Determination of sulfate in algal polysaccharide samples: a step-by-step protocol using microplate reader

Authors

  • Priscila Bezerra Torres Torres
  • Alice Nagai
  • Carmen Eusebia Palacios Jara
  • Janaína Pires Santos
  • Fungyi Chow
  • Déborah Yara Alves Cursino dos Santos

DOI:

https://doi.org/10.1590/2675-2824069.21-010pbt

Keywords:

Sulfate, Polysaccharides, Step-by-step protocol, Microplate, Seaweed

Abstract

Algal polysaccharides exhibit a wide range of biological activities and potential applications. Many of these bioactivities
correlate positively with the presence of sulfate groups on the polysaccharides. The most common method used for
sulfate quantification in algal samples is the turbidimetric method using the barium chloride-gelatin reagent. However,
the original procedure is difficult to adapt for routine analysis since it is laborious and time-consuming. An optimized
method was established using 96-well microplates, with the advantage of reducing waste and discrimination between
organic and inorganic sulfates. This proposed method produced the same accuracy as the original.

References

AOAC (Association of Official Agricultural Chemists). 1990. Sulfate in water by gravimetric method. In: AOAC International

(ed.). Official methods of analysis. Rockville: AOAC International.

BOUISSIL, S., PIERRE, G., EL ALAOUI-TALIBI, Z., MICHAUD, P., EL

MODAFAR, C. & DELATTRE, C. 2019. Applications of algal polysaccharides and derivatives in therapeutic and agricultural

fields. Current Pharmaceutical Design, 25(11), 1187-1199.

DODGSON, K. S. & PRICE, R. G. 1962. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochemical Journal, 84(1), 106-110.

HENTATI, F., TOUNSI, L., DJOMDI, D., PIERRE, G., DELATTRE, C.,

URSU, A.V., FENDRI, I., ABDELKAFI, S. & MICHAUD, P. 2020.

Bioactive polysaccharides from seaweeds. Molecules,

(14), 3152.

JIAO, G., YU, G., ZHANG, J. & EWART, H. S. 2011. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9(2), 196-223.

ROCHAS, C., LAHAYE, M. & YAPHE, W. 1986. Sulfate content of

carrageenan and agar determined by infrared spectroscopy. Botanica Marina, 29, 335-340.

SANTOS, J. P., TORRES, P. B., SANTOS, D. Y. A. C., MOTTA, L. B. &

CHOW, F. 2019. Seasonal effects on antioxidant and anti-HIV

activities of Brazilian seaweeds. Journal of Applied Phycology, 31, 1333-1341.

TABATABAI, M. A. & BREMNER, J. M. 1970. A simple turbidimetric method of determining total sulfur in plant materials.

Agronomy Journal, 62(6), 805-806.

TORODE, T. A., MARCUS, S. E., JAM, M., TONON, T., BLACKBURN,

R. S., HERVÉ, C. & KNOX, J. P. 2015. Monoclonal antibodies

directed to fucoidan preparations from brown algae. PLoS

One, 10(2), e0118366.

TORRES, P., NOVAES, P., FERREIRA, L. G., PIRES, J., MAZEPA, E.,

SANTOS, J. P., MAZEPA, E., DUARTE, M. E. R., NOSEDA, M. D.,

CHOW, F. & SANTOS, D. Y. A. C. 2018. Effects of extracts and

isolated molecules of two species of Gracilaria (Gracilariales, Rhodophyta) on early growth of lettuce. Algal Research,

, 142-149.

Downloads

Published

27.06.2022

How to Cite

Determination of sulfate in algal polysaccharide samples: a step-by-step protocol using microplate reader. (2022). Ocean and Coastal Research, 69. https://doi.org/10.1590/2675-2824069.21-010pbt