Influence of Tokar Gap wind jet on latent heat flux of Central Red Sea: empirical orthogonal function approach
DOI:
https://doi.org/10.1590/Keywords:
ERA5 validation, EOF principal components, Partial correlation, Correlation coefficient, Determination coefficientAbstract
The aim of this study was to investigate the main factors that influence the latent heat fluxes (LHF) in the
Tokar Gap in the central part of the Red Sea. From 2000 to 2020, ERA5 reanalysis data on summer months of
the Central Red Sea were used to match the time when the Tokar Wind Jet appeared. The diurnal variability
of the Tokar Gap peaks in the early morning. The time series data of the wind speed showed that the Tokar
Wind Jet appeared from July to August. The empirical orthogonal functions (EOF) analysis method was used
to determine the modes of LHF variabilities. The sum of the first two modes of variability explained ~ 90.8% of
the total variance. The first mode explained 80.8%, whereas the second mode represented approximately 9.9%.
To examine the contribution of sea surface temperature (SST) and wind speed to the first two EOF principal
components, the correlation coefficient and determination coefficient were applied. The results showed that SST
had a CC of 0.90 and a DC of 81.99%, whereas wind speed showed a CC of 0.35 and a DC of 12.80%. These
results may be explained by the strong link between SST and the specific humidity differences of saturation and
actual vapor pressure. Partial correlation results indicate that there is an indirect relation between wind and LHF.
In this study SST was the dominant factor, influencing LHF variability in the study area.
References
Abdulla, C. & Al-Subhi, A. 2020. Sea Level Variability in
the Red Sea: A Persistent East–West Pattern. Remote
Sensing, 12(13), 2090. DOI: https://doi.org/10.3390/
rs12132090
Aboobacker, V. M., Shanas, P. R., Al-Ansari, E. M. A.
S., Kumar, V. S. & Vethamony, P. 2020. The maxima
in northerly wind speeds and wave heights over the
Arabian Sea, the Arabian/Persian Gulf and the Red Sea
derived from 40 years of ERA5 data. Climate Dynamics,
(3–4), 1037–1052. DOI: https://doi.org/10.1007/
s00382-020-05518-6
Acker, J., Leptoukh, G., Shen, S., Zhu, T. & Kempler, S.
Remotely-sensed chlorophyll a observations of
the northern Red Sea indicate seasonal variability and
influence of coastal reefs. Journal of Marine Systems,
(3–4), 191–204. DOI: https://doi.org/10.1016/j.
jmarsys.2005.12.006
Alawad, K. A., Al-Subhi, A. M., Alsaafani, M. A. & Alraddadi,
T. M. 2020. Decadal variability and recent summer
warming amplification of the sea surface temperature
in the Red Sea. PLOS ONE, 15(9), e0237436. DOI:
https://doi.org/10.1371/journal.pone.0237436
Alawad, K. A., Al-Subhi, A. M., Alsaafani, M. A., Alraddadi, T.
M., Ionita, M. & Lohmann, G. 2019. Large-Scale Mode
Impacts on the Sea Level over the Red Sea and Gulf of
Aden. Remote Sensing, 11(19), 2224. DOI: https://doi.org/
3390/rs11192224
Al-Subhi, A. & Al-Aqsum, M. M. 2008. Temporal and
Spatial Variations of Remotely Sensed Sea Surface
Temperature in the Northern Red Sea. Journal of King
Abdulaziz University, Marine Science, 19, 61–74.
Al-Subhi, A. M. & Abdulla, C. P. 2021. Sea-Level Variability
in the Arabian Gulf in Comparison with Global Oceans.
Remote Sensing, 13(22), 4524. DOI: https://doi.org/
3390/rs13224524
Bawadekji, A., Tonbol, K., Ghazouani, N., Becheikh, N. &
Shaltout, M. 2022. Recent atmospheric changes and
future projections along the Saudi Arabian Red Sea
Coast. Scientific Reports, 12(1). DOI: https://doi.org/
1038/s41598-021-04200-z
Berman, T., Paldor, N. & Brenner, S. 2003. Annual SST
cycle in the Eastern Mediterranean, Red Sea and Gulf
of Elat. Geophysical Research Letters, 30(5), n/a-n/a.
DOI: https://doi.org/10.1029/2002gl015860
Björnsson, H., & Venegas, S. A. (1997). A manual for EOF
and SVD analyses of climatic data. CCGCR Report,
(1), 112-134.
Bower, A. S. & Farrar, J. T. 2015. Air–Sea Interaction and
Horizontal Circulation in the Red Sea. In: The Red
Sea (pp. 329–342). Springer Berlin Heidelberg. DOI:
https://doi.org/10.1007/978-3-662-45201-1_19
Davis, S. R., Pratt, L. J. & Jiang, H. 2015. The Tokar Gap Jet:
Regional Circulation, Diurnal Variability, and Moisture
Transport Based on Numerical Simulations. Journal
of Climate, 28(15), 5885–5907. DOI: https://doi.org/
1175/jcli-d-14-00635.1
Eshel, G. & Naik, N. H. 1997. Climatological Coastal Jet Collision,
Intermediate Water Formation, and the General Circulation
of the Red Sea. Journal of Physical Oceanography,
(7), 1233–1257. DOI: https://doi.org/10.1175/1520-
(1997)027<1233:CCJCIW>2.0.CO;2
Eshghi, N., Barzandeh, A., Hosseinibalam, F. & Hassanzadeh,
S. 2020. Investigating dynamic and static aspects of
regional sea level changes in the north-western Indian
Ocean. Bulletin of Geophysics and Oceanography,
(2), 249–270.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A.
A. & Edson, J. B. 2003. Bulk Parameterization of
Influence of Tokar jets on LHF
Ocean and Coastal Research 2023, v71:e23029 14
Turki et al.
Air–Sea Fluxes: Updates and Verification for the COARE
Algorithm. Journal of Climate, 16(4), 571–591. DOI:
https://doi.org/10.1175/1520-0442(2003)016<0571:BP
OASF>2.0.CO;2
Feng, X., Sun, J., Yang, D., Yin, B., Gao, G. & Wan, W. 2021.
Effect of Drag Coefficient Parameterizations on Air–Sea
Coupled Simulations: A Case Study for Typhoons Haima
and Nida in 2016. Journal of Atmospheric and Oceanic
Technology, 38(5), 977–993. DOI: https://doi.org/
1175/jtech-d-20-0133.1
Gochis, D. J., Brito-Castillo, L. & Shuttleworth, W. J. 2006.
Hydroclimatology of the North American Monsoon region
in northwest Mexico. Journal of Hydrology, 316(1–4),
–70. DOI: https://doi.org/10.1016/j.jhydrol.2005.04.021
Hartmann, D. L. 2016. The Energy Balance of the Surface. In:
Global Physical Climatology (pp. 95–130). Elsevier. DOI:
https://doi.org/10.1016/b978-0-12-328531-7.00004-9
Hersbach, H. 2016. The ERA5 Atmospheric Reanalysis
(pp. NG33D-01). Presented at the AGU fall meeting,
New Orleans: AGU.
Hickey, B. & Goudie, A. S. 2007. The use of TOMS and
MODIS to identify dust storm sourceareas : the Tokar
Delta (Sudan) and the Seistan Basin (south west Asia).
Geomorphological Variations, 37–57.
Jiang, H., Farrar, J. T., Beardsley, R. C., Chen, R. &
Chen, C. 2009. Zonal surface wind jets across the Red
Sea due to mountain gap forcing along both sides of the
Red Sea. Geophysical Research Letters, 36(19). DOI:
https://doi.org/10.1029/2009gl040008
Jin, X. & Weller, R. A. 2008. Multidecade global flux
datasets from the objectively analyzed air-sea
fluxes(oaflux) project: Latent and sensible heat fluxes,
ocean evaporation, and related surfacemeteorological
variables lisan yu. OAFlux. Barnstable Town: Woods
Hole Oceanographic Institution.
Kim, G. & Barros, A. P. 2002. Space–time characterization
of soil moisture from passive microwave remotely
sensed imagery and ancillary data. Remote Sensing
of Environment, 81(2–3), 393–403. DOI: https://doi.org/
1016/s0034-4257(02)00014-7
Kumar, B. P., Cronin, M. F., Joseph, S., Ravichandran, M. &
Sureshkumar, N. 2017. Latent Heat Flux Sensitivity
to Sea Surface Temperature: Regional Perspectives.
Journal of Climate, 30(1), 129–143. DOI: https://doi.org/
1175/jcli-d-16-0285.1
Langodan, S., Cavaleri, L., Vishwanadhapalli, Y., Pomaro, A.,
Bertotti, L. & Hoteit, I. 2017. The climatology of the Red
Sea - part 1: the wind. International Journal of Climatology,
(13), 4509–4517. DOI: https://doi.org/10.1002/joc.5103
Langodan, S., Cavaleri, L., Viswanadhapalli, Y. & Hoteit, I.
The Red Sea: A Natural Laboratory for Wind and
Wave Modeling. Journal of Physical Oceanography, 44(12),
–3159. DOI: https://doi.org/10.1175/jpo-d-13-0242.1
Li, G., Ren, B., Yang, C. & Zheng, J. 2011. Revisiting
the trend of the tropical and subtropical Pacific
surface latent heat flux during 1977–2006. Journal of
Geophysical Research, 116(D10). DOI: https://doi.
org/10.1029/2010jd015444
Lorenz, E. N. 1956. Empirical orthogonal functions and
statistical weather prediction (Vol. 1). Cambridge:
Massachusetts Institute of Technology.
Menezes, V. V., Farrar, J. T. & Bower, A. S. 2018. Westward
mountain-gap wind jets of the northern Red Sea as seen
by QuikSCAT. Remote Sensing of Environment, 209,
–699. DOI: https://doi.org/10.1016/j.rse.2018.02.075
Mohamed, B., Nagy, H. & Ibrahim, O. 2021a. Spatiotemporal
Variability and Trends of Marine Heat Waves in the Red
Sea over 38 Years. Journal of Marine Science and
Engineering, 9(8), 842. DOI: https://doi.org/10.3390/
jmse9080842
Morcos, S. A. 1970. Physical and chemical oceanography
of the Red Sea. In: Oceanography and Marine Biology,
Annual Review (Vol. 8, pp. 73–202).
Nagy, H., Mohamed, B., & Ibrahim, O. 2021. Variability of
Heat and Water Fluxes in the Red Sea Using ERA5 Data
(1981–2020). Journal of Marine Science and Engineering,
(11), 1276. DOI: https://doi.org/10.3390/jmse9111276.
Nicholls, J. F., Toumi, R. & Stenchikov, G. 2015. Effects
of unsteady mountain-gap winds on eddies in the Red
Sea. Atmospheric Science Letters, 16(3), 279–284 DOI:
https://doi.org/10.1002/asl2.554
Papadopoulos, V. P., Abualnaja, Y., Josey, S. A., Bower,
A., Raitsos, D. E., Kontoyiannis, H. & Hoteit, I. 2013.
Atmospheric Forcing of the Winter Air–Sea Heat Fluxes
over the Northern Red Sea. Journal of Climate, 26(5),
–1701. DOI: https://doi.org/10.1175/jcli-d-12-00267.1
Patzert, W. C. 1974. Wind-induced reversal in Red Sea
circulation. Deep Sea Research and Oceanographic
Abstracts, 21(2), 109–121. DOI: https://doi.org/10.1016/
-7471(74)90068-0
Pratt, L. J., Albright, E. J., Rypina, I. & Jiang, H. 2020. Eulerian
and Lagrangian Comparison of Wind Jets in the Tokar Gap
Region. Fluids, 5(4), 193. DOI: https://doi.org/10.3390/
fluids5040193
Ralston, D. K., Jiang, H. & Farrar, J. T. 2013. Waves in the
Red Sea: Response to monsoonal and mountain gap
winds. Continental Shelf Research, 65, 1–13. DOI:
https://doi.org/10.1016/j.csr.2013.05.017
Reed, T. R. 1931. Gap winds of the strait of Juan de Fuca.
Monthly Weather Review, 59(10), 373–376.
Rypina, I. I., Pratt, L. J., Pullen, J., Levin, J. & Gordon, A. L.
Chaotic Advection in an Archipelagoast. Journal
of Physical Oceanography, 40(9), 1988–2006. DOI:
https://doi.org/10.1175/2010jpo4336.1
Senafi, F. A., Anis, A. & Menezes, V. 2019. Surface Heat
Fluxes over the Northern Arabian Gulf and the Northern
Red Sea: Evaluation of ECMWF-ERA5 and NASAMERRA2 Reanalyses. Atmosphere, 10(9), 504. DOI:
https://doi.org/10.3390/atmos10090504
Shanas, P. R., Aboobacker, V. M., Albarakati, A. 167emM
A. & Zubier, K. 167emM. 2017. Climate driven
variability of wind-waves in the Red Sea. Ocean
Modelling, 119, 105–117. DOI: https://doi.org/10.1016/j.
ocemod.2017.10.001
Sharp, J. & Mass, C. F. 2004. Columbia Gorge Gap Winds:
Their Climatological Influence and Synoptic Evolution.
Weather and Forecasting, 19(6), 970–992. DOI: https://
doi.org/10.1175/826.1
Siddig, N. A., Al-Subhi, A. M., Alsaafani, M. A. & Alraddadi,
T. M. 2021. Applying Empirical Orthogonal Function
and Determination Coefficient Methods for Determining
Major Contributing Factors of Satellite Sea Level
Influence of Tokar jets on LHF
Ocean and Coastal Research 2023, v71:e23029 15
Turki et al.
Anomalies Variability in the Arabian Gulf. Arabian
Journal for Science and Engineering, 47(1), 619–628.
DOI: https://doi.org/10.1007/s13369-021-05612-9
Smith, D. K., Li, X., Keiser, K. & Flynn, S. 2014. Regional
Air-Sea interactions (RASI) climatology for central
america coastal gap wind and upwelling events. In: 2014
Oceans - St. John’s. IEEE. DOI: https://doi.org/10.1109/
oceans.2014.7003127
Sofianos, S. S. 2003. An Oceanic General Circulation Model
(OGCM) investigation of the Red Sea circulation: 2.
Three-dimensional circulation in the Red Sea. Journal
of Geophysical Research, 108(C3). DOI: https://doi.org/
1029/2001jc001185
Taqi, A., & Al-Subhi, A. M. 2012. Temporal and
Spatial Patterns of Remotely Sensed Sea Surface
Temperature in The Southern Red Sea. DOI: https://
doi.org/10.13140/RG.2.2.28487.80801
Tetzner, D., Thomas, E. & Allen, C. 2019. A Validation
of ERA5 Reanalysis Data in the Southern Antarctic
Peninsula—Ellsworth Land Region, and Its Implications
for Ice Core Studies. Geosciences, 9(7), 289. DOI:
https://doi.org/10.3390/geosciences9070289
Villar, J. C. E., Ronchail, J., Guyot, J. L., Cochonneau, G.,
Naziano, F., Lavado, W., Oliveira, E. D., Pombosa, R. &
Vauchel, P. 2009. Spatio-temporal rainfall variability in the
Amazon basin countries (Brazil, Peru, Bolivia, Colombia,
and Ecuador). International Journal of Climatology,
(11), 1574–1594. DOI: https://doi.org/10.1002/joc.1791
Wang, D., Zeng, L., Xixi Li & Shi, P. 2013. Validation
of Satellite-Derived Daily Latent Heat Flux over the
South China Sea, Compared with Observations and
Five Products. Journal of Atmospheric and Oceanic
Technology, 30(8), 1820–1832. DOI: https://doi.org/
1175/JTECH-D-12-00153.1
Xiang-Hui, F. & Fei, Z. 2014. Effect of Decadal Changes
in Air-Sea Interaction on the Climate Mean State over
the Tropical Pacific. Atmospheric and Oceanic Science
Letters, 7(5), 400–405. DOI: https://doi.org/10.1080/167
2014.11447197
Xiao, F., Wang, D., Zeng, L., Liu, Q.-Y. & Zhou, W. 2019.
Contrasting changes in the sea surface temperature and
upper ocean heat content in the South China Sea during
recent decades. Climate Dynamics, 53(3–4), 1597–1612.
DOI: https://doi.org/10.1007/s00382-019-04697-1
Zhai, P. & Bower, A. 2013. The response of the Red Sea to
a strong wind jet near the Tokar Gap in summer. Journal
of Geophysical Research: Oceans, 118(1), 421–434.
DOI: https://doi.org/10.1029/2012jc008444
Zhai, P., Pratt, L. J. & Bower, A. 2015. On the Crossover of
Boundary Currents in an Idealized Model of the Red Sea.
Journal of Physical Oceanography, 45(5), 1410–1425.
DOI: https://doi.org/10.1175/jpo-d-14-0192.1
Zhou, F., Zhang, R., Shi, R., Chen, J., He, Y., Wang, D. & Xie, Q.
Evaluation of OAFlux datasets based on in situ air–
sea flux tower observations over Yongxing Island in 2016.
Atmospheric Measurement Techniques, 11(11), 6091–