Evaluation of South Atlantic Thermohaline Properties from BESM-OA2.5 and Three Additional Global Climate Models
DOI:
https://doi.org/10.1590/2675-2824069.21012mfb%20%20%20Keywords:
Climate model, Models evaluation, Thermohaline propertiesAbstract
Important global oceanic processes, such as the meridional overturning circulation, are governed by the temperature and
salinity of the ocean. As such, it is essential that these properties be correctly represented in high-quality global climate
models. This study aims to evaluate thermohaline properties both historically and under two simulations of the Brazilian
Earth System Model BESM-OA2.5 in the South Atlantic Ocean (Representation Concentration Pathway (RCP) 4.5 and 8.5).
Since error assessment in the global climate model (GCM) is fundamental to infer climate change projections, comparisons
were made for thermohaline properties among four GCMs (HadGEM2-ES, MIROC-ESM-CHEM, MIROC5, and BESM-OA2.5)
against data from ocean monitoring programs and from ORAS5-ECMWF. The results show common surface spatial pattern
errors in all models, commonly related to mesoscale processes. Specific to BESM-OA2.5 over the Southern Ocean, we
observed an increase in the temperature bias during autumn and summer, probably due to subsurface temperature
overestimation linked to North Antarctic Deep Water (NADW) formation. With respect to salinity, the underestimations
in the Subtropical/Subantarctic Zones and in the north of the South Atlantic subtropical gyre were linked to simulation
errors in the Malvinas current. All models presented overestimated annual historical temperature rates, with BESM-OA2.5
being the closest to ORAS5. In the subsurface, the BESM-OA2.5 did not easily simulate the South Atlantic Central Water
(SACW) formation, though in deep water, the model was able to better simulate the Antarctic Intermediate Water and
NADW patterns. Statistically, the multi-model means performed better, while the BESM-OA2.5 performed worst among
the models in both methodologies applied. In terms of projected scenarios, the models demonstrated sensitivity to
variations in greenhouse gas emissions between the RCPs, with higher magnitude warming predicted in the equatorial
zone, except for BESM-OA2.5
References
ANNAN, J. D. & HARGREAVES, J. C. 2011. Understanding the
CMIP3 multimodel ensemble. Journal of Climate, 24(16),
-4538, DOI: https://doi.org/10.1175/2011jcli3873.1
BARBERO, L. & WANNINKHOF, R. 2014. GO-SHIP A16S, 23 December 2013-04 February 2014 [online]. La Jola: CCHDO (CLIVAR
and Carbon Hydrographic Data Office). Available at: https://
cchdo.ucsd.edu/search?q=GO-SHIP [Accessed: 17 May
.
BARNES, W. L., PAGANO, T. S. & SALOMONSON, V. S. 1998. Prelaunch characteristics of the moderate resolution imaging
spectroradiometer (MODIS) on EOS-AM1. IEEE Transactions
on Geoscience and Remote Sensing, 36(4), 1088-1100, DOI:
https://doi.org/10.1109/36.700993
BEADLING, R. L., RUSSELL, J. L., STOUFFER, R. J., GOODMAN, P.
J. & MAZLOFF, M. 2019. Assessing the quality of Southern
Ocean circulation in CMIP5 AOGCM and Earth system model simulations. Journal of Climate, 32(18), 5915-5940, DOI:
https://doi.org/10.1175/jcli-d-19-0263.1
BERGER, H., TREGUIER, A. M., PERENNE, N. & TALANDIER, C. 2014.
Dynamical contribution to sea surface salinity variations
in the eastern Gulf of Guinea based on numerical modelling. Climate Dynamics, 43(11), 3105-3122, DOI: https://doi.
org/10.1007/s00382-014-2195-4
CAPISTRANO, V. B., NOBRE, P., TEDESCHI, R., SILVA, J., BOTTINO,
M., SILVA JUNIOR, M. B., MENEZES NETO, O. L., FIGUEROA,
S. N., BONATTI, J. P., KUBOTA, P. Y., FERNANDEZ, J. P. R.,
GIAROLLA, E., VIAL, J. & NOBRE, C. A. 2018. Overview of
climate change in the BESM-OA2. 5 climate model. Geoscientific Model Development, 12, 1613-1642, DOI: https://doi.
org/10.5194/gmd-2018-209
CASAGRANDE, F., NOBRE, P., SOUZA, R. B., MARQUEZ, A. L.,
TOURIGNY, E., CAPISTRANO, V. & MELLO, R. L. 2016. Arctic
sea ice: Decadal simulations and future scenarios using
BESM-OA. Atmospheric and Climate Sciences, 6(2), 351-366,
DOI: https://doi.org/10.4236/acs.2016.62029
CHOU, C., NEELIN, J. D., CHEN, C. A. & TU, J. Y. 2009. Evaluating the “rich-get-richer” mechanism in tropical
precipitation change under global warming. Journal of Climate, 22(8), 1982-2005, DOI: https://doi.
org/10.1175/2008JCLI2471.1
South Atlantic thermohaline properties evaluation
Ocean and Coastal Research 2021, v69:e21029 21
Broggio et al.
CHOU, C., NEELIN, J. D., TU, J. Y. & CHEN, C. T. 2006. Regional
tropical precipitation change mechanisms in ECHAM4/
OPYC3 under global warming. Journal of Climate, 19(17),
-4223, DOI: https://doi.org/10.1175/JCLI3858.1
CHOU, S. C., LYRA, A., MOURÃO, C., DERECZYNSKI, C., PILOTTO, I.,
GOMES, J., BUSTAMANTE, J., TAVARES, P., SILVA, A., RODRIGUES1,
D., CAMPOS, D., CHAGAS, D., SUEIRO, G., SIQUEIRA, G., NOBRE, P.
& MARENGO, J. 2014. Evaluation of the eta simulations nested in
three global climate models. American Journal Climate Change,
(5), 438-454, DOI: https://doi.org/10.4236/ajcc.2014.35039
COLAS, F., MCWILLIAMS, J. C., CAPET, X. & KURIAN, J. 2012.
Heat balance and eddies in the Peru-Chile current system. Climate dynamics, 39(1-2), 509-529, DOI: https://doi.
org/10.1007/s00382-011-1170-6
COLLINS, W. J., BELLOUIN, N., DOUTRIAUX-BOUCHER, M., GEDNEY,
N., HALLORAN, P., HINTON, T., HUGHES, J., JONES, C. D., JOSHI,
M., LIDDICOAT, S., MARTIN, G., O’CONNOR, F., RAE, J., SENIOR, C.,
SITCH, S., TOTTERDELL, I., WILTSHIRE, A. & WOODWARD, S. 2011.
Development and evaluation of an Earth-System model–HadGEM2. Geoscientific Model Development, 4(4), 1051-1075, DOI:
https://doi.org/10.5194/gmd-4-1051-2011
DURACK, P. J., WIJFFELS, S. E. & MATEAR, R. J. 2012. Ocean salinities reveal strong global water cycle intensification during
to 2000. Science, 336(6080), 455-458, DOI: https://doi.
org/10.1126/science.1212222
ECMWF (European Centre for Medium-Range Weather Forecasts).
ORAS5/Ocean ReAnalysis System 5. ICDC/Integrated Climate
Data Center [online]. Hamburg: Universitat Hamburg. Available
at: http://icdc.cen.uni-hamburg.de/1/projekte/easy-init/easyinit-ocean.html?no_cache=1 [Accessed: 23 May 2018].
EMÍLSSON, I. 1961. The shelf and coastal waters off southern
Brazil. Boletim do Instituto Oceanográfico, 11(2), 101-112.
FARIAS, E. G. G., NOBRE, P., LORENZZETTI J. A., ALMEIDA, R. A. F. &
LUIS JÚNIOR, C. I. 2013. Variability of air-sea CO2 fluxes and
dissolved inorganic carbon distribution in the Atlantic basin:
a coupled model analysis. International Journal of Geosciences,
(1), 249-258, DOI: https://doi.org/10.4236/ijg.2013.41A022
FETTER, A. F. & MATANO, R. P. 2008. On the origins of the
variability of the Malvinas Current in a global, eddy‐
permitting numerical simulation. Journal of Geophysical Research: Oceans, 113(C11), 1-21, DOI: https://doi.
org/10.1029/2008JC004875
FIGUEROA, S. N., BONATTI, J. P., KUBOTA, P. Y., GRELL, G. A., MORRISON, H., BARROS, S. R. M., FERNANDEZ, J. P. R., RAMIREZ, E.,
SIQUEIRA, L., LUZIA, G., SILVA, J., SILVA, J. R., PENDHARKAR,
J., CAPISTRANO, V. B., ALVIM, D. S., ENORÉ, D. P., DINIZ, F. L.
R., SATYAMURTI, P., CAVALCANTI, I. F. A., NOBRE, P., BARBOSA, H. M. J., MENDES, C. L. & PANETTA, J. 2016. The Brazilian
Global Atmospheric Model (BAM): performance for tropical
rainfall forecasting and sensitivity to convective scheme
and horizontal resolution. Weather and Forecasting, 31(5),
-1572, DOI: https://doi.org/10.1175/WAF-D-16-0062.1
FLATO, G. J., MAROTZKE, B., ABIODUN, P., BRACONNOT, S. C.,
CHOU, W., COLLINS, P., COX, F., DRIOUECH, S., EMORI, V., EYRING, C., FOREST, P., GLECKLER, E., GUILYARDI, C., JAKOB, V.,
KATTSOV, C., REASON M., RUMMUKAINEN. 2013. Evaluation
of climate models. In: STOCKER, T. F., QIN, D., PLATTNER, G. K.,
TIGNOR, M., ALLEN, S. K., BOSCHUNG, J., NAUELS, A., XIA, Y.,
BEX, V. & MIDGLEY, P. M. (ed.). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge: Cambridge University Press, pp. 741-
, DOI: https://doi.org/10.1017/CBO9781107415324.020
GAN, J., MYSAK, L. A. & STRAUB, D. N. 1998. Simulation of the
South Atlantic Ocean circulation and its seasonal variability.
Journal of Geophysical Research: Oceans, 103(C5), 10241-
, DOI: https://doi.org/10.1029/98JC00367
GARZOLI, S. L. & GIULIVI, C. 1994. What forces the variability of
the southwestern Atlantic boundary currents?. Deep Sea Research Part I: Oceanographic Research Papers, 41(10), 1527-
, DOI: https://doi.org/10.1016/0967-0637(94)90059-0
GARZOLI, S. L. & MATANO, R. 2011. The South Atlantic and the
Atlantic Meridional Overturning Circulation. Deep Sea Research Part II: Topical Studies in Oceanography, 58(17-18),
-1847, DOI: https://doi.org/10.1016/j.dsr2.2010.10.063
GENT, P. R., YEAGER, S. G., NEALE, R. B., LEVIS, S. & BAILEY, D. A.
Improvements in a half degree atmosphere/land version of the CCSM. Climate Dynamics, 34(6), 819-833, DOI:
https://doi.org/10.1007/s00382-009-0614-8
GIAROLLA, E., SIQUEIRA, L. S. P., BOTTINO, M. J., MALAGUTTI,
M., CAPISTRANO, V. B. & NOBRE, P. 2015. Equatorial Atlantic
Ocean dynamics in a coupled ocean–atmosphere model
simulation. Ocean Dynamics, 65(6), 831-843, DOI: https://
doi.org/10.1007/s10236-015-0836-8
GLECKLER, P. J., TAYLOR, K. E. & DOUTRIAUX, C. 2008. Performance
metrics for climate models. Journal of Geophysical Research,
(6), 1-20, DOI: https://doi.org/10.1029/2007JD008972
GOES, M., CIRANO, M., MATA, M. M. & MAJUMDER, S. 2019. Longterm monitoring of the Brazil Current Transport at 22°S from
XBT and altimetry data: seasonal, interannual, and extreme
variability. Journal Geophysical Research: Oceans, 124(6),
-3663, DOI: https://doi.org/10.1029/2018JC014809
GORDON, A. L. 1986. Interocean exchange of thermocline water. Journal of Geophysical Research, 91(C4), 5037-5046, DOI:
https://doi.org/10.1029/JC091iC04p05037
HADGEM2 DEVELOPMENT TEAM. 2011. The HadGEM2 family
of met office unified model climate configurations. Geoscientific Model Development, 4(3), 723-757, DOI: https://doi.
org/10.5194/gmd-4-723-2011
HOOD, M., FUKASAWA, M., GRUBER, N., JOHNSON, G. C., KÖRTZINGER, A., SABINE, C., SLOYAN, B., STANSFIELD, K. & TANHUA,
T. 2009. Ship-based repeat hydrography: a strategy for a sustained global program. In: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. Venice: European Space Agency Publication, v. 2, pp. 509-519.
HORNER-DEVINE, A. R., HETLAND, R. D. & MACDONALD, D. G.
Mixing and transport in coastal river plumes. Annual
Review of Fluid Mechanics, 47, 569-594, DOI: https://doi.
org/10.1146/annurev-fluid-010313-141408
HUANG, B., HU, Z. Z. & JHA, B. 2007. Evolution of model systematic errors in the tropical Atlantic basin from coupled
climate hindcasts. Climate Dynamics, 28(7-8), 661-682, DOI:
https://doi.org/10.1007/s00382-006-0223-8
INPE (Instituto Nacional de Pesquisas Espaciais). 2015a. BESM-OA2.5
historical dataset are not available online. Cachoeira Paulista: INPE.
INPE (Instituto Nacional de Pesquisas Espaciais). 2015b. BESM-OA2.5
model CMIP5 RCP 4.5 and RCP 8.5 outputs - ESGF (Earth System
Grid Federation Data Access) [online]. Brasília: INPE. Available at:
https://dm2.cptec.inpe.br [Accessed: 10 Jan 2018].
KENDALL, M. G. 1970. Rank correlation methods. 4th ed. London: Griffin.
KING, M. D., HERRING, D. D. & DINER, D. J. 1995. The earth observing
system (EOS): a space-based program for assessing Mankind’s
impact on the global environment. Optics & Photonics News,
(1), 34-39. DOI: https://doi.org/10.1364/OPN.6.1.000034
South Atlantic thermohaline properties evaluation
Ocean and Coastal Research 2021, v69:e21029 22
Broggio et al.
LAGERLOEF, G., COLOMB, F. R., LE VINE, D., WENTZ, F., YUEH, S.,
RUF, C., LILLY, J., GUNN, J., CHAO, Y., DECHARON, A., FELDMAN, G. & SWIFT, C. 2008. The Aquarius/SAC-D mission:
designed to meet the salinity remote-sensing challenge.
Oceanography, 21(1), 68-81, DOI: https://doi.org/10.5670/
oceanog.2008.68
LLNL (Lawrence Livermore National Laboratory). JAMESTEC
(Japan Agency for Marine-Earth Science and Technology),
NIES (National Institute for Environmental Studies). 2015a.
MIROC-ESM-CHEM model CMIP5 historical, RCP 4.5 and RCP
5 outputs [online]. Lawrence: LLNL (Lawrence Livermore
National Laboratory)/ESGF (Earth System Grid Federation
Data Access). Available at: Available at: https://esgf-node.
llnl.gov [Accessed: 25 Jan 2018].
LLNL (Lawrence Livermore National Laboratory). JAMESTEC (Japan Agency for Marine-Earth Science and Technology), NIES
(National Institute for Environmental Studies). 2015b. MIROC5
model CMIP5 historical, RCP 4.5 and RCP 8.5 outputs [online].
Lawrence: LLNL (Lawrence Livermore National Laboratory)/
ESGF (Earth System Grid Federation Data Access). Available at:
https://esgf-node.llnl.gov [Accessed: 25 Jan 2018].
MACDONALD, A. & BARINGER, M. O. 2011. GO-SHIP A10, 26
September 2011-31 October 2011 [online]. La Jola: CCHDO
(CLIVAR and Carbon Hydrographic Data Office). Available
at: https://cchdo.ucsd.edu/search?q=GO-SHIP [Accessed:
May 2018].
MANN, H. B. 1946. Nonparametric tests against trend. Econometrica, 13(3), 245-259, DOI: https://doi.org/10.2307/1907187
MARCELLO, F., WAINER, I. & RODRIGUES, R. R. 2018. South Atlantic subtropical gyre late twentieth century changes. Journal
of Geophysical Research: Oceans, 123(8), 5194-5209, DOI:
https://doi.org/10.1029/2018JC013815
MATANO, R. P. 1993. On the separation of the Brazil Current from the
coast. Journal of Physical Oceanography, 23(1), 79-90, DOI: https://
doi.org/10.1175/1520-0485(1993)023<0079:OTSOTB>2.0.CO;2
MEEHL, G. A., STOCKER, T. F., COLLINS, W. D., FRIEDLINGSTEIN, P.,
GAYE, A. T., GREGORY, J. M., KITOH, A., KNUTTI, R., MURPHY,
J. M., NODA, A., RAPER, S. C. B., WATTERSON, I. G., WEAVER, A.
J. & ZHAO, Z. C. 2007. Global climate projections. In: SOLOMON, S., QIN, D., MANNING, M., CHEN, Z., MARQUIS, M., AVERYT, K. B., TIGNOR, M. & MILLER, H. L. (eds.). Climate Change
: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, pp. 747-845.
MOHC. 2015. HadGEM2-ES model CMIP5 historical, RCP 4.5 and
RCP 8.5 outputs [online]. Lawrence: ESGF (Earth System Grid
Federation Data Access). Available at: https://esgf-node.llnl.
gov [Accessed: 10 Jan 2018].
MÖLLER JUNIOR, O. O., PIOLA, A. R., FREITAS, A. C. & CAMPOS, E.
J. 2008. The effects of river discharge and seasonal winds on
the shelf off southeastern South America. Continental Shelf
Research, 28(13), 1607-1624, DOI: https://doi.org/10.1016/j.
csr.2008.03.012
MOSS, R. H., EDMONDS, J. A., HIBBARD, K. A., MANNING, M. R., ROSE,
S. K., VAN VUUREN, D. P., CARTER, T. R., EMORI, S., KAINUMA, M.,
KRAM, T., MEEHL G. A., MITCHELL, J. F. B., NAKICENOVIC, N., RIAHI, K., SMITH, S. J., STOUFFER, R. J., THOMSON, A. M., WEYANT, J.
P. & WILBANKS, T. J. 2010. The next generation of scenarios for
climate change research and assessment. Nature, 463(7282),
-756, DOI: https://doi.org/10.1038/nature08823
NASA (National Aeronautics and Space Administration), OBPG
(Ocean Biology Processing Group). 2014a. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua monthly Sea
Surface Temperature Data [online]. Washington, DC: NASA’s
Ocean Color Web. Available at: https://oceancolor.gsfc.
nasa.gov/l3/ [Accessed: 02 May 2018].
NASA (National Aeronautics and Space Administration), OBPG
(Ocean Biology Processing Group). 2014b. Moderate-resolution Imaging Spectroradiometer (MODIS) Terra Sea Surface
Temperature Data [online]. Washington, DC: NASA’s Ocean
Color Web [online]. Available at: https://oceancolor.gsfc.
nasa.gov/l3/ [Accessed: 02 May 2018].
NASA (National Aeronautics and Space Administration), OBPG
(Ocean Biology Processing Group). 2014c. SAC-D/Aquarius
monthly Sea Surface Salinity Data [online]. Washington, DC:
NASA’s Ocean Color Web. Available at: https://oceancolor.
gsfc.nasa.gov/l3/ [Accessed: 02 May 2018].
NOAA (National Oceanic and Atmospheric Administration),
AOML (Atlantic Oceanographic and Meteorological Laboratory). 2004. AX97 XBT [online]. Washington, DC: NOAA/
AOML. Available at: https://www.aoml.noaa.gov/phod/
hdenxbt/ax_home.php?ax=97 [Accessed: 17 May 2018].
NOBRE, P., SIQUEIRA, L. S., ALMEIDA, R. A., MALAGUTTI, M., GIAROLLA, E., CASTELÃO, G. P., BOTTINO, M. J., KUBOTA, P., FIGUEROA,
S. N., COSTA, M. C., BAPTISTA JUNIOR., M., IRBER JUNIOR., L. &
MARCONDES, G. G. 2013. Climate simulation and change in
the Brazilian Climate Model. Journal of Climate, 26(17), 6716-
, DOI: https://doi.org/10.1175/JCLI-D-12-00580.1
PEREIRA, J., GABIOUX, M., ALMEIDA, M. M., CIRANO, M., PAIVA,
A. M. & AGUIAR, A. L. 2014. The bifurcation of the western
boundary current system of the South Atlantic Ocean. Brazilian Journal of Geophysics, 32(2), 241-257, DOI: https://doi.
org/10.22564/rbgf.v32i2.456
PETERSON, R. G. & STRAMMA, L. 1991. Upper-level circulation in
the South Atlantic Ocean. Progress in Oceanography, 26(1),
-73, DOI: https://doi.org/10.1016/0079-6611(91)90006-8
PEZZI, L. P., SOUZA, R. B. D., DOURADO, M. S., GARCIA, C. A. E.,
MATA, M. M. & SILVA‐DIAS, M. A. F. 2005. Ocean‐atmosphere in situ observations at the Brazil‐Malvinas Confluence region. Geophysical Research Letters, 32(22), L22603,
DOI: https://doi.org/10.1029/2005GL023866
PEZZI, L. P., SOUZA, R. B. & QUADRO, M. F. L. 2016. Uma revisão
dos processos de interação oceano-atmosfera em regiões
de intenso gradiente termal do oceano atlântico sul baseada em dados observacionais. Revista Brasileira de Meteorologia, 31(4), 428-453, DOI: https://doi.org/10.1590/0102-
PINCUS, R., BATSTONE, C. P., HOFMANN, R. J. P., TAYLOR, K. E. &
GLECKER, P. J. 2008. Evaluating the present‐day simulation
of clouds, precipitation, and radiation in climate models.
Journal of Geophysical Research: Atmosphere, 113(D14),
D14209, DOI: https://doi.org/10.1029/2007JD009334
PIOLA, A. R. & MATANO, R. P. 2017. Ocean currents: Atlantic
Western Boundary—Brazil Current/Falkland (Malvinas) Current. In: SCOTT, A. E. (ed.). Reference module in earth systems
and environmental sciences. Amsterdam: Elsevier, pp. 1-6.
PIOLA, A. R., MATANO, R. P., PALMA, E. D., MÖLLER JUNIOR,
O. O. & CAMPOS, E. J. D. 2005. The influence of the Plata
River discharge on the western South Atlantic shelf. Geophysical Research Letters, 32(1), L01603, DOI: https://doi.
org/10.1029/2004GL021638
South Atlantic thermohaline properties evaluation
Ocean and Coastal Research 2021, v69:e21029 23
Broggio et al.
PONTES, G. M., GUPTA, A. S. & TASCHETTO, A. S. 2016. Projected
changes to South Atlantic boundary currents and confluence
region in the CMIP5 models: the role of wind and deep ocean
changes. Environmental Research Letters, 11(9), 094013, DOI:
https://doi.org/10.1088/1748-9326/11/9/094013
POOLE, R. & TOMCZAK, M. 1999. Optimum multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline. Deep Sea Research Part I: Oceanographic Research
Papers, 46(11), 1895-1921, DOI: https://doi.org/10.1016/
S0967-0637(99)00025-4
RANDALL, D. A., WOOD, R., BONY, S., COLMAN, R., FICHEFET, T.,
FYFE, J., KATTSOV, V., PITMAN, A., SHUKLA, J., SRINIVASAN, J.,
STOUFFER, R. J., SUMI A. & TAYLOR, K. E. 2007. Climate models and their evaluation. In: SOLOMON, S., QIN, D., MANNING, M., CHEN, Z., MARQUIS, M., AVERYT, K. B., TIGNOR,
M. & MILLER, H. L. (ed.). Climate Change 2007: The Physical
Science Basis. Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate
Change. New York: Cambridge University Press, pp. 590-662.
ROEHRIG, R., BOUNIOL, D., GUICHARD, F., HOURDIN, F. & REDELSPERGER, J. L. 2013. The present and future of the West
African monsoon: a process-oriented assessment of CMIP5
simulations along the AMMA transect. Journal of Climate,
(17), 6471-6505, DOI: https://doi.org/10.1175/JCLID-12-00505.1
ROSSI-WONGTSCHOWSKI, C. L. D. B. & MADUREIRA, L. S. P. 2006.
O Ambiente oceanográfico da plataforma continental e do talude na região sudeste-sul do Brasil. São Paulo: Edusp.
RUELA, R., SOUSA, M. C., CASTRO, M. & DIAS, J. M. 2020. Global
and regional evolution of sea surface temperature under
climate change. Global and Planetary Change, 190, 103190,
DOI: https://doi.org/10.1016/j.gloplacha.2020.103190
SALLÉE, J. B., SHUCKBURGH, E., BRUNEAU, N., MEIJERS, A. J.,
BRACEGIRDLE, T. J. & WANG, Z. 2013. Assessment of Southern Ocean mixed‐layer depths in CMIP5 models: historical
bias and forcing response. Journal of Geophysical Research:
Oceans, 118(4), 1845-1862. DOI: https://doi.org/10.1002/
jgrc.20157
SALLÉE, J. B., SHUCKBURGH, E., BRUNEAU, N., MEIJERS, A. J.,
BRACEGIRDLE, T. J., WANG, Z. & ROY, T. 2013. Assessment of
Southern Ocean water mass circulation and characteristics
in CMIP5 models: historical bias and forcing response. Journal of Geophysical Research: Oceans, 118(4), 1830-1844, DOI:
https://doi.org/10.1002/jgrc.20135
SANTINI, M. & CAPORASO, L. 2018. Evaluation of freshwater
flow from rivers to the sea in CMIP5 simulations: insights
from the Congo River basin. Journal of Geophysical Research: Atmospheres, 123(18), 10278-10300, DOI: https://
doi.org/10.1029/2017JD027422
SCHMITT, R. W. 1995. The ocean component of the global water cycle. Reviews of Geophysics, 33(C2), 1395-1409, DOI:
https://doi.org/10.1029/95RG00184
SILLMANN, J., KHARIN, V. V., ZHANG, X., ZWIERS, F. W. & BRONAUGH, D. 2013. Climate extremes indices in the CMIP5
multimodel ensemble: Part 1. Model evaluation in the
present climate. Journal Geophysical Research: Atmosphere,
(4), 1716-1733, DOI: https://doi.org/10.1002/jgrd.50203
SILVEIRA, I. C. A., SCHMIDT, A. C. K., CAMPOS, E. J. D., GODOI, S. S.
& IKEDA, Y. 2000. A corrente do Brasil ao largo da costa leste
brasileira. Revista Brasileira de Oceanografia, 48(2), 171-183,
DOI: https://doi.org/10.1590/S1413-77392000000200008
SITZ, L. E., FARNETI, R. & GRIFFIES, S. M. 2015. Simulated South
Atlantic transports and their variability during 1958-2007.
Ocean Modelling, 91, 70-90, DOI: https://doi.org/10.1016/j.
ocemod.2015.05.001
SLOYAN, B. M., WANNINKHOF, R., KRAMP, M., JOHNSON, G. C.,
TALLEY, L. D., TANHUA, T., MCDONAGH, E., CUSACK, C.,
O’ROURKE, E., MCGOVERN, E., KATSUMATA, K., DIGGS, S.,
HUMMON, J., ISHII, M., AZETSU-SCOTT, K, BOSS, E., ANSORGE, I., PEREZ, F. F., MERCIER, H., WILLIAMS, M. J. M., ANDERSON, L., LEE, J. H., MURATA, A., KOUKETSU, S., JEANSSON, E., HOPPEMA, M. & CAMPOS, E. 2019. The Global
Ocean Ship-Based Hydrographic Investigations Program
(GO-SHIP): a platform for integrated multidisciplinary ocean
science. Frontiers in Marine Science, 6, 445, DOI: https://doi.
org/10.3389/fmars.2019.00445
SPRINTALL, J. & TOMCZAK, M. 1993. On the formation of Central
Water and thermocline ventilation in the southern hemisphere. Deep Sea Research Part I: Oceanographic Research
Papers, 40(4), 827-848, DOI: https://doi.org/10.1016/0967-
(93)90074-D
STRAMMA, L. & ENGLAND, M. 1999. On the water masses and
mean circulation of the South Atlantic Ocean. Journal of
Geophysical Research: Oceans, 104(9), 20863-20883, DOI:
https://doi.org/10.1029/1999JC900139
TAILLEUX, R., LAZAR, A. & REASON, C. J. C. 2005. Physics and
dynamics of density-compensated temperature and salinity anomalies. Part I: Theory. Journal of Physical Oceanography, 35(5), 849-864, DOI: https://doi.org/10.1175/
JPO2706.1
TALLEY, L. D., PICKARD, G. L., EMERY, W. J. & SWIFT, J. H. 2011.
Atlantic Ocean. Descriptive physical oceanography: an introduction. Boston: Elsevier.
TAYLOR, K. E. 2001. Summarizing multiple aspects of model
performance in a single diagram. Journal of Geophysical
Research: Atmosphere, 106(D7), 7183-7192, DOI: https://doi.
org/10.1029/2000JD900719
TAYLOR, K. E., BALAJI, V., HANKIN, S., JUCKE, M., LAWRENCE,
B. & PASCOE, S. 2012. CMIP5 Data Reference Syntax (DRS)
and Controlled Vocabularies, version 1.3.1 [online]. Livermore: Program for Climate Model Diagnosis & Intercomparison. Available at: https://pcmdi.llnl.gov/mips/cmip5/
cmip5_data_reference_syntax.pdf?id=94 [Accessed: 14
April 2021].
TAYLOR, K. E., STOUFFER, R. J. & MEEHL, G. A. 2012. An overview
of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498, DOI: https://doi.
org/10.1175/BAMS-D-11-00094.1
TEBALDI, C. & KNUTTI, R. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philosophical
Transactions of the Royal Society A, 365(1857), 2053-2075,
DOI: https://doi.org/10.1098/rsta.2007.2076
TERRAY, L., CORRE, L., CRAVATTE, S., DELCROIX, T., REVERDIN, G.
& RIBES, A. 2012. Near-surface salinity as nature’s rain gauge
to detect human influence on the tropical water cycle. Journal of Climate, 25(3), 958-977, DOI: https://doi.org/10.1175/
JCLI-D-10-05025.1
TOKINAGA, H., TANIMOTO, Y. & XIE, S. P. 2005. SST-induced
surface wind variations over the Brazil-Malvinas confluence: Satellite and in situ observations. Journal of climate, 18(17), 3470-3482, DOI: https://doi.org/10.1175/
JCLI3485.1
South Atlantic thermohaline properties evaluation
Ocean and Coastal Research 2021, v69:e21029 24
Broggio et al.
TZORTZI, E., JOSEY, S. A., SROKOSZ, M. & GOMMENGINGER, C.
Tropical Atlantic salinity variability: new insights from
SMOS. Geophysical Research Letters, 40(10), 2143-2147, DOI:
https://doi.org/10.1002/grl.50225
VAN CASPEL, M. R., MATA, M. M. & CIRANO, M. 2010. Sobre a
relação TS na porção central do Atlântico Sudoeste: uma
contribuição para o estudo da variabilidade oceânica no
entorno da cadeia Vitória-Trindade. Atlântica, 32(1), 95-110,
DOI: https://doi.org/10.5088/atl. 2010.32.1.95
VEIGA, S. F., NOBRE, P., GIAROLLA, E., CAPISTRANO, V., BAPTISTA JUNIOR, M., MARQUEZ, A. L., FIGUEROA, S. N., BONATTI, J. P., KUBOTA,
P. & NOBRE, C. A. 2019. The Brazilian Earth System Model ocean-atmosphere (BESM-OA) version 2.5: evaluation of its cmip5 historical simulation. Geoscientific Model Development, 12(4), 1613-1642.
DOI: https://doi.org/10.5194/gmd-12-1613-2019
WANG, C., ZHANG, L., LEE, S. K., WU, L. & MECHOSO, C. R. 2014. A
global perspective on CMIP5 climate model biases. Nature
Climate Change, 4(3), 201-205, DOI: https://doi.org/10.1038/
NCLIMATE2118
WATANABE, M., SUZUKI, T., O’ISHI, R., KOMURO, Y., WATANABE,
S., EMORI, S., TAKEMURA, T., CHIKIRA, M., OGURA, T., SEKIGUCHI, M., TAKATA, K., YAMAZAKI, D., YOKOHATA, T., NOZAWA,
T., HASUMI, H., TATEBE, H. & KIMOTO, M. 2010. Improved
climate simulation by MIROC5: mean states, variability, and
climate sensitivity. Journal of Climate, 23(23), 6312-6335,
DOI: https://doi.org/10.1175/2010JCLI3679.1
WATANABE, S., HAJIMA, T., SUDO, K., NAGASHIMA, T., TAKEMURA, T., OKAJIMA, H., NOZAWA, T., KAWASE, H., ABE, M.,
YOKOHATA, T., ISE, T., SATO, H., KATO, E., TAKATA, K., EMORI,
S. & KAWAMIYA, M. 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4(4), 845-872, DOI: https://doi.
org/10.5194/gmd-4-845-2011
YU, L. 2011. A global relationship between the ocean water cycle and near-surface salinity. Journal of Geophysical Research, 116(C10), C10025, DOI: https://doi.
org/10.1029/2010JC006937
ZHENG, Y., SHINODA, T., LIN, J. L. & KILADIS, G. N. 2011.
Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19
IPCC AR4 coupled general circulation models. Journal of Climate, 24(15), 4139-4164, DOI: https://doi.
org/10.1175/2011JCLI4172.1
ZUO, H., BALMASEDA, M. A., TIETSCHE, S., MOGENSEN, K. &
MAYER, M. 2019. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment. Ocean Science Discussions, 15(3), 779-808, DOI: https://doi.org/10.5194/
os-2018-154