Fuzzy Logic: adding natural uncertainties into environmental assessment

Authors

  • Leonardo Gripp
  • Carlos German Massone
  • Renato da Silva Carreira
  • Angela de Luca Rebello Wagener

DOI:

https://doi.org/10.1590/2675-2824070.21080lg

Keywords:

Fuzzy C-means, Fuzzy logic, Environmental management, Polycyclic aromatic hydrocarbo

Abstract

This research study sought to evaluate aimed at evaluating the possible advantages of using Fuzzy Logic as opposed to Boolean Logic to assess environmental contamination and source appraisal for polycyclic aromatic hydrocarbons (PAH). Results obtained through traditional assessment tools for two different tropical coastal areas through using traditional clustering and principal components analysis were compared with those derived from the Fuzzy Logic, using the by Fuzzy C-means algorithm. The feedings achieved through Fuzzy Logic showed a greater qualitative detail than those derived from traditional tools. The abrupt and unnatural changes obtained from the usual classification methods were avoided by having membership values varying continuously in space, providing a more accurate picture of environmental contamination in complex and multiple sources environments. Furthermore, by not depending on statistic suppositions distribution of data like other methods, becomes more suitable for environmental data. Although Fuzzy Logic does not produce quantitative interpretations, its application generates adequate the data needed to avoid environmental management bias in the inference of contamination sources.

References

AMINI, M., AFYUNI, M., FATHIANPOUR, N., KHADEMI, H. & FLÜHLER, H. 2005. Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma, 124(3-4), 223-233, DOI: https://doi.org/10.1016/j.geoderma.2004.05.009

» https://doi.org/10.1016/j.geoderma.2004.05.009

BAUMARD, P., BUDZINSKI, H. & GARRIGUES, P. 1998. Polycyclic aromatic hydrocarbons in sediments and mussels of the Western Mediterranean Sea. Environmental Toxicology and Chemistry, 17(5), 765-776.

BECKER, R. A., WILKS, A. R., BROWNRIGG, R., MINKA, T. P. & DECKMYN, A. 2018. maps: Draw Geographical Maps. R package version 3.3.0 [online]. Vienna: R package. Available at: https://CRAN.R-project.org/package=maps [Accessed: 15 November 2021].

» https://CRAN.R-project.org/package=maps

BEZDEK, J. C., EHRLICH, R. & FULL, W. 1984. FCM: the fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203, DOI: https://doi.org/10.1016/0098-3004(84)90020-7

» https://doi.org/10.1016/0098-3004(84)90020-7

BIVAND, R., KEITT, T. & ROWLINGSON, B. 2020. rgdal: Bindings for the “Geospatial” Data Abstraction Library. R package version 1.5-16 [online]. Vienna: R package. Available at: https://CRAN.R-project.org/package=rgdal [Accessed: 17 November 2021].

» https://CRAN.R-project.org/package=rgdal

BIVAND, R. & LEWIN-KOH, N. 2018. maptools: tools for handling spatial objects. R package version 0.9-4 [online]. Vienna: R package. Available at: https://CRAN.R-project.org/package=maptools [Accessed: 15 November 2021].

» https://CRAN.R-project.org/package=maptools

BUDZINSKI, H., JONES, I., BELLOCQ, J., PIÉRARD, C. & GARRIGUES, P. 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58(1-2), 85-97. https://doi.org/10.1016/S0304-4203(97)00028-5

» https://doi.org/10.1016/S0304-4203(97)00028-5

CEBECI, Z., YILDIZ, F., KAVLAK, A., CEBECI, C. & ONDER, H. 2017. ppclust: probabilistic and possibilistic cluster analysis. R package version 1.1.0 [online]. Vienna: R package. Available at: https://cran.r-project.org/web/packages/ppclust/ppclust.pdf [Accessed: 17 November 2021].

» https://cran.r-project.org/web/packages/ppclust/ppclust.pdf

CHRISTENSEN, J. H., TOMASI, G., SCOFIELD, A. D. L. & MENICONI, M. D. F. G. 2010. A novel approach for characterization of polycyclic aromatic hydrocarbon (PAH) pollution patterns in sediments from Guanabara Bay, Rio de Janeiro, Brazil. Environmental Pollution, 158(10), 3290-3297, DOI: https://doi.org/10.1016/j.envpol.2010.07.015

» https://doi.org/10.1016/j.envpol.2010.07.015

CUNHA, R. C., DUPAS, F. A., PONS, N. A. D. & TUNDISI, J. G. T. 2011. Análise da influência das variáveis ambientais utilizando inferência fuzzy e zoneamento das vulnerabilidades. Estudo do caso da Bacia Hidrográfica do Ribeirão do Feijão, São Carlos - SP. Geociências, 30, 399-414.

DICKHUT, R. M., CANUEL, E. A., GUSTAFSON, K. E., LIU, K., ARZAYUS, K. M., WALKER, S. E., EDGECOMBE, G., GAYLOR, M. O. & MACDONALD, E. H. 2000. Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environmental Science & Technology, 34(21), 4635-4640, DOI: https://doi.org/10.1021/es000971e

» https://doi.org/10.1021/es000971e

DOBERMANN, A. & OBERTHÜR, T. 1997. Fuzzy mapping of soil fertility - a case study on irrigated riceland in the Philippines. Geoderma, 77(2-4), 317-339. https://doi.org/10.1016/S0016-7061(97)00028-1

» https://doi.org/10.1016/S0016-7061(97)00028-1

DVORSKÁ, A., LAMMEL, G. & KLÁNOVÁ, J. 2011. Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmospheric Environment, 45(2), 420-427, DOI: https://doi.org/10.1016/J.ATMOSENV.2010.09.06

» https://doi.org/10.1016/J.ATMOSENV.2010.09.06

FRANCIONI, E., WAGENER, A., SCOFIELD, A. L. & CAVALIER, B. 2005. Biomonitoring of polycyclic aromatic hydrocarbon in Perna perna from Guanabara Bay, Brazil. Environmental Forensics, 6(4), 361-370.

FRANSSEN, H. J. W. M. H., VAN EIJNSBERGEN, A. C. & STEIN, A. 1997. Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants. Geoderma, 60(2-4), 243-262, DOI: https://doi.org/10.1016/S0016-7061(97)00024-4

» https://doi.org/10.1016/S0016-7061(97)00024-4

GARRIGUES P., BUDZINSKI H., MANITZ M. P. & WISE S. A. 1995. Pyrolytic and petrogenic inputs in recent sediments: a definitive signature through phenanthrene and chrysene compound distribution. Polycyclic Aromatic Compounds, 7(4), 275-284.

GÜLER, C., KURT, M. A., ALPASLAN, M. & AKBULUT, C. 2012. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, 414-415, 435-451, DOI: https://doi.org/10.1016/j.jhydrol.2011.11.021

» https://doi.org/10.1016/j.jhydrol.2011.11.021

HATJE, V. & ANDRADE, J. B. 2009. Baía de Todos os Santos. Aspectos oceanográficos [online]. Salvador: EDUFBA. Available at: http://www.meioambiente.ba.gov.br/arquivos/File/Publicacoes/Livros/baia2009.pdf [Accessed: 30 October 2022].

» http://www.meioambiente.ba.gov.br/arquivos/File/Publicacoes/Livros/baia2009.pdf

HOPKE, P. K. 2015. It is time to drop principal components analysis as a “receptor model.” Journal of Atmospheric Chemistry, 72, 127-128, DOI: https://doi.org/10.1007/s10874-015-9309-1

» https://doi.org/10.1007/s10874-015-9309-1

HU, Y., WANG, Z., WEN, J. & LI, Y. 2016. Stochastic fuzzy environmental risk characterization of uncertainty and variability in risk assessments: A case study of polycyclic aromatic hydrocarbons in soil at a petroleum-contaminated site in China. Journal of Hazardous Materials, 316, 143-150, DOI: https://doi.org/10.1016/j.jhazmat.2016.05.033

» https://doi.org/10.1016/j.jhazmat.2016.05.033

KJERFVE, B., RIBEIRO, C. H. A., DIAS, G. T. M., FILIPPO, A. M. & QUARESMA, V. 1997. Oceanographic characteristics of an impacted coastal bay: Baia de Guanahara, Rio de Janeiro, Brazil. Continental Shelf Research, 17(13), 1609-1643, DOI: https://doi.org/10.1016/S0278-4343(97)00028-9

» https://doi.org/10.1016/S0278-4343(97)00028-9

KRISHNAPURAM, R. 1994. Generation of membership functions via possibilistic clustering. In: IEEE International Conference on Fuzzy Systems, 2, 902-908, DOI: https://doi.org/10.1109/fuzzy.1994.343851

» https://doi.org/10.1109/fuzzy.1994.343851

MACKENZIE, M. J. & HUNTER, J. V. 1979. Sources and fates of aromatic compounds in urban stormwater runoff. Environmental Science & Technology, 13(2), 179-183, DOI: https://doi.org/10.1021/es60150a011

» https://doi.org/10.1021/es60150a011

MASSONE, C. G., WAGENER, A. L. R., ABREU, H. M. & VEIGA, Á. 2013. Revisiting hydrocarbons source appraisal in sediments exposed to multiple inputs. Marine Pollution Bulletin, 73(1), 345-354, DOI: https://doi.org/10.1016/j.marpolbul.2013.05.043

» https://doi.org/10.1016/j.marpolbul.2013.05.043

ODEH, I. O. A., MCBRATNEY, A. B. & CHITTLEBOROUGH, D. J. 1992. Soil pattern recognition with fuzzy-c-means: application to classification and soil-landform interrelationships. Soil Science Society of America Journal, 56(2), 505-516, DOI: https://doi.org/10.2136/sssaj1992.03615995005600020027x

» https://doi.org/10.2136/sssaj1992.03615995005600020027x

R CORE TEAM. 2013. R: A language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Available at: http://www.R-project.org/ [Accessed: 15 November 2021].

» http://www.R-project.org/

ROCHA, T., PERES, S. M., BÍSCARO, H. H., MADEO, R. C. B. & BOSCARIOLI, C. 2012. Tutorial sobre Fuzzy-c-Means e Fuzzy Learning Vector Quantization: abordagens híbridas para tarefas de agrupamento e classificação. Revista de Informática Teórica e Aplicada, 19(1), 120-163.

SÂRBU, C. & EINAX, J. W. 2008. Study of traffic-emitted lead pollution of soil and plants using different fuzzy clustering algorithms. Analytical and Bioanalytical Chemistry, 390, 1293-1301, DOI: https://doi.org/10.1007/s00216-007-1711-3

» https://doi.org/10.1007/s00216-007-1711-3

SOARES-GOMES, A., NEVES, R. L., AUCÉLIO, R., VAN DER VEN, P. H., PITOMBO, F. B., MENDES, C. L. T. & ZIOLLI, R. L. 2010. Changes and variations of polycyclic aromatic hydrocarbon concentrations in fish, barnacles and crabs following an oil spill in a mangrove of Guanabara Bay, Southeast Brazil. Marine Pollution Bulletin, 60(8), 1359-1363, DOI: https://doi.org/10.1016/j.marpolbul.2010.05.013

» https://doi.org/10.1016/j.marpolbul.2010.05.013

STANIMIROVA, I., TAULER, R. & WALCZAK, B. 2011. A comparison of positive matrix factorization and the weighted multivariate curve resolution method. Application to environmental data. Environmental Science Technology, 45(23), 10102-10110, DOI: https://doi.org/10.1021/es201024m

» https://doi.org/10.1021/es201024m

TAKADA, H., ONDA, T., HARADA, M. & OGURA, N. 1991. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo Metropolitan area. Science of Total Environment, 107, 45-69, DOI: https://doi.org/10.1016/0048-9697(91)90249-E

» https://doi.org/10.1016/0048-9697(91)90249-E

TAN, M. Z., XU, F. M., CHEN, J., ZHANG, X. L. & CHEN, J. Z. 2006. Spatial prediction of heavy metal pollution for soils in peri-urban Beijing, China based on fuzzy set theory1 1 project supported by the national natural science foundation of China (Nos. 40571065 and 40235054) and the National Key Basic Research Support. Pedosphere, 16(5), 545-554, DOI: https://doi.org/10.1016/S1002-0160(06)60087-8

» https://doi.org/10.1016/S1002-0160(06)60087-8

TENNEKES, M. 2018. tmap: thematic maps in R. Journal of Statistical Software, 84(6), 1-39, DOI: https://doi.org/10.18637/jss.v084.i06

» https://doi.org/10.18637/jss.v084.i06

TOLOSA, I., MORA, S., SHEIKHOLESLAMI, M. R., VILLENEUVE, J. P., BARTOCCI, J. & CATTINI, C. 2004. Aliphatic and aromatic hydrocarbons in coastal caspian Sea sediments. Marine Pollution Bulletin, 48(1-2), 44-60, DOI: http://dx.doi.org/10.1016/S0025-326X(03)00255-8

» http://dx.doi.org/10.1016/S0025-326X(03)00255-8

VARNOSFADERANY, M. N., BAKHTIARI, A. R., GU, Z. & CHU, G. 2015. Distribution and characteristic of PAHs in sediments from the southwest Caspian Sea, Guilan Province, Iran. Water Science & Technology, 71(11), 1587-1596, DOI: https://doi.org/10.2166/wst.2015.091

» https://doi.org/10.2166/wst.2015.091

WAGENER, A. L. R., CARREIRA, R. S., HAMACHER, C., SCOFIELD, A. L., FARIAS, C. O., CORDEIRO, L. G. M. S., LUZ, L. G., BAÊTA, A. P. & KALAS, F. A. 2011. Hydrocarbon composition and distribution in a coastal region under influence of oil production in northeast Brazil. Marine Pollution Bulletin, 62, 1877-1882.

WAGENER, A. L. R., FALCÃO, A. P., FARIAS, C. O., MOLINA, F. F., CARREIRA, R. S., MAUAD, C., NUDI, A., SCOFIELD, A. L. & MASSONE, C. G. 2019. Distribution and source apportionment of hydrocarbons in sediments of oil-producing continental margin: a fuzzy logic approach. Environmental Science and Pollution Research, 17, 17032-17044, DOI: https://doi.org/10.1007/s11356-019-05103-3

» https://doi.org/10.1007/s11356-019-05103-3

WAGENER, A. L. R., HAMACHER, C., FARIAS, C., GODOY, J. M. & SCOFIELD, A. 2010. Evaluation of tools to identify hydrocarbon sources in recent and historical sediments of a tropical bay. Marine Chemistry, 121(1-4), 67-79, DOI: http://dx.doi.org/10.1016/j.marchem.2010.03.005

» http://dx.doi.org/10.1016/j.marchem.2010.03.005

WAGENER, A. L. R., MENICONI, M. F., HAMACHER, C., FARIAS, C. O., SILVA, G. C., GABARDO, I. T. & SCOFIELD, A. L. 2012. Hydrocarbons in sediments of a chronically contaminated bay: the challenge of source assignment. Marine Pollution Bulletin, 64(2), 284-294, DOI: http://dx.doi.org/10.1016/j.marpolbul.2011.11.018

» http://dx.doi.org/10.1016/j.marpolbul.2011.11.018

WANG, Z., FINGAS, M. & PAGE, D.S. 1999. Oil spill identification. Journal of Chromatography A, 843(1-2), 369-411, DOI: http://dx.doi.org/10.1016/S0021-9673(99)00120-X

» http://dx.doi.org/10.1016/S0021-9673(99)00120-X

WICKHAM, H. 2016. ggplot2: elegant graphics for data analysis New York: Springer-Verlag.

WILLIAMS, P. T. & BOTTRILL, R. P. 1995. Sulfur-polycyclic aromatic hydrocarbons in tyre pyrolysis oil. Fuel, 74(5), 736-742, DOI: https://doi.org/10.1016/0016-2361(94)00005-C

» https://doi.org/10.1016/0016-2361(94)00005-C

YAN, B., BOPP, R. F., ABRAJANO, T. A., CHAKY, D. & CHILLRUD, S. N. 2014. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) into Central Park Lake, New York City, over a century of deposition. Environmental Toxicology and Chemistry, 33(5), 985-92, DOI: https://doi.org/10.1002/etc.2507

» https://doi.org/10.1002/etc.2507

YUNKER, M. B., MACDONALD, R. W., VINGARZAN, R., MITCHELL, R. H., GOYETTE, D. & SYLVESTRE, S. 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489-515, DOI: http://dx.doi.org/10.1016/S0146-6380(02)00002-5

» http://dx.doi.org/10.1016/S0146-6380(02)00002-5

ZADEH, L. A. 1965. Fuzzy sets. Information and Control, 8(3), 338-353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

» https://doi.org/10.1016/S0019-9958(65)90241-X

Downloads

Published

29.06.2022

How to Cite

Fuzzy Logic: adding natural uncertainties into environmental assessment . (2022). Ocean and Coastal Research, 70. https://doi.org/10.1590/2675-2824070.21080lg