Relevância diagnóstica dos Gráficos de Recorrência na caracterização de Saúde, Doença ou Morte, em humanos
DOI:
https://doi.org/10.7322/jhgd.157746Palabras clave:
Sistema Nervoso Autônomo, Controle da Frequência Cardíaca, Variabilidade da Frequência Cardíaca, Saúde; Doença, Morte, Gráficos de RecorrênciaResumen
Gráficos de recorrência (GR) têm sido utilizados para avaliar sistemas dinâmicos complexos, sendo o corpo humano um excelente modelo. Foram analisados os elementos quantitativos e qualitativos do GR na diferenciação de Saúde, Doença e Morte. Séries temporais de batimentos cardíacos normais foram coletadas em recém-nascidos saudáveis (Grupo A1), crianças saudáveis (Grupo A2), adultos jovens saudáveis (Grupo A3), adultos saudáveis de meia-idade (Grupo A4), idosos residentes em casas de repouso (Grupo B), indivíduos com doença renal crônica avançada (Grupo C) e indivíduos com morte encefálica declarada ou em estado de morte iminente (Grupo D). O grupo A3 apresentou a melhor homeostase (menor recorrência). Os grupos A1 e D apresentaram os maiores valores de recorrência. Em termos visuais qualitativos, o Grupo A3 apresentou distribuição mais difusa e uniforme, um indicativo de melhor homeostase e o Grupo D foi totalmente linear, a pior condição. Um padrão parabólico foi claramente evidenciado. Em conclusão, foi possível, utilizando a correlação de apenas duas variáveis (SDNN e TT), diferenciar tanto de modo quantitativo como qualitativo os estados de Saúde, Doença e Morte usando GR.
Descargas
Referencias
2. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043-65. DOI: https://doi.org/10.1161/01.CIR.93.5.1043
3. Axelrod FB, Putman D, Berlin D, Rutkowski M. Electrocardiographic measures and heart rate variability in patients with familial dysautonomia. Cardiology. 1997;88(2):133-40. DOI: https://doi.org/10.1159/000177319
4. Alonso A, Huang X, Mosley TH, Heiss G, Chen H. Heart rate variability and the risk of Parkinson disease: the atherosclerosis risk in communities study. Ann Neurol. 2015;77(5):877-83. DOI: https://doi.org/10.1002/ana.24393
5. Ogliari G, Mahinrad S, Stott DJ, Jukema JW, Mooijaart SP, Macfarlane PW, et al. Resting heart rate, heart rate variability and functional decline in old age. CMAJ. 2015;187(15):E442-9. DOI: https://doi.org/10.1503/cmaj.150462
6. Li HR, Lu TM, Cheng HM, Lu DY, Chiou CW, Chuang SY, et al. Additive value of heart rate variability in predicting obstructive coronary artery disease Beyond Framingham risk. Circ J. 2016;80(2):494-501. DOI: https://doi.org/10.1253/circj.CJ-15-0588
7. Alvares GA, Quintana DS, Hickie IB, Guastella AJ. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. J Psychiatry Neurosci. 2016;41(2):89-104. DOI: https://doi.org/10.1503/jpn.140217
8. Vanderlei LCM, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009;24(2):205-17. DOI: http://dx.doi.org/10.1590/S0102-76382009000200018
9. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5:1040. DOI: https://doi.org/10.3389/fpsyg.2014.01040
10. Eckmann JP, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. Europhys Lett. 1987;4(9):973-7.
11. Nayak K, Bit A, Dey A, Mohapatra B, Pal K. A review on the nonlinear dynamical system analysis of electrocardiogram signal. J Healthcare Engineering. 2018. DOI: https://doi.org/10.1155/2018/6920420
12. Marwan N, Wessel N, Meyerfeldt U, Schirdewan A, Kurths J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66(2 Pt 2):026702. DOI: https://doi.org/10.1103/PhysRevE.66.026702
13. Tsuji H, Venditti Jr FJ, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90(2):878-83. DOI: https://doi.org/10.1161/01.CIR.90.2.878
14. Massin M, von Bernuth G. Normal ranges of heart rate variability during infancy and childhood. Pediatr Cardiol. 1997;18(4):297-302. DOI: https://doi.org/10.1007/s002469900178
15. Nunan D, Sandercock GRH, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol. 2010;33:1407-17. DOI: https://doi.org/10.1111/j.1540-8159.2010.02841.x
16. O’Neal WT, Chen LY, Nazarian S, Soliman EZ. Reference ranges for short-term heart rate variability measures in individuals free of cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis (MESA). J Electrocardiol. 2016;49(5):686-90.
17. Gamelin FX, Berthoin S, Bosquet L. Validity of the polar S810 heart rate monitor to measure RR intervals at rest. Med Sci Sports Exerc. 2006;3895):887-93. DOI: https://doi.org/10.1249/01.mss.0000218135.79476.9c
18. Quintana DS, Heathers JAJ, Kemp AH. On the validity of using the Polar RS800 heart rate monitor for heart rate variability research. Eur J Appl Physiol. 2012;112(12):4179-80. DOI: https://doi.org/10.1007/s00421-012-2453-2
19. Santos L, Barroso JJ, Macau EE, Godoy MF. Application of an autonomic adaptative filter for Heart Rate Variability analysis. Med Eng Phys. 2013;35(12):1778-85. DOI: https://doi.org/10.1016/j.medengphy.2013.07.009
20. Iwanski JS, Bradley E. Recurrence plots of experimental data: To embed or not to embed? Chaos. 1998;8(4):861-71. DOI: https://doi.org/10.1063/1.166372
21. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Physics Reports. 2007;438(5-6):237-329. DOI: https://doi.org/10.1016/j.physrep.2006.11.001
22. 22. Aceves-Fernandez WMA, Pedraza-Ortega JC, Sotomayor-Olmedo A, Ramos-Arreguín JM, Vargas-Soto JE, Tovar-Arriaga S. Analysis of Key Features of Non-Linear Behavior Using Recurrence Plots. Case study: Urban Pollution at Mexico City. J Environmental Protection 2012;3(9A):1147-60. DOI: https://doi.org/10.4236/jep.2012.329133
23. Hillebrand S, Gast KB, Mutsert R, Swenne CA, Jukema JW, Middeldorp S, et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and doseresponse
meta-regression. Europace. 2013;15(5):742-9. DOI: https://doi.org/10.1093/europace/eus341
24. Wessel N, Marwan N, Meyerfeldt U, Schirdewan A, Kurths J. Recurrence Quantification Analysis to Characterise the Heart Rate Variability Before the Onset of Ventricular Tachycardia. ISMDA. 2001;2199:295-301. DOI: https://doi.org/10.1007/3-540-45497-7_45
25. Santos L, Barroso JJ, Godoy MF, Macau EEN, Freitas US. Recurrence quantification analysis as a tool for discrimination among different dynamics classes: the heart rate variability associated to different age groups. In: Marwan N, Riley M, Giuliani A, Webber Jr. C. Translational recurrences. Springer Proceedings in Mathematics & Statistics, vol 103. Springer, Cham, 2014.
26. Trunkvalterova Z, Javorka M, Tonhajzerova I, Javorkova J, Javorka K. Recurrence quantification analysis of heart rate dynamics in young patients with Diabetes Mellitus. In: Jarm T, Kramar P, Zupanic A. 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing. IFMBE Proceedings, vol 16. Springer, Berlin, Heidelberg, 2007.
27. Takakura IT, Hoshi RA, Santos MA, Pivatelli FC, Nóbrega JH2, Guedes DL, et al. Recurrence Plots: a New Tool for Quantification of Cardiac Autonomic Nervous System Recovery after Transplant. Braz J Cardiovasc Surg. 2017;32(4):245-52. DOI: https://doi.org/10.21470/1678-9741-2016-0035
28. 28. Sacha J. Why should one normalize heart rate variability with respect to average heart rate. Front Physiol. 2013;4:306. DOI: https://doi.org/10.3389/fphys.2013.00306
Descargas
Publicado
Número
Sección
Licencia
CODE OF CONDUCT FOR JOURNAL PUBLISHERS
Publishers who are Committee on Publication Ethics members and who support COPE membership for journal editors should:
- Follow this code, and encourage the editors they work with to follow the COPE Code of Conduct for Journal Edi- tors (http://publicationethics.org/files/u2/New_Code.pdf)
- Ensure the editors and journals they work with are aware of what their membership of COPE provides and en- tails
- Provide reasonable practical support to editors so that they can follow the COPE Code of Conduct for Journal Editors (http://publicationethics.org/files/u2/New_Code.pdf_)
Publishers should:
- Define the relationship between publisher, editor and other parties in a contract
- Respect privacy (for example, for research participants, for authors, for peer reviewers)
- Protect intellectual property and copyright
- Foster editorial independence
Publishers should work with journal editors to:
- Set journal policies appropriately and aim to meet those policies, particularly with respect to:
– Editorial independence
– Research ethics, including confidentiality, consent, and the special requirements for human and animal research
– Authorship
– Transparency and integrity (for example, conflicts of interest, research funding, reporting standards
– Peer review and the role of the editorial team beyond that of the journal editor
– Appeals and complaints
- Communicate journal policies (for example, to authors, readers, peer reviewers)
- Review journal policies periodically, particularly with respect to new recommendations from the COPE
- Code of Conduct for Editors and the COPE Best Practice Guidelines
- Maintain the integrity of the academic record
- Assist the parties (for example, institutions, grant funders, governing bodies) responsible for the investigation of suspected research and publication misconduct and, where possible, facilitate in the resolution of these cases
- Publish corrections, clarifications, and retractions
- Publish content on a timely basis