Development of an empirical chart datum model for a region of the Southwest Atlantic Ocean

Authors

  • María Florencia de Azkue
  • Enrique Eduardo D’Onofrio
  • Luciano Banegas

DOI:

https://doi.org/10.1590/2675-2824069.21-028mfda%20

Keywords:

Lowest astronomical tide, WGS84 ellipsoid, Sounding measure

Abstract

The datum for sounding reduction is a permanently fixed surface, to which the depths displayed on the nautical charts and the tide tables heights refer. The International Hydrographic Organization recommends adopting the lowest astronomical tide as a chart datum, although its calculation can be complex because it varies both spatially and temporally. The ever increasing accuracy of 3D positioning with Global Navigation Satellite Systems requires that the chart datum is referenced to the ellipsoid WGS84. The aims of this paper are to calculate the lowest astronomical tide and to develop an empirical model to determine the distance between the lowest astronomical tide and the WGS84 ellipsoid, for a region of the Southwest Atlantic Ocean between latitudes 36°S and 54°S and longitude 54°W, on a 5km x 5km grid. Harmonic constants from the Centre for Topographic studies of the Oceans and Hydrosphere are used to calculate the lowest astronomical tide. To refer it to the WGS84 ellipsoid, results from mean sea level models and along-track sea level heights provided by Archiving, Validation and Interpretation of Satellite Oceanographic data are utilized. The final product has been designed for open waters and will be useful both for the development of relevant marine activities in the area, as well as to increase the efficiency of hydrographic surveys while contributing to more precise navigation in critical areas.

References

ANDERSEN, O. B. 2010. The DTU10 gravity field and mean sea surface. In: Proceedings of Second International Symposium of the Gravity field of the Earth (IGFS2), 24 June, Fairbanks, Alaska, DTU Space - National Space Institute.

BANEGAS, L. 2019. Estudio de la dinámica de marea en la región de las Islas Malvinas y Namuncurá/Banco Burdwood DSc. Buenos Aires: Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

BIROL, F., FULLER, N., LYARD, F., CANCET M., NIÑO F., DELEBECQUE C. & FLEURY, S. 2017. Coastal applications from nadir altimetry: example of the X-TRACK regional products. Advances in Space Research, 59(4), 936-53, DOI: https://doi.org/10.1016/j.asr.2016.11.005

» https://doi.org/10.1016/j.asr.2016.11.005

BUCHWALDV, V. T. 1980. Resonance of Poincar’e waves on a continental shelf. Australian Journal of Marine and Freshwater Research, 31(4), 451-457.

CANCET, M., BIROL, F., ROBLOU, L., LANGLAIS, C., GUIHOU, K., BOUFFARD, J., DUSSURGER, R., MORROW, R. & LYARD, F. 2014. CTOH regional altimetry products: examples of applications. Coastal Altimetry [online], 9, 1-5. Available at: https://www.researchgate.net/publication/251236986 [Accessed 17 Mar. 2021].

» https://www.researchgate.net/publication/251236986

CARTWRIGHT, D. E. 1985. Tidal prediction and modern time scales, International Hydrographic Review, 62(1), 127-138.

CHELTON, D. B., RIES J. C., HAINES, B. J., FU, L. L. & CALLAHAN, P. S. 2001. Satellite altimetry and earth sciences: a handbook of techniques and applications. In: FU, L. L. & CAZENAVE, A. (eds.). International geophysics series San Diego: Academic Press.

DENG, X. & FEATHERSTONE, W. E. 2006. A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. Journal of Geophysical Research: Oceans, 111(C6), 1-16, DOI: https://doi.org/10.1029/2005JC003039

» https://doi.org/10.1029/2005JC003039

DENG, X., FEATHERSTONE, W. E., HWANG, C. & BERRY, P. A. M. 2002. Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Marine Geodesy, 25(4), 249-271.

D’ONOFRIO, E. E., OREIRO, F. A., GRISMEYER, W. H. & FIORE, M. M. E. 2016. Predicciones precisas de marea astronómica calculadas a partir de altimetría satelital y observaciones costeras para la zona de Isla Grande de Tierra del Fuego, Islas de los Estados y Canal de Beagle. GeoActa, 40(2), 60-75.

DI MARZIO, J. P. 2007. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica, Version 1. Appendix a: how does the Glas ellipsoid compare with WGS84 (by Terry Haran 20 May 2004) Colorado: NASA National Snow and Ice Data Center, DOI: https://doi.org/10.5067/K2IMI0L24BRJ

» https://doi.org/10.5067/K2IMI0L24BRJ

GLORIOSO, P. D. & FLATHER, R. A. 1997. The Patagonian shelf tides. Progress in Oceanography, 40(1-4), 263-283.

HAIGH, I. D., ELIOT, M. & PATTIARATCHI, C. 2011. Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. Journal of Geophysical Research, 116(C6), 1-16, DOI: http://dx.doi.org/10.1029/2010JC006645

» http://dx.doi.org/10.1029/2010JC006645

HANSEN, J. M., AAGAARD, T. & KUIJPERS, A. 2015. Sea-level forcing by synchronization of 56- and 74-year oscillations with the Moon’s nodal tide on the northwest European Shelf (eastern North Sea to central Baltic Sea). Journal of Coastal Research, 31(5), 1041-1056.

HARO, C. 2017. Actividad hidrocarburífera off shore y prospecciones sísmicas en la Argentina. Impactos en la fauna marina, acciones de prevención y mitigación. Fronteras, 2017(15), 61-69.

ILIFFE, J. C., ZIEBART, M. K. & TURNER, J. F. 2007. The derivation of vertical datum surfaces for hydrographic applications. The Hydrographic Journal, 125, 3-8.

IOH (International Hydrographic Organization). 2018. Resolutions of the International Hydrographic Organization 2nd ed. Monaco: International Hydrographic Organization.

KO, D. H., JEONG, S. T., CHO, H. Y. & KANG, K. S. 2017. Analysis on the estimation errors of the lowest and highest astronomical tides for the southwestern 2.5 GW offshore wind farm, Korea. International Journal of Naval Architecture and Ocean Engineering, 10(1), 85-94, DOI: http://dx.doi.org/10.1016/j.ijnaoe.2017.03.004

» http://dx.doi.org/10.1016/j.ijnaoe.2017.03.004

MARTIN, R. J. & BROADBENT, G. J. 2004. Chart datum for hydrography. The Hydrographic Journal , 112, 9-14.

MYERS, E., WONG, A., HESS, K., WHITE, S., SPARGO, E., FEYEN, J., YANG, Z., RICHARDSON, P., AUER, C., SELLARS, J., WOOLARD, J., ROMAN, D., GILL, S., ZERVAS, C. & TRONVIG, K. 2005. Development of a national Vdatum, and its application to sea level rise in North Carolina. In: Proceedings of the U.S. Hydrographic Conference, 29-31 March, San Diego, California, U.S. Hydrographic Conference.

OHI (Organización Hidrográfica Internacional). 1988. Especificaciones cartográficas de la OHI y reglamentos de la OHI para las cartas internacionales (INT) MP-004 Monaco: Organización Hidrográfica Internacional.

OLSON, D. B. & BACKUS, R. H. 1985. The concentrating of organisms at fronts: a coldwater fish and a warm-core Gulf Stream ring. Journal of Marine Research, 43(1), 113-137.

OREIRO, F. A., D’ONOFRIO, E. E. & FIORE, M. M. E. 2016. Altimetric reference connection of nautical charts and WGS84 ellipsoid for the Río de la Plata. GeoActa , 40(2), 109-120.

OREIRO, F. A., D’ONOFRIO, E. E., GRISMEYER, W. H., FIORE, M. M. E. & SARACENO, M. 2014. Tide model output comparison in the Northern region of the Antarctic Peninsula using satellite altimeters and tide gauges data. Polar Science, 8(1), 10-23.

PUGH, D. & WOODWORTH, P. 2014. Sea-level science: understanding tides, surges, tsunamis and mean sea-level changes New York: Cambridge University Press.

PUJOL, M. I., SCHAFFER, P., FAUGÈRE, Y., RAYNAL, M., DIBARBOURE, G. & PICOT, N. 2018. Gauging the improvement of recent mean sea surface models: A new approach for identifying and quantifying their errors. Journal of Geophysical Research: Oceans, 123(8), 5889-5911, DOI: https://doi.org/10.1029/2017JC013503

» https://doi.org/10.1029/2017JC013503

SANDWELL, D. T. & SMITH, W. H. F. 2005. Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. Geophysical Journal International, 163(1), 79-89, DOI: https://doi.org/10.1111/j.1365-246X.2005.02724.x

» https://doi.org/10.1111/j.1365-246X.2005.02724.x

SCARFE, B. E. 2002. Measuring water level corrections (WLC) using RTK GPS. The Hydrographic Journal , 2002(104), 17-23.

SLOBBE, D. C., KLEES, R., VERLAAN, M., DORST, L. L. & GERRITSEN, H. 2013. Lowest astronomical tide in the North sea derived from a vertically referenced shallow water model, and an assessment of its suggested sense of safety. Marine Geodesy , 36(1), 31-71, DOI: https://doi.org/10.1080/01490419.2012.743493

» https://doi.org/10.1080/01490419.2012.743493

TURNER, J. F., ILIFFE, J. C., ZIEBART, M. K. & JONES, C. 2013. Global ocean tide models: assessment and use within a surface model of lowest astronomical tide. Marine Geodesy , 36(2), 123-137, DOI: http://doi.org/10.1080/01490419.2013.771717

» http://doi.org/10.1080/01490419.2013.771717

Downloads

Published

24.06.2022

How to Cite

Development of an empirical chart datum model for a region of the Southwest Atlantic Ocean . (2022). Ocean and Coastal Research, 69. https://doi.org/10.1590/2675-2824069.21-028mfda