Seasonal factors affecting sea turtle nesting in the Southeastern Caribbean Sea (Gulf of Paria, Venezuela)
DOI:
https://doi.org/10.1590/Keywords:
Rainfall, Sea turtles, Remote sensing, Seasonal nesting, FecundityAbstract
The nesting characteristics (number of nests and eggs, time of year, nesting initiation, and nesting length) of leatherback (Dermochelys coriacea) and hawksbill (Eretmochelys imbricata) sea turtles of the southern Caribbean Sea (specifically in the Gulf of Paria in Venezuela), were examined in association with weekly precipitation averages and number of rainy days per week during the period between 2009 and 2018. We hypothesized about the influence of rainfall intensity and patterns as the main abiotic factor for sea turtle nesting. On average, leatherbacks preferred nesting during the drier season of each year (March, April, and May), while hawksbills nested during the rainy season (June to September). For both species, we found few significant correlations between the number of nests or clutch size (number of eggs per nest) and weekly averages of seasonal precipitation rates in the region. Average hawksbill clutch sizes were not correlated with average precipitation rates but were positively correlated with the number of rainy days per week (r=0.66, P≤0.05). Average hawksbill clutch sizes decreased each year on average (-3.3 eggs/year, r=-0.88, P≤0.001), which coincided with a negative long-term trend in the number of rainy days (-0.11 rainy days/week, r=-0.69, P≤0.05). During the study period, nesting activities for both leatherback and hawksbills started progressively later (0.9 and 0.6 weeks/year, respectively p≤0.05) and were shorter (-0.9 and -0.8 weeks /year, P≤0.1 and P≤0.05, respectively).
References
BALLADARES, C. & DUBOIS, E. 2014. Saqueo y depredación de nidadas de tortugas marinas, durante las temporadas 2003 a 2012, en seis playas del Golfo de Paria, Venezuela. Cuadernos de Investigación UNED, 6(2), 239-243.
BALLADARES, C., GONZÁLEZ, M. F. & RODRÍGUEZ, D. 2020. A matrix population model for the hawksbill sea turtle (Eretmochelys imbricata) in the Gulf of Paria, Venezuela. LatinAmerican Journal of Aquatic Research, 48(5), 739-748, DOI: https://doi.org/10.3856/vol48-issue5-fulltext-2476
» https://doi.org/10.3856/vol48-issue5-fulltext-2476
BALLADARES, C. & QUINTERO-TORRES, A. 2019. Is a small sea turtles rookery doomed to local extinction? Decreasing nesting trends at the Paria Gulf, Venezuela. Marine Ecology, 40(5), e12562, DOI: https://doi.org/10.1111/maec.12562
» https://doi.org/10.1111/maec.12562
BEZY, V., GIRONDOT, M. & VALVERDE, R. 2016. Estimation of the net nesting effort of olive Ridley Arribada sea turtles based on nest densities at Ostional Beach, Costa Rica. Journal of Herpetology, 50(3), 409-415.
DORNFELD, T., ROBINSON, N. J., SANTIDRIÁN, P. S. & PALADINO, F. V. 2015. Ecology of solitary nesting olive ridley sea turtles at Playa Grande, Costa Rica. Marine Biology, 162(1), 123-139.
GUO, H., CHEN, S., BAO, A., HU, J., GEBREGIORGIS, A., XUE, X. & ZHANG, X. 2015. Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sensing, 7(6), 7181-7211.
HALLEY, J. M., VAN HOUTAN, K. S. & MANTUA, N. 2018. How survival curve affects populations’ vulnerability to climate change. PloS One, 13(9), e0203124.
HAWKES, L., BRODERICK, A., GODFREY, M. & GODLEY, B. 2009. Climate change and marine turtles. Endangered Species Research, 7, 137-154.
HITCHINS, P., BOURQUIN, O., HITCHINS, S. & PIPER, S. 2003. Factors influencing emergences and nesting sites of hawksbill turtles (Eretmochelys imbricata) on Cousine Island, Seychelles, 1995-1999. Phelsuma, 11, 59-69.
HOUGHTON, J., MYERS, A. E., LLOYD, C., KING, R. S., ISAACS, C. & HAYS, G. C. 2007. Protracted rainfall decreases temperature within leatherback turtle (Dermochelys coriacea) clutches in Grenada, West Indies: ecological implications for a species displaying temperature dependent sex determination. Journal of Experimental Marine Biology and Ecology, 345(1), 71-77.
HUFFMAN, G. J., ADLER, R. F., CURTIS, S., BOLVIN, D. T. & NELKIN, E. J. 2007. Global rainfall analyses at monthly and 3-h time scales. In: LEVIZZANI, V., BAUER, P. & TURK, J. (ed.). Measuring precipitation from space Dordrecht: Springer, pp. 291-305.
LALOË, J. O., MONSINJON, J., GASPAR, C., TOURON, M., GENET, Q., STUBBS, J., GIRONDOT, M. & HAYS, G. C. 2020. Production of male hatchlings at a remote South Pacific green sea turtle rookery: conservation implications in a female dominated world. Marine Biology, 167, 70, DOI: https://doi.org/10.1007/s00227-020-03686-x
» https://doi.org/10.1007/s00227-020-03686-x
LEGENDRE, P. & LEGENDRE, L. 2012. Numerical ecology 3rd ed. Amsterdam: Elsevier.
LOLAVAR, A. & WYNEKEN, J. 2015. Effect of rainfall on loggerhead turtle nest temperatures, sand temperatures and hatchling sex. Endangered Species Research, 28(3), 235-247.
LOLAVAR, A. & WYNEKEN, J. 2017. Experimental assessment of the effects of moisture on loggerhead sea turtle hatchling sex ratios. Zoology, 123, 64-70, DOI: http://dx.doi.org/10.1016/j.zool.2017.06.007
» http://dx.doi.org/10.1016/j.zool.2017.06.007
MATHWORKS (US). 2014. MATLAB and Statistics Toolbox Release. Natick: The MathWorks, Inc.
MAULANY, R. I., BOTH, D. T. & BAXTER, G. S. 2012. The effect of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from Alas Purwo National Park, East Java, Indonesia: Implications for hatchery management. Marine Biology, 159, 2651-2661, DOI: https://doi.org/10.1007/s00227-012-2022-6
» https://doi.org/10.1007/s00227-012-2022-6
MCGEHEE, M. A. 1990. Effects of moisture on eggs and hatchlings of loggerhead sea turtles (Caretta caretta). Herpetologica, 46, 251-258.
MORTIMER, J. A. 1990. The influence of beach sand characteristics on the nesting behavior and clutch survival of green turtles (Chelonia mydas). Copeia, 1990(3), 802-817.
PATRICIO, A., HAWKES, L. A., MONSINJON, J. R., GODLEY, B. J. & FUENTES, M. P. 2021. Climate change and marine turtles; recent advances and future directions. Endangered Species Research, 44, 362-395, DOI: https://doi.org/10.3354/esr01110
» https://doi.org/10.3354/esr01110
PIKE, D. A. 2013. Climate influences the global distribution of sea turtle nesting. Global Ecology and Biogeography, 22(5), 555-566.
QIAO, L., HONG, Y., CHEN, S., ZOU, C. B., GOURLEY, J. J. & YONG, B. 2014. Performance assessment of the successive Version 6 and Version 7 TMPA products over the climate-transitional zone in the southern Great Plains, USA. Journal of Hydrology, 513, 446-456.
RAFFERTY, A., JOHNSTONE, C. P., GARNER, J. A. & REINA, R. D. 2017. A 20-year investigation of declining leatherback hatching success: implications of climate variation. Royal Society Open Science, 4(10), 170196, DOI: http://doi.org/10.1098/rsos.170196
» http://doi.org/10.1098/rsos.170196
RINCÓN, F., ASTOR, Y., MULLER-KARGER, F., VARELA, R. & ODRIOZOLA, A. 2008. Características oceanográficas del flujo en Boca de Dragón, Venezuela. Memorias de la Fundación La Salle de Ciencias Naturales, 168, 7-24.
RINGARD, J., BECKER, M., SEYLER, F. & LINGUET, L. 2015. Temporal and spatial assessment of four satellite rainfall estimates over French Guiana and North Brazil. Remote Sensing, 7(12), 16441-16459.
ROBINSON, N. J., VALENTINE, S. E., SANTIDRIÁN, P. S., SABA, V. S., SPOTILA, J. R. & PALADINO, F. V. 2014. Multidecadal trends in the nesting phenology of Pacific and Atlantic leatherback turtles are associated with population demography. Endangered Species Research, 24(3), 197-206.
SANTIDRIAN, P., SABA, V., LOMBARD, C. D., VALIULIS, J. M., ROBINSON, N. J., PALADINO, F. V., SPOTILA, J. R., FERNANDEZ, T., RIVAS, M. L., TUCEWK, J., NEL, R. & ORO, D. 2015. Global analysis of the effect of local climate on the hatchling output of leatherback turtles. Science Reports, 5, 16789, DOI: https://doi.org/10.1038/srep16789
» https://doi.org/10.1038/srep16789
SARAGOÇA, R. B., RESTREPO, J. A. & VALVERDE, R. A. 2020. Effects of El Niño Southern Oscillation and local ocean temperature on the reproductive output of green turtles (Chelonia mydas) nesting at Tortuguero, Costa Rica. Marine Biology, 167(9), 128, DOI: https://doi.org/10.1007/s00227-020-03749-z
» https://doi.org/10.1007/s00227-020-03749-z
STAINES, M. N, BOOTH, D. T., MADDEN, C. A. & HAYS, G. C. 2020. Impact of heavy rainfall events and shading on the temperature of sea turtle nests. Marine Biology, 167, 190, DOI: https://doi.org/10.1007/s00227-020-03800-z
» https://doi.org/10.1007/s00227-020-03800-z
WOOD, D. W. & BJORNDAL, K. A. 2000. Relation of temperature, moisture, salinity, and slope to nest site selection in loggerhead sea turtles. Copeia, 2000(1), 119-128
YONG, B., CHEN, B., GOURLEY, J. J., REN, L., HONG, Y., CHEN, X., WANG, W., CHEN, S. & GONG, L. 2014. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? Journal of Hydrology, 508, 77-87.
Downloads
Published
Issue
Section
License
Ocean and Coastal Research is an open-access journal available through SciELO (Scientific Electronic Library Online).
Ocean and Coastal Research journal title abbreviation is Ocean Coast. Res. and should be used in footnotes, references, and bibliographic entries.
All Ocean and Coastal Research scientific articles are freely available without charge to the user or institution. In accordance with the BOAI definition of open access, all contents are available to readers free of charge. Users may read, download, copy, and link to the full texts of the articles. They may be used for any lawful purpose without prior authorization from the publisher or the author, as long as proper credit is given to the original publication.
All Ocean and Coastal Research published scientific articles receive an individual Digital Object Identifier (DOI) persistent digital document identification.
All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License type BY. Authors retain the copyright and full publishing rights without restrictions.
More information on intellectual property can be found here and on Scielo's Open Acess Statement.
Ocean and Coastal Research is listed in Publons and reviewers and editors can add their verified peer review and editing history to their Publons profile.
Ocean and Coastal Research is indexed in the Directory of Open Access Journals (DOAJ) and complies with principles of transparency and best practice for scholarly publications.
Ocean and Coastal Research is committed to the best standards in open-access publishing by adopting ethical and quality standards throughout the publishing process - from initial manuscript submission to the final article publication. This ensures authors that their work will have visibility, accessibility, reputation, usage, and impact in a sustainable model of scholarly publishing.