Estimation of erosion and deposition by Unit Stream Power Erosion and Deposition in a sub-basin on the Mogi Guaçu River’s margins, municipality of Mogi Guaçu, SP, Brazil

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v22-172761

Keywords:

Semi-empirical modeling, Surface runoff, Contribution area, Unit Stream Power Erosion and Deposition

Abstract

Information regarding the soil erosive processes that comprise the detachment, transport and deposition, are essential when analyzing hydrological processes associated with the generation of the flow in the landscape and water recharge. The USPED (Unit Stream Power Erosion and Deposition) model has been applied in several regions around the world for providing more accurate estimates, since it adds a physical base that relates the relief morphology with the erosion-defining runoff parameters. The current study aims to analyze erosion and deposition using the USPED model in a sub-basin on Mogi Guaçu River’s margins, municipality of Mogi Guaçu, SP, Brazil, and generate subsidies for future diagnoses regarding areas in the region with greater
capacity for water storage, based on less erosion. The loss of mineral and organic particles arising from the erosive process changes the soil’s effective depth, texture and structure, directly and negatively impacting its capacity to absorb and retain water. 60% of the sub-basin’s area was unaffected by considerable processes of erosion and deposition, both due to the current arboreal vegetation, but also the smooth relief of the site. The erosion and deposition sites have totaled 23.42 and 15.76% of the sub-basin area respectively, being adjacent to one another and preferably near or within the drainage network. The results of the spatialization were validated by the Kappa Index and revealed that the UPSED model obtained an excellent agreement with the “ground truth”. Stability in terms of erosion, favors the water recharge in area, since the soils present a sandy texture and in addition, the Latossolos, which make up 63% of the sub-basin, are deep and possess a high water storage...

Downloads

Download data is not yet available.

References

Aiello, A., Adamo, M., Canora, F. (2015). Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy. Catena, 131, 174-185. https://doi.org/10.1016/j.catena.2015.04.003

Asrar, G., Fuchs, M., Kanemasu, E. T., Hatfield, J. L. (1984). Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal, 76(2), 300-306. https://doi.org/10.2134/agronj1984.00021962007600020029x

Bertoni, J., Lombardi Neto, F. (2005). Conservação do solo. São Paulo: Ícone.

Boumanns, R., Ambrósio, L. A., Romeiro, A. R., Campos, E. M. G., Fasiaben, M. C. R., Andrade, D. C., Tôsto, S. G., Moraes, J. F. L., Camargo, L. A. S., Sinisgalli, P. A. A., Sousa Junior, W. C. (2010). Modelagem dinâmica do uso e cobertura das terras para o controle da erosão na bacia hidrográfica do Rio Mogi-Guaçu e Pardo, São Paulo - Brasil. Revista Iberoamericana de Economía Ecológica, 14, 1-12. Available at: https://raco.cat/index.php/Revibec/article/view/200504. Accessed on: Jan 17, 2022.

Bouyoucos, G. J. (1935). The Clay ratio as a criterion of susceptibility of soils to erosion. Journal of the American Society of Agronomy, 27(9), 738-741. https://doi.org/10.2134/agronj1935.00021962002700090007x

Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soil. Agronomy Journal, 43(9), 434-438. https://doi.org/10.2134/agronj1951.00021962004300090005x

Carvalho, D. F., Durigon, V. L., Antunes, M. A. H., Almeida, W. S., Oliveira, P. T. S. (2014). Predicting soil erosion using Rusle and NDVI time series from TM Landsat 5. Pesquisa Agropecuária Brasileira, 49(3), 15-224. https://doi.org/10.1590/S0100-204X2014000300008

Cecílio, R. A., Martinez, M. A., Pruski, F. F., Silva, D. D. (2013). Modelo para estimativa da infiltração de água e perfil de umidade do solo. Revista Brasileira de Ciência do Solo, 37(2), 411-421. https://doi.org/10.1590/S0100-06832013000200012

Chang, H. K., Teixeira, A. J., Vidal, A. C. (2003). Aspectos hidrogeológicos e hidroquímicos das regiões dos municípios de Mogi Mirim, Mogi Guaçu e Itapira no Estado de São Paulo. Revista Geociências, 22(Especial), 63-73. Available at: https://www.revistageociencias.com.br/geociencias-arquivos/22_especial/6.PDF. Accessed on: Jan 17, 2022.

Desmet, P. J. J., Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427-433. Available at: https://www.jswconline.org/content/51/5/427. Accessed on: Jan 17, 2022.

Djodjic, F., Markensten, H. (2019). From single fields to river basins: Identification of critical source areas for erosion and phosphorus losses at high resolution. Ambio, 48, 1129-1142. https://doi.org/10.1007/s13280-018-1134-8

Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA Solos). (2018). Sistema brasileiro de classificação de solos. 5ª ed. Brasília: EMBRAPA Solos.

Environmental Systems Research Institute (ESRI). (2014). ArcGIS Professional GIS for the desktop. Version 10.2. Redlands: ESRI.

Foster, G. R., McCool, D. K. (1994). Comment on “Length-slope factors for the Revised Universal Soil Loss Equation: simplified method of estimation”. Journal of Soil and Water Conservation, 49(2), 171-173. Available at: link.gale.com/apps/doc/A15406377/AONE?u=anon~3b77cf71&sid=googleScholar&xid=fea18146. Accessed on: Jan 17, 2022.

Foster, G. R., McCool, D. K., Renard, K. G., Moldenhauer, W. C. (1981). Conversion of the universal soil loss equation to SI metric units. Journal of Soil and Water Conservation, 36(6), 355-359. Available at: https://www.jswconline.org/content/36/6/355. Accessed on: Jan 17, 2022.

Fushita, A. T., Camargo-Bortolin, L. H. G., Arantes, E. M., Moreira, M. A. A., Cançado, C. J., Lorandi, R. (2011). Fragilidade ambiental associada ao risco potencial de erosão de uma área da região geoeconômica médio Mogi Guaçu superior (SP). Revista Brasileira de Cartografia, 63(4), 477-488. Available at: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/49216. Accessed on: Jan 17, 2022.

Honek, D., Michalková, M. S., Smetanová, A., Sočuvka, V., Velísková, Y., Karásek, P., Konečná, J., Németová, Z., Danáčová, M. (2020). Estimating sedimentation rates in small reservoirs - Suitable approaches for local municipalities in central Europe. Journal of Environmental Management, 261, 109958. https://doi.org/10.1016/j.jenvman.2019.109958

Instituto Brasileiro de Geografia e Estatística (IBGE). (2012). Manual técnico da vegetação brasileira. Rio de Janeiro: IBGE.

Instituto de Pesquisas Tecnológicas (IPT). (2012). Relatório técnico nº 131.057-205 do IPT sobre o cadastramento de pontos de erosão e inundação no Estado de São Paulo. São Paulo: IPT. Available at: https://sigrh.sp.gov.br/public/uploads/documents/7421/erosoes_dossie-das-ugrhis.pdf. Accessed on: Jan 17, 2022.

Instituto Nacional de Pesquisas Espaciais (INPE). (2018). Catálogo de imagens. Available at: http://www.dgi.inpe.br/CDSR. Accessed on: Jan 10, 2018.

Kandel, D. D., Western, A. W., Grayson, R. B., Turral, H. N. (2004). Process parameterization and temporal scaling in surface runoff and erosion modelling. Hydrological Processes, 18(8), 1423-1446. https://doi.org/10.1002/hyp.1421

Kandrika, S., Dwivedi, R. S. (2003). Assessment of the impact of mining on agricultural land using erosion-deposition model and space borne multispectral data. Journal of Spatial Hydrology, 3(2), 1-17. Available at: https://scholarsarchive.byu.edu/josh/vol3/iss2/1. Accessed on: Jan 17, 2022.

Kinnell, P. I. A. (2005). Why the universal soil loss equation and the revised version of it do not predict event erosion well. Hydrological Processes, 19(3), 851-854. https://doi.org/10.1002/hyp.5816

Klinke Neto, G., Oliveira, A. H., Pereira, S. Y. (2017). Variabilidade espacial de atributos físicos do 523 solo em planície aluvionar do Rio Mogi Guaçu (SP). Geociências, 36(2), 381-394. https://doi.org/10.5016/geociencias.v36i2.12593

Klinke Neto, G., Oliveira, A. H., Pereira, S. Y. (2018). Fisiografia e geomorfologia em sub-bacia da planície do Rio Mogi Guaçu, Estado de São Paulo, Brasil. Anuário do Instituto de Geociências, 41(2), 177-190. https://doi.org/10.11137/2018_2_177_190

Landis, J. R., Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310

Lazzari, M., Gioia, D., Piccarreta, M., Danese, M., Lanorte, A. (2015). Sediment yield and erosion rate estimation in the mountain catchments of the Camastra artificial reservoir (Southern Italy): a comparison between different empirical methods. Catena, 127, 323-339. https://doi.org/10.1016/j.catena.2014.11.021

Lelis, T. A., Calijuri, M. L., Santiago, A. F., Lima, D. C., Rocha, E. O. (2012). Análise de sensibilidade e calibração do modelo SWAT aplicado em bacia hidrográfica da região sudeste do Brasil. Revista Brasileira de Ciência do Solo, 36(2), 623-634. https://doi.org/10.1590/S0100-06832012000200031

Lima, J. E. F. W., Lopes, W. T. A., Carvalho, N. O., Vieira, M. R., Silva, E. M. (2005). Suspended sediment fluxes in the large river basins of Brazil. Seventh IAHS Scientific Assembly, 1, 355-363. Available at: https://iahs.info/uploads/dms/13042.48%20355-363%20S11-19%20Werneck%20et%20al.pdf. Accessed on: Jan 17, 2022.

Lombardi Neto, F., Moldenhauer, W. C. (1992). Erosividade da chuva: sua distribuição e relação com as perdas de solo em Campinas (SP). Bragantia, 51(2), 189-196. https://doi.org/10.1590/S0006-87051992000200009

Mannigel, A. R., Carvalho, M. P., Moreti, D., Medeiros, L. R. (2002). Fator erodibilidade e tolerância de perda dos solos do Estado de São Paulo. Acta Scientiarum, 24(5), 1335-1340. https://doi.org/10.4025/actasciagron.v24i0.2374

Mello, C. R., Norton, L. D., Pinto, L. C., Curi, N. (2019). Hydropedology in the tropics. Lavras: UFLA.

Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L. R. (1996). Modelling topographic potential for erosion and deposition using GIS. International Journal Geographical Information System, 10(5), 629-641. https://doi.org/10.1080/02693799608902101

Moore, I. D., Burch, G. J. (1986). Physical basis of the lengthslope factor in Universal Soil Loss Equation. Soil Science Society of America Journal, 50(5), 1294-1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x

Nearing, M. A., Wei, H., Stone, J. J., Pierson, F. B., Spaeth, K. E., Weltz, M. A., Flanagan, D. C., Hernandez, M. (2011). A rangeland hydrology and erosion model. Transactions - American Society of Agricultural Engineers, 54(3), 901-908. https://doi.org/10.13031/2013.37115

Niculită, I. C. (2011). Sheet and rill soil erosion estimation for agricultural land evaluation. Bulletin UASVM Agriculture, 68(1), 237-244. https://doi.org/10.15835/buasvmcn-agr:6447

Oliveira, A. H., Silva, M. A., Silva, M. L. N., Curi, N., Klinke Neto, G., Freitas, D. A. F. (2013). Development of topographic factor modeling for application in soil erosion models. In: M. C. H. Soriano (Ed.). Soil processes and current trends in quality assessment, 1, 111-138. Croatia: InTeh. https://doi.org/10.5772/54439

Oliveira, A. H., Silva, M. L. N., Curi, N., Klinke Neto, G., Silva, M. A., Araújo, E. F. (2012). Consistência hidrológica de modelos digitais de elevação (MDE) para definição da rede de drenagem na sub-bacia do horto florestal Terra Dura, Eldorado do Sul, RS. Revista Brasileira de Ciência do Solo, 36(4), 1259-1267. https://doi.org/10.1590/S0100-06832012000400020

Oliveira, J. B., Barbieri, J. L., Rotta, C. L., Tremocoldi, W. (1982). Levantamento pedológico semidetalhado do Estado de São Paulo: Quadrícula de Araras. Campinas: Instituto Agronômico. Mapa, escala 1:100.000. (Boletim Técnico, 72.)

Pricope, N. (2009). Assessment of spatial patterns of sediment transport and delivery for soil and water conservation programs. Journal of Spatial Hydrology, 9(1), 21-46. Available at: https://scholarsarchive.byu.edu/josh/vol9/iss1/1. Accessed on: Jan 17, 2022.

Rodriguez, J. L. G., Suarez, M. C. G. (2012). Methodology for estimating the topographic factor LS of RUSLE3D and USPED using GIS. Geomorphology, 175-176, 98-106. https://doi.org/10.1016/j.geomorph.2012.07.001

Roose, E. I. (1977). Application of the universal soil loss equation of Wischmeier and Smith in West Africa. In: D. J. Greenland, R. Lal (Eds.). Soil conservation and management in the humid tropics, 1, 177-187. Proceedings of the International Conference. Chichester: John Wiley and Sous.

Santa’anna Neto, J. L. (1995). A erosividade das chuvas no Estado de São Paulo. Revista do Departamento de Geografia, 9, 35-49. https://doi.org/10.7154/RDG.1995.0009.0004

Santos, R. D., Lemos, R. C., Santos, H. G., Ker, J. C., Anjos, L. H. C. (2005). Manual de descrição e coleta de solos no campo. 5. ed. Viçosa: SBCS.

Seo, I. K., Park, Y. S., Kim, N. W., Moon, J. P., Ryu, J. C., Ok, Y. S., Kim, K., Lim, K. J. (2010). Estimation of soil erosion using SATEEC and USPED and determination of soil erosion hot spot watershed. Journal of Korean Society on Water Quality, 26(3), 497-506.

erviço Geológico do Brasil (CPRM), Coordenadoria de Planejamento Ambiental (CPLA). (2002). Atlas geoambiental das bacias hidrográficas dos rios Mogi-Guaçu e Pardo – SP: subsídios para o planejamento territorial e gestão ambiental. São Paulo: CPRM/CPLA. Available at: https://rigeo.cprm.gov.br/jspui/bitstream/doc/2548/1/Atlas_Geoamb_Mogi_Pardo.pdf. Accessed on: Jan 17, 2022.

Silva, A. M., Alvares, C. A. (2005). Levantamento de informações e estruturação de um banco dados sobre a erodibilidade de classes de solos no Estado de São Paulo. Geociências, 24(1), 33-41. Available at: https://ppegeo.igc.usp.br/index.php/GEOSP/article/view/9738. Accessed on: Jan 17, 2022.

Silva, D. C. C., Albuquerque Filho, J. L., Sales, J. C. A., Lourenço, R. W. (2017). Identificação de com perda de solo acima do tolerável usando NDVI para o cálculo do fator C da USLE. Ra’eGa., 42, 72-85. https://doi.org/10.5380/raega.v42i0.45524

Silva, R. M., Santos, S. A. G., Montenegro, S. M. G. L. (2013). Identification of critical erosion prone areas and estimation of natural potential for erosion using GIS and remote sensing. Revista Brasileira de Cartografia, 65(5), 881-894.

Sir, B., Bobál, P., Richnavský, J. (2013). GIS evaluation of erosion-sedimentation risk caused by extreme convective rainstorms: case study of the Stonávka River Catchment, Czech Republic. In: J. Kozak, K. Ostapowicz, A. Bytnerowicz, B. Wyzca (Eds.). The Carpathians: integrating nature and society towards sustentainability, 1, 45-58. Berlin: Springer. https://doi.org/10.1007/978-3-642-12725-0_5

Tamene, L., Vlek, P. L. G. (2008). Soil erosion studies in Northern Ethiopia. In: A. K. Braimoh, P. L. G. Vlek (Eds.). Land use and soil resources, 1, 73-100. Berlin: Springer. https://doi.org/10.1007/978-1-4020-6778-5_5

Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in the grid digital elevation models. Water Resources Research, 33(2), 309-319. https://doi.org/10.1029/96WR03137

UCRBEEc. (2010). Plano de manejo integrado das unidades de conservação reserva biológica e estação ecológica Mogi Guaçu – SP. Piracicaba: UCRBEEc.

Warren, S. D., Mitasova, H., Hohmann, M. G., Landsberger, S., Iskander, F. Y., Ruzycki, T. S., Senseman, G. M. (2005). Validation of a 3-D enhancement of the Universal Soil Loss Equation for prediction of soil erosion and sediment deposition. Catena, 64(2-3), 281-296. https://doi.org/10.1016/j.catena.2005.08.010

Warren, S. D., Ruzycki, T. S., Vaughan, R., Nissen, P. E. (2019). Validation of the Unit Stream Power Erosion and Deposition (USPED) Model at Yakima Training Center, Washington. Northwest Science, 92(Spe. 5), 338-345. https://doi.org/10.3955/046.092.0504

Weill, M. A. M., Rocha, J. V., Lamparelli, R. A. (2001). Potencial natural de erosão e riscos de degradação na bacia hidrográfica do Rio Mogi Guaçu. VII Simpósio Nacional de Controle de Erosão. Goiânia. CD-ROM.

Wischmeier, W. H., Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Washington: USDA. Available at: https://naldc.nal.usda.gov/download/CAT79706928/PDF. Accessed on: Jan 17, 2022.

Downloads

Published

2022-03-31

Issue

Section

Articles

How to Cite

Oliveira, A. H., Klinke Neto, G., & Pereira, S. Y. (2022). Estimation of erosion and deposition by Unit Stream Power Erosion and Deposition in a sub-basin on the Mogi Guaçu River’s margins, municipality of Mogi Guaçu, SP, Brazil. Geologia USP. Série Científica, 22(1), 77-92. https://doi.org/10.11606/issn.2316-9095.v22-172761

Funding data