The January 15th, 2022 Hunga Tonga-Hunga Ha’apai eruption recorded in Brazil
DOI:
https://doi.org/10.1590/Keywords:
Tsunami, Shock wave, TTT, Tide gauge, BarometerAbstract
Extreme events affect societies all around the world. A recent example is the submarine volcano Hunga Tonga-Hunga Ha'apai in the South Pacific Ocean, which erupted on January 15, 2022 at approximately 0415 UTC, expelling ash up to 39 kilometers high. Instruments around the world recorded both the initial atmospheric shock wave and the subsequent tsunami signal. The aim of this work is to report the record from tide gauges and barometers of this event along the Brazilian coast. For this, the tsunami travel time to Brazil was calculated, and spikes in atmospheric pressure data and noise in the tide gauge records were identified. The arrival of the tsunami waves was clearly observed in tidal records from three stations located in Imbituba, Arraial do Cabo, and Salvador. In addition, in Belém and Santana, the signal-to-noise ratio was too low or there was no signal at all. Surprisingly, the atmospheric signal was less observable. The shock wave signature was evident in the Fortaleza atmospheric pressure data, while at the Imbituba and Belém stations the signal only appeared after filtering the data by calculating the highest and lowest pressure difference within the hour. The weaker, or absence of, barometric signal is likely associated with the supposed attenuation, or blocking, of the signal by the Andes Mountains.
References
AMORES, A., MONSERRAT, S., MARCOS, M., ARGÜESO, D., VILLALONGA, J., JORDÀ, G. & GOMIS, D. 2022. Numerical simulation of atmospheric lamb waves generated by the 2022 hunga-tonga volcanic eruption. Geophysical Research Letters, 49(6), e2022GL098240, DOI: https://doi.org/10.1029/2022GL098240
» https://doi.org/10.1029/2022GL098240
AN, C. & LIU, P. L. F. 2016. Analytical solutions for estimating tsunami propagation speeds. Coastal Engineering, 117, 44-56, DOI: https://doi.org/10.1016/j.coastaleng.2016.07.006
» https://doi.org/10.1016/j.coastaleng.2016.07.006
BASTOS, T. X., PACHECO, N. A., NECHET, D. & SÁ, T. D. A. 2002. Aspectos climáticos de Belém nos últimos cem anos Belém, PA: Embrapa Amazônia Oriental.
BRYAN, W. B., STICE, G. D. & EWART, A. 1972. Geology, petrography, and geochemistry of the volcanic islands of Tonga. Journal of Geophysical Research, 77(8), 1566-1585, DOI: https://doi.org/10.1029/JB077i008p01566
» https://doi.org/10.1029/JB077i008p01566
CANDELLA, R. N. N. 2014. Statistical and spectral characteristics of the 2011 East Japan tsunami signal in Arraial do Cabo, RJ, Brazil. Revista Brasileira de Geofísica, 32(2), 235, DOI: https://doi.org/10.22564/rbgf.v32i2.480
» https://doi.org/10.22564/rbgf.v32i2.480
Candella, R. N., RABINOVICH, A. B. & THOMSON, R. E. 2008. The 2004 Sumatra tsunami as recorded on the Atlantic coast of South America. Advances in Geosciences, 14, 117-128, DOI: https://doi.org/10.5194/adgeo-14-117-2008
» https://doi.org/10.5194/adgeo-14-117-2008
FRANÇA, C. A. S. & MESQUITA, A. R. 2007. The December 26th 2004 tsunami recorded along the Southeastern Coast of Brazil. Natural Hazards, 40(1), 209-222, DOI: https://doi.org/10.1007/s11069-006-0010-1
» https://doi.org/10.1007/s11069-006-0010-1
GERMANO, M. F., VITORINO, M. I., COHEN, J. C. P., COSTA, G. B., SOUTO, J. I. O., REBELO, M. T. C. & SOUSA, A. M. L. 2017. Analysis of the breeze circulations in Eastern Amazon: an observational study. Atmospheric Science Letters, 18(2), 67-75, DOI: https://doi.org/10.1002/asl.726
» https://doi.org/10.1002/asl.726
GROSSMANN, A. & MORLET, J. 1984. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15(4), 723-736, DOI: https://doi.org/10.1137/0515056
» https://doi.org/10.1137/0515056
ITIC (INTERNATIONAL TSUNAMI INFORMATION CENTER). 2022. 15 January 2022, Hunga-Tonga-Hunga-Ha’apai Volcanic Eruption [online]. Honolulu: ITIC. Available at: http://itic.ioc-unesco.org/index.php?option=com_content&view=article&id=2186&Itemid=3265 Accessed: 2020 May 01.
» http://itic.ioc-unesco.org/index.php?option=com_content&view=article&id=2186&Itemid=3265
LIMA, E. F., SOMMER, C. A., SILVA, I. M. C., NETTO, A. P., LINDENBERG, M. & ALVES, R. C. M. 2012. Morfologia e química de cinzas do vulcão Puyehue depositadas na região metropolitana de Porto Alegre em junho de 2011. Revista Brasileira de Geociências, 42(2), 265-280, DOI: https://doi.org/10.5327/Z0375-75362012000200004
» https://doi.org/10.5327/Z0375-75362012000200004
LOPES, F., SILVA, J., MARRERO, J., TAHA, G. & LANDULFO, E. 2019. Synergetic aerosol layer observation after the 2015 calbuco volcanic eruption event. Remote Sensing, 11(2), 195, DOI: https://doi.org/10.3390/rs11020195
» https://doi.org/10.3390/rs11020195
LUIS, J. F. 2007. Mirone: a multi-purpose tool for exploring grid data. Computers & Geosciences, 33(1), 31-41, DOI: https://doi.org/10.1016/j.cageo.2006.05.005
» https://doi.org/10.1016/j.cageo.2006.05.005
RABINOVICH, A. B., WOODWORTH, P. L. & TITOV, V. V. 2011. Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage. Geophysical Research Letters, 38(16), DOI: https://doi.org/10.1029/2011GL048305
» https://doi.org/10.1029/2011GL048305
SANTOS, C., FREIRE, P. & TORRENCE, C. 2013. A transformada wavelet e sua aplicação na análise de séries hidrológicas. RBRH, 18(3), 271-280, DOI: https://doi.org/10.21168/rbrh.v18n3.p271-280
» https://doi.org/10.21168/rbrh.v18n3.p271-280
SMITH, I. E. M. & PRICE, R. C. 2006. The Tonga-Kermadec arc and Havre-Lau back-arc system: Their role in the development of tectonic and magmatic models for the western Pacific. Journal of Volcanology and Geothermal Research, 156(3-4), 315-331, DOI: https://doi.org/10.1016/j.jvolgeores.2006.03.006
» https://doi.org/10.1016/j.jvolgeores.2006.03.006
SOUZA, D. C. & OYAMA, M. D. 2017. Breeze potential along the brazilian northern and northeastern coast. Journal of Aerospace Technology and Management, 9(3), 368-378, DOI: https://doi.org/10.5028/jatm.v9i3.787
» https://doi.org/10.5028/jatm.v9i3.787
TRUCCOLO, E. C., SCHETTINI, C. A. F. & ALMEIDA, D. 2012. The 2004 Sumatra tsunami effect on the Itajaí-Açu estuary water level, Santa Catarina, Brazil. Brazilian Journal of Oceanography, 60(3), 461-466, DOI: https://doi.org/10.1590/S1679-87592012000300017
» https://doi.org/10.1590/S1679-87592012000300017
WATADA, S., KUSUMOTO, S. & SATAKE, K. 2014. Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research: Solid Earth, 119(5), 4287-4310, DOI: https://doi.org/10.1002/2013JB010841
» https://doi.org/10.1002/2013JB010841
WITZE, A. 2022. Why the Tongan eruption will go down in the history of volcanology. Nature, 602(7897), 376-378, DOI: https://doi.org/10.1038/d41586-022-00394-y
Downloads
Published
Issue
Section
License
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.