions in a freshwater tidal estuarine zone:
potential effects of cultural eutrophication. Aquatic
Sciences, 73(3), 331–343. DOI: https://doi.org/10.1007/
s00027-011-0180-0
Duhamel, S., Björkman, K. M., Wambeke, F. V., Moutin, T. &
Karl, D. M. 2011. Characterization of alkaline
phosphatase activity in the North and South Pacific
Alkaline phosphatase activity in Ombla Estuary
Ocean and Coastal Research 2023, v71:e23044 16
Hrustić et al
Subtropical Gyres: Implications for phosphorus cycling.
Limnology and Oceanography, 56(4), 1244–1254. DOI:
https://doi.org/10.4319/lo.2011.56.4.1244
Duhamel, S., Dyhrman, S. T. & Karl, D. M. 2010. Alkaline
phosphatase activity and regulation in the North Pacific
Subtropical Gyre. Limnology and Oceanography,
(3), 1414–1425. DOI: https://doi.org/10.4319/
lo.2010.55.3.1414
Dyhrman, S. T. & Palenik, B. 1999. Phosphate stress in
cultures and field populations of the dinoflagellate
Prorocentrum minimum detected by a single-cell
alkaline phosphatase assay. Applied and Environmental
Microbiology, 65(7), 3205–3212. DOI: https://doi.
org/10.1128/aem.65.7.3205-3212.1999
Eppley, R. W. & Thomas, W. H. 1969. Comparsion of halfsaturation constants for growth and nitrate uptake of
marine phytoplankton. Journal of Phycology, 5(4),
–379. DOI: https://doi.org/10.1111/j.1529-8817.1969.
tb02628.x
Froelich, P. N. 1988. Kinetic control of dissolved phosphate
in natural rivers and estuaries: A primer on the phosphate
buffer mechanism. Limnology and Oceanography,
(4 part. 2), 649–668. DOI: https://doi.org/10.4319/
lo.1988.33.4part2.0649
Garde, K. & Gustavson, K. 1999. The impact of UV-B
radiation on alkaline phosphatase activity in phosphorusdepleted marine ecosystems. Journal of Experimental
Marine Biology and Ecology, 238(1), 93–105. DOI:
https://doi.org/10.1016/s0022-0981(99)00005-2
Geider, R. J., Macintyre, H. L. & Kana, T. M. 1997. Dynamic
model of phytoplankton growth and aclimation:
responses of the balanced growth rate and the
chlorophyll a: carbon ratio to light, nutrient-limitation
and temperature. Marine Ecology Progress Series,
(1–3), 187–200.
Goldman, J. C., Caron, D. A. & Dennett, M. R. 1987.
Regulation of gross growth efficiency and ammonium
regeneration in bacteria by substrate C: N ratio1.
Limnology and Oceanography, 32(6), 1239–1252. DOI:
https://doi.org/10.4319/lo.1987.32.6.1239
Grasshoff, K., Kremling, K. & Ehrhardt, M. (eds.). 1983.
Methods of Seawater Analysis (2nd ed.). Berlim: Wiley.
DOI: https://doi.org/10.1002/9783527613984
Haas, L. W. 1982. Improved epifluorescence microscopy
for observing planktonic micro-organisms. Annales de
l’Institute Océanographique, 58(Supl S), 261–266.
Hobbie, J. E., Daley, R. J. & Jasper, S. 1977. Use of
nuclepore filters for counting bacteria by fluorescence
microscopy. Applied and Environmental Microbiology,
(5), 1225–1228. DOI: https://doi.org/10.1128/
aem.33.5.1225-1228.1977
Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. &
Strickland, J. D. H. 1965. Fluorometric Determination
of Chlorophyll. ICES Journal of Marine Science, 30(1),
–15. DOI: https://doi.org/10.1093/icesjms/30.1.3
Hoppe, H.-G. 2003. Phosphatase activity in the sea.
Hydrobiologia, 493, 187–200.
Hrustić, E., Carić, M., Čalić, M. & Bobanović-Ćolić, S. 2013.
Alkaline phosphatase activity and relative importance
of picophytoplankton in autumn and early spring (Mljet
lakes, eastern Adriatic Sea). Fresenius Environmental
Bulletin, 22(3), 636–648.
Hrustić, E., Carić, M. & Garić, R. 2011. Alkaline Phosphatase
Activity in the NE Adriatic. In: Özhan, E. (ed.),
Proceedings of the tenth international conference on
the mediterranean coastal environment (pp. 521–532).
Dalyan: MEDCOAST.
Hrustić, E., Lignell, R., Riebesell, U. & Thingstad, T. F.
Exploring the distance between nitrogen and
phosphorus limitation in mesotrophic surface waters
using a sensitive bioassay. Biogeosciences, 14(2),
–387. DOI: https://doi.org/10.5194/bg-14-379-2017
Ivančić, I. & Degobbis, D. 1984. An optimal manual procedure
for ammonia analysis in natural waters by the indophenol
blue method. Water Research, 18(9), 1143–1147. DOI:
https://doi.org/10.1016/0043-1354(84)90230-6
Jean, N., Bogé, G., Jamet, J.-L., Richard, S. & Jamet, D.
Seasonal changes in zooplanktonic alkaline
phosphatase activity in Toulon Bay (France): the role of
Cypris larvae. Marine Pollution Bulletin, 46(3), 346–352.
DOI: https://doi.org/10.1016/s0025-326x(02)00450-2
Jonge, V. & Villerius, L. 1989. Possible role of carbonate
dissolution in estuarine phosphate dynamics. Limnology
and Oceanography, 34(2), 332–340. DOI: https://doi.
org/10.4319/lo.1989.34.2.0332
Kana, T. M. & Glibert, P. M. 1987. Effect of irradiances up to
μE m-2 s-1 on marine Synechococcus WH7803—I.
Growth, pigmentation, and cell composition. Deep Sea
Research Part A. Oceanographic Research Papers,
(4), 479–495. DOI: https://doi.org/10.1016/0198-
(87)90001-x
Koroleff, F. 1983. Determination of phosphorus. In: Grashoff,
K., Ehrhardt, M., & Kremling, K. (eds.), Methods of
seawater analysis (pp. 117–138). Weinheim: VerlagChimie.
Krom, M., Kress, N., Brenner, S. & Gordon, L. 1991.
Phosphorus limitation of primary productivity in
the eastern Mediterranean Sea. Limnology and
Oceanography, 36(3), 424–432. DOI: https://doi.
org/10.4319/lo.1991.36.3.0424
Krom, M. D., Woodward, E. M. S., Herut, B., Kress, N.,
Carbo, P., Mantoura, R. F. C., Spyres, G., Thingstad, T.
F., Wassmann, P., Wexels-Riser, C., Kitidis, V., Law, C.
S. & Zodiatis, G. 2005. Nutrient cycling in the south east
Levantine basin of the eastern Mediterranean: Results
from a phosphorus starved system. Deep-Sea Research
II, 52, 2879-2896. doi:10.1016/j.dsr2.2005.08.009
Lee, S. & Fuhrman, J. A. 1987. Relationships between
Biovolume and Biomass of Naturally Derived Marine
Bacterioplankton. Applied and Environmental
Microbiology, 53(6), 1298–1303. DOI: https://doi.
org/10.1128/aem.53.6.1298-1303.1987
Li, H., Veldhuis, M. J. W. & Post, A. 1998. Alkaline
phosphatase activities among planktonic communities
in the northern Red Sea. Marine Ecology Progress
Series, 173, 107–115. DOI: https://doi.org/10.3354/
meps173107
Li, J. & Dittrich, M. 2019. Dynamic polyphosphate
metabolism in cyanobacteria responding to phosphorus
availability. Environmental Microbiology, 21(2), 572–583.
DOI: https://doi.org/10.1111/1462-2920.14488
Alkaline phosphatase activity in Ombla Estuary
Ocean and Coastal Research 2023, v71:e23044 17
Hrustić et al
Ljubimir, S., Jasprica, N., Čalić, M., Hrustić, E., Dupčić
Radić, I., Car, A. & Batistić, M. 2017. Interannual (2009–
variability of winter-spring phytoplankton in the
open South Adriatic Sea: Effects of deep convection
and lateral advection. Continental Shelf Research, 143,
–321. DOI: https://doi.org/10.1016/j.csr.2017.05.007
MacIsaac, J. J. & Dugdale, R. C. 1969. The kinetics of
nitrate and ammonia uptake by natural populations
of marine phytoplankton. Deep Sea Research and
Oceanographic Abstracts, 16(1), 45–57. DOI: https://
doi.org/10.1016/0011-7471(69)90049-7
Moutin, T., Thingstad, T. F., Wambeke, F. V., Marie, D.,
Slawyk, G., Raimbault, P. & Claustre, H. 2002. Does
competition for nanomolar phosphate supply explain the
predominance of the cyanobacterium Synechococcus ?
Limnology and Oceanography, 47(5), 1562–1567. DOI:
https://doi.org/10.4319/lo.2002.47.5.1562
Murphy, J. & Riley, J. P. 1962. A modified single solution
method for the determination of phosphate in natural
waters. Analytica Chimica Acta, 27, 31–36. DOI: https://
doi.org/10.1016/s0003-2670(00)88444-5
Najdek, M., Paliaga, P., Šilović, T., Batistić, M., Garić, R.,
Supić, N., Ivančić, I., Ljubimir, S., Korlević, M., Jasprica, N.,
Hrustić, E., Dupčić-Radić, I., Blažina, M. & Orlić, S. 2014.
Picoplankton community structure before, during and after
convection event in the offshore waters of the Southern
Adriatic Sea. Biogeosciences, 11(10), 2645–2659. DOI:
https://doi.org/10.5194/bg-11-2645-2014
Nausch, M. 1998. Alkaline phosphatase activities and the
relationship to inorganic phosphate in the Pomeranian
Bight (southern Baltic Sea). Aquatic Microbial Ecology,
(1), 87–94. DOI: https://doi.org/10.3354/ame016087
Nedoma, J., Garcia, J. C., Comerma, M., Simek, K. &
Armengol, J. 2006. Extracellular phosphatases in a
Mediterranean reservoir: seasonal, spatial and kinetic
heterogeneity. Freshwater Biology, 51(7), 1264–1276.
DOI: https://doi.org/10.1111/j.1365-2427.2006.01566.x
Oh, S. J., Kwon, H. K., Noh, I. H. & Yang, H.-S. 2010.
Dissolved organic phosphorus utilization and alkaline
phosphatase activity of the dinoflagellate Gymnodinium
impudicum isolated from the South Sea of Korea.
Ocean Science Journal, 45(3), 171–178. DOI: https://
doi.org/10.1007/s12601-010-0015-2
Orhanović, S. & Vrančić, M. P. 2000. Alkaline Phosphatase
activity in Seawater: Influence of reaction conditions on
the kinetic parameters of ALP. Croatica Chemica Acta,
(3), 819–930.
Orret, K. & Karl, D. M. 1987. Dissolved organic phosphorus
production in surface seawaters. Limnology and
Oceanography, 32(2), 383–395.
Rengefors, K., Ruttenberg, K. C., Haupert, C. L., Taylor, C.,
Howes, B. L. & Anderson, D. M. 2003. Experimental
investigation of taxon-specific response of alkaline
phosphatase activity in natural freshwater phytoplankton.
Limnology and Oceanography, 48(3), 1167–1175. DOI:
https://doi.org/10.4319/lo.2003.48.3.1167
Sieburth, J. M., Smetacek, V. & Lenz, J. 1978. Pelagic
ecosystem structure: Heterotrophic compartments of the
plankton and their relationship to plankton size fractions
Limnology and Oceanography, 23(6), 1256–1263.
DOI: https://doi.org/10.4319/lo.1978.23.6.1256
Šilović, T., Mihanović, H., Batistić, M., Dupčić Radić, I.,
Hrustić, E. & Najdek, M. 2018. Picoplankton distribution
influenced by thermohaline circulation in the southern
Adriatic. Continental Shelf Research, 155, 21–33. DOI:
https://doi.org/10.1016/j.csr.2018.01.007
Spiteri, C., Cappellen, P. V. & Regnier, P. 2008. Surface
complexation effects on phosphate adsorption to ferric
iron oxyhydroxides along pH and salinity gradients
in estuaries and coastal aquifers. Geochimica et
Cosmochimica Acta, 72(14), 3431–3445. DOI: https://
doi.org/10.1016/j.gca.2008.05.003
Su, B., Song, X., Duhamel, S., Mahaffey, C., Davis, C.,
Ivančić, I. & Liu, J. 2023. A dataset of global ocean alkaline
phosphatase activity. Scientific Data. Scientific Data,
(205). DOI: https://doi.org/10.1038/s41597-023-02081-7
Suzumura, M. 2008. Persulfate chemical wet oxidation
method for the determination of particulate phosphorus
in comparison with a high-temperature dry combustion
method. Limnology and Oceanography: Methods, 6(11),
–629. DOI: https://doi.org/10.4319/lom.2008.6.619
Tanaka, T., Henriksen, P., Lignell, R., Olli, K., Seppälä, J.,
Tamminen, T. & Thingstad, T. F. 2006. Specific affinity
for phosphate uptake and specific alkaline phosphatase
activity as diagnostic tools for detecting phosphorus-limited
phytoplankton and bacteria. Estuaries and Coasts, 29(6),
–1241. DOI: https://doi.org/10.1007/bf02781823
Torriani-Gorini, A. 1994. The Pho regulon of Escherichia coli.
Iin. In: Torriani-Gorini, A., Yagil, E., & Silver, S. (eds.),
Phosphate in Microorganisms: Cellular and Molecular
Biology (pp. 1–4). Washington, DC: ASM Press.
Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen
Phytoplankton-Methodik. SIL Communications, 1953-
, 9(1), 1–38. DOI: https://doi.org/10.1080/053846
1958.11904091
Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M.
G., Nelson, J. R. & Sieracki, M. E. 1992. Relationships
between cell volume and the carbon and nitrogen
content of marine photosynthetic nanoplankton.
Limnology and Oceanography, 37(7), 1434–1446.
Viličić, D., Kršinić, F., Carić, M., Jasprica, N., BobanovićĆolić, S. & Mikuš, J. 1995. Plankton and hydrography
in a moderately eastern Adratic bay (Gruž Bay).
Hydrobiologia, 304(1), 9–22. DOI: https://doi.
org/10.1007/bf02530699
Vollenweider, R. A., Giovanardi, F., Montanari, G. & Rinaldi, A.
Characterization of the trophic conditions of marine
coastal waters with special reference to the NW Adriatic
Sea: proposal for a trophic scale, turbidity and generalized
water quality index. Environmetrics, 9(3), 329–357.
Weiss, R. F. 1970. The solubility of nitrogen, oxygen and
argon in water and seawater. Deep Sea Research and
Oceanographic Abstracts, 17(4), 721–735. DOI: https://
doi.org/10.1016/0011-7471(70)90037-9
Zavatarelli, M., Raicich, F., Bregant, D., Russo, A. &
Artegiani, A. 1998. Climatological biogeochemical
characteristics of the Adriatic Sea. Journal of
Marine Systems, 18(1–3), 227–263. DOI: https://doi.
org/10.1016/s0924-7963(98)00014-1
Zohary, T. & Robarts, R. D. 1998. Experimental study of
microbial P limitation in the eastern Mediterranean.
Limnology and Oceanography, 43(3), 387–395. DOI: