Hydrochemistry of surface and groundwater in Carnaúba dos Dantas/RN

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v22-188974

Keywords:

Hydrochemical diagrams, Water-rock interaction, Fissural aquifer, Anthropogenic contamination, Water salinization

Abstract

Surface and groundwater resources are an important source of water in the Brazilian semiarid region, where irregular rainfall and water-rock interaction produce saline waters, which is generally seen in Carnaúba dos Dantas/RN. To close hydrochemical data gaps in the municipality, 4 surface water and 7 groundwater samples were collected at the beginning of the rainy season in February 2020. Electrical conductivity, pH, temperature, and TDS were measured in situ. The results of chemical analyses were interpreted from the construction of hydrochemical diagrams, Spearman correlation matrix, and mathematical equations. The Revelle Index indicates greater influence of salinization in samples collected in terrains dominated by mica schists and a lesser influence where quartzites and surface waters predominate. Piper’s diagram shows waters that vary between Ca2+-Mg2+-HCO3-, Na+-Cl- e Ca2+-Mg2+-Cl-, while the Stiff diagram shows clusters where tube well samples (LAJ1 and XIQ1) relate to surface water and the influence of NE-SW and E-W deformations on groundwater recharge. The contribution of silicate dissolution is shown in the mixing diagram, while the Gibbs diagram shows the potential anthropogenic input in groundwater samples RAJ1 and CDD1 by the influence of chlorides, a contribution which is corroborated by the positive correlations of chlorides with SO42-, NH3 e NO2-. The Chloro-Alkaline Index indicates the relationship of groundwater samples in terrains dominated by mica schists with ion exchange, while reverse ion exchange is predominant in surface waters.

Downloads

Download data is not yet available.

References

Akinluyi, F. O., Olorunfemi, M. O., Bayowa, O. G. (2018). Investigation of the influence of lineaments, lineament intersections and geology on groundwater yield in the basement complex terrain of Ondo State, Southwestern Nigeria. Applied Water Science, 8, 49. https://doi.org/10.1007/s13201-018-0686-x

American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). (2012). Standard Methods for the Examination of Water and Wastewater. 22. ed. Denver: American Water Works Association.

Angelim, L. A. A., Medeiros, V. C., Nesi, J. R. (2006). Programa Geologia do Brasil. Projeto Geologia e Recursos Minerais do Estado do Rio Grande do Norte. Mapa geológico do Estado do Rio Grande do Norte. Escala: 1:500.000. Recife: CPRM/FAPERN.

Beurlen, H., Thomas, R., Silva, M. R., Müller, A., Rhede, D., Soares, D. R. (2014). Perspectives for Li-and Ta-mineralization in the Borborema Pegmatite Province, NE-Brazil: a review. Journal of South American Earth Sciences, 56, 110-127. https://doi.org/10.1016/j.jsames.2014.08.007

Bezerra, F. H. R., Amaral, R. F. D., Silva F. O. D., Sousa, M. O. L., Legrand, J. M., Sá, J. M., Maia, H. N., Fonseca, V. P., Vieira, M. M., Souza, L. C. D. (2009). Nota explicativa da folha Jardim do Seridó, SB. 24-Z-B-V. CPRM. Disponível em: http://rigeo.cprm.gov.br/jspui/handle/doc/18296. Acesso em: 3 nov. 2021.

Bouderbala, A., Gharbi, B. Y. (2017). Hydrogeochemical characterization and groundwater quality assessment in the intensive agricultural zone of the Upper Cheliff plain, Algeria. Environmental Earth Sciences, 76, 744. https://doi.org/10.1007/s12665-017-7067-x

Britto Costa, A. M., Melo, J. G., Silva, F. M. (2006). Aspectos da salinização das águas do aqüífero cristalino no estado do Rio Grande do Norte, Nordeste do Brasil. Águas Subterrâneas, 20(1), 67-82. https://doi.org/10.14295/ras.v20i1.9714

Cao, G., Scanlon, B. R., Han, D., Zheng, C. (2016). Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain. Journal of Hydrology, 537, 260-270. https://doi.org/10.1016/j.jhydrol.2016.03.049

Cavalcanti Neto, M. T. (2009). A faixa cuprífera do Rio Grande do Norte e Paraíba e as relações de contato entre as Formações Equador e Seridó. Holos, 3, 105-118. https://doi.org/10.15628/holos.2008.210

Chen, T. F., Wang, X. S., Li, H., Jiao, J. J., Wan, L. (2013). Redistribution of groundwater evapotranspiration and water table around a well field in an unconfined aquifer: a simplified analytical model. Journal of Hydrology, 495, 162-174. https://doi.org/10.1016/j.jhydrol.2013.04.042

Companhia de Pesquisa de Recursos Minerais (CPRM). (2005). Diagnóstico do município de Carnaúba dos Dantas/RN. Brasil: CPRM. Disponível em: http://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/16947/rel_carnauba_dantas.pdf?sequence=1. Acesso em: 30 out. 2018.

Costa, A. P. (2015). Petrologia e geocronologia U-Pb do plúton granítico Serra da Rajada, porção central do domínio Rio Piranhas-Seridó, província Borborema, NE do Brasil. Tese (Doutorado). Natal: Universidade Federal do Rio Grande do Norte. Disponível em: https://rigeo.cprm.gov.br/handle/doc/14840. Acesso em: 23 nov. 2021.

Custodio, E., Llamas, M. R. (1976). Hidrología subterránea. Barcelona: Omega. v. 2.

Damasceno, M. B., Souza, R. F., Diniz Filho, J. B., Castro, V. L. L. (2021). Caracterização hidroquímica de águas superficiais dos rios Guajiru e do Mudo, Bacia Hidrográfica do rio Doce, Nordeste do Brasil. Pesquisas em Geociências, 48(1), e102566. https://doi.org/10.22456/1807-9806.102566

Degens, B. P., Muirden, P. D., Kelly, B., Allen, M. (2012). Acidification of salinised waterways by saline groundwater discharge in south-western Australia. Journal of Hydrology, 470-471, 111-123. https://doi.org/10.1016/j.jhydrol.2012.08.035

De León-Gómez, H., Campo-Delgado, M. A., Esteller-Alberich, M. V., Velasco-Tapia, F., Alva-Niño, E., Cruz-López, A. (2020). Assessment of nitrate and heavy metal contamination of groundwater using the heavy metal pollution index: case study of Linares, Mexico. Environmental Earth Sciences, 79, 433. https://doi.org/10.1007/s12665-020-09164-3

Empresa de Pesquisa Agropecuária do Rio Grande do Norte S/A (EMPARN). (2019). Monitoramento pluviométrico. Disponível em: www.emparn.rn.gov.br. Acesso em: 20 nov. 2019.

Fernandes, A. L., Cruz, J. V., Figueira, C., Prada, S. (2020). Groundwater chemistry in Madeira Island (Portugal): main processes and contribution to the hydrogeological conceptual model. Environmental Earth Sciences, 79, 413. https://doi.org/10.1007/s12665-020-09151-8

Fielding, C. R., LaGarry, H. E., LaGarry, L. A., Bailey, B. E., Swinehart, J. B. (2007). Sedimentology of the Whiteclay Gravel Beds (Ogallala Group) in northwestern Nebraska, USA: structurally controlled drainage promoted by early Miocene uplift of the Black Hills Dome. Sedimentary Geology, 202(1-2), 58-71. https://doi.org/10.1016/j.sedgeo.2006.12.009

Fitzpatrick, R., Merry, R., Cox, J. (2000). What are saline soils? What happens when they are drained? Natural Resource Management, 26-29.

Gaikwad, S., Gaikwad, S., Meshram, D., Waghm V., Kandekar, A., Kadam, A. (2020). Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: implication to groundwater quality. Environment, Development and Sustainability, 22(3), 2591-2624. https://doi.org/10.1007/s10668-019-00312-9

Gaillardet, J., Dupré, B., Louvat, P., Allegre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4), 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5

Gao, Z., Wang, Z., Wang, S., Wu, X., An, Y., Wang, W., Liu, J. (2019). Factors that influence the chemical composition and evolution of shallow groundwater in an arid region: a case study from the middle reaches of the Heihe River, China. Environmental Earth Sciences, 78, 390. https://doi.org/10.1007/s12665-019-8391-0

Gelabert, B., Fornós, J. J., Pardo, J. E., Rosselló, V. M., Segura, F. (2005). Structurally controlled drainage basin development in the south of Menorca (Western Mediterranean, Spain). Geomorphology, 65(1-2), 139-155. https://doi.org/10.1016/j.geomorph.2004.08.005

Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088-1090. http://doi.org/10.1126/science.170.3962.1088

Gopinath, T. G., Morais, J. I., Vivas, M. R. (2002). Estudo das fraturas e suas potencialidades hídrogeologicas nas rochas cristalinas da região quartzítica do Seridó/Sabugí paraibano (Várzea/PB). XII Congresso Brasileiro de Águas Subterrâneas. Disponível em: https://aguassubterraneas.abas.org/asubterraneas/article/view/22553. Acesso em: 10 maio 2021.

Heydarirad, L., Mosaferi, M., Pourakbar, M., Esmailzadeh, N., Maleki, S. (2019). Groundwater salinity and quality assessment using multivariate statistical and hydrogeochemical analysis along the Urmia Lake coastal in Azarshahr plain, North West of Iran. Environmental Earth Sciences, 78, 670. https://doi.org/10.1007/s12665-019-8655-8

Hoshmand, R. (1997). Statistical methods for environmental and agricultural sciences. 2. ed. Nova York: CRC Press.

Hounslow, A. W. (2018). Water quality data: analysis and interpretations. Nova York: CRC Press.

Huo, S., Jin, M., Liang, X., Li, X., Hao, H. (2020). Estimating impacts of water-table depth on groundwater evaporation and recharge using lysimeter measurement data and bromide tracer. Hydrogeology Journal, 28(3), 955-971. https://doi.org/10.1007/s10040-019-02098-6

Instituto Brasileiro de Geografia e Estatística (IBGE). (2017). Cidades. Brasília: IBGE. Disponível em: https://cidades. ibge.gov.br/brasil/rn/carnauba-dos-dantas/panorama. Acesso em: 30 maio 2021.

Karunanidhi, D., Aravinthasamy, P., Deepali, M., Subramani, T., Sunkari, E. D. (2020). Appraisal of subsurface hydrogeochemical processes in a geologically heterogeneous semi-arid region of south India based on mass transfer and fuzzy comprehensive modeling. Environmental Geochemistry and Health, 43(2), 1009-1028. https://doi.org/10.1007/s10653-020-00676-2

Leyden, E., Cook, F., Hamilton, B., Zammit, B., Barnett, L., Lush, A. M., Stone, D., Mosley, L. (2016). Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia. Journal of Contaminant Hydrology, 189, 44-57. https://doi.org/10.1016/j.jconhyd.2016.03.008

Lisboa, N. A. (1996). Fácies, estratificações hidrogeoquímicas e seus controladores geológicos em unidades hidrogeológicas do sistema aquífero Serra Geral, na bacia do Paraná, Rio Grande do Sul. Tese (Doutorado). Porto Alegre: Universidade Federal do Rio Grande do Sul - UFRS

Lopes, J. R. A., Bezerra, J. M., Almeida, N. M. D. P., Gonçalves, G. L., Mendonça, S. D. S. C. (2020). Águas subterrâneas como alternativa de subsistência em uma comunidade rural no semiárido brasileiro. Águas Subterrâneas, 34(2), 1-6. https://doi.org/10.14295/ras.v34i2.29889

Manca, F., Capelli, G., Tuccimei, P. (2015). Sea salt aerosol groundwater salinization in the Litorale Romano natural reserve (Rome, Central Italy). Environmental Earth Sciences, 73(8), 4179-4190. https://doi.org/10.1007/s12665-014-3704-9

Marandi, A., Shand, P. (2018). Groundwater chemistry and the Gibbs Diagram. Applied Geochemistry, 97, 209-212. https://doi.org/10.1016/j.apgeochem.2018.07.009

Medeiros, V. C. D., Medeiros, W. E. D., Sá, E. F. J. D. (2011). Utilização de imagens aerogamaespectrométricas, Landsat 7 ETM+ e aeromagnéticas no estudo do arcabouço crustal da porção central do domínio da zona transversal, província Borborema, NE do Brasil. Revista Brasileira de Geofísica, 29(1), 83-97. https://doi.org/10.1590/S0102-261X2011000100006

Mokoena, P., Manyama, K., van Bever Donker, J., Kanyerere, T. (2021). Investigation of groundwater salinity using geophysical and geochemical approaches: heuningnes catchment coastal aquifer. Western Cape Province, South Africa. Environmental Earth Sciences, 80, 191. https://doi.org/10.1007/s12665-021-09507-8

Moon, S., Huh, Y., Zaitsev, A. (2009). Hydrochemistry of the Amur River: weathering in a northern temperate basin. Aquatic Geochemistry, 15, 497. https://doi.org/10.1007/s10498-009-9063-6

Mosley, L. M., Zammit, B., Leyden, E., Heneker, T. M., Hipsey, M. R., Skinner, D., Aldridg, K. T. (2012). The impact of extreme low flows on the water quality of the Lower Murray River and Lakes (South Australia). Water Resources Management, 26, 3923-3946. https://doi.org/10.1007/s11269-012-0113-2

Mutzenberg, D. D. S., Tavares, B., Corrêa, A. D. B. (2005). A influência dos controles estruturais sobre a morfogênese e a sedimentação neógena na bacia do rio Carnaúba (RN). VI Simpósio Nacional de Geomorfologia. Disponível em: http://lsie.unb.br/ugb/app/webroot/sinageo/6/8/301.pdf. Acesso em: 20 jan. 2021.

Nogueira, G., Stigter, T. Y., Zhou, Y., Mussa, F., Juizo, D. (2019). Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique. Science of The Total Environment, 661, 723-736. https://doi.org/10.1016/j.scitotenv.2018.12.343

Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928. https://doi.org/10.1029/TR025i006p00914

Qaisar, F. U. R., Zhang, F., Pant, R. R., Wang, G., Khan, S., Zeng, C. (2018). Spatial variation, source identification, and quality assessment of surface water geochemical composition in the Indus River Basin, Pakistan. Environmental Science and Pollution Research, 25, 12749-12763. https://doi.org/10.1007/s11356-018-1519-z

Revelle, R. (1941). Criteria for recognition of the sea water in ground-waters. Eos, Transactions American Geophysical Union, 22(3), 593-597. https://doi.org/10.1029/TR022i003p00593

Ryuh, Y. G., Do, H. K., Kim, K. H., Yun, S. T. (2017). Vertical hydrochemical stratification of groundwater in a monitoring well: Implications for groundwater monitoring on CO2 leakage in geologic storage sites. Energy Procedia, 114, 3863-3869. https:/doi.org/10.1016/j.egypro.2017.03.1518

Santos, A. C. (1997). Noções de hidroquímica. In: F. A. C. Feitosa, J. Manoel Filho. Hidrogeologia: conceitos e aplicações. Brasil: CPRM-LABHID, p. 325-328.

Selvakumar, S., Chandrasekar, N., Kumar, G. (2017). Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resources and Industry, 17, 26-33. https://doi.org/10.1016/j.wri.2017.02.002

Shaikh, H., Gaikwad, H., Kadam, A., Umrikar, B. (2020). Hydrogeochemical characterization of groundwater from semiarid region of western India for drinking and agricultural purposes with special reference to water quality index and potential health risks assessment. Applied Water Science, 10, 204. https://doi.org/10.1007/s13201-020-01287-z

Shen, Y., Chen, Y. (2010). Global perspective on hydrology, water balance, and water resources management in arid basins. Hydrological Processes, 24(2), 129-135. https://doi.org/10.1002/hyp.7428

Stiff, H. A. (1951). The interpretation of chemical water analysis by means of patterns. Journal of Petroleum Technology, 3(10), 15. https://doi.org/10.2118/951376-G

Sunkari, E. D., Abu, M., Zango, M., S. (2021). Geochemical evolution and tracing of groundwater salinization using different ionic ratios, multivariate statistical and geochemical modeling approaches in a typical semi-arid basin. Journal of Contaminant Hydrology, 236, 103742. https://doi.org/10.1016/j.jconhyd.2020.103742

Sunkari, E. D., Abu, M., Zango, M. S., Wani, A. M. L. (2020). Hydrogeochemical characterization and assessment of groundwater quality in the Kwahu-Bombouaka Group of the Voltaian Supergroup, Ghana. Journal of African Earth Sciences, 169, 103899. https://doi.org/10.1016/j.jafrearsci.2020.103899

Teramoto, E. H., Gonçalves, R. D., Stradioto, M. R., Engelbrecht, B. Z., Chang, H. K. (2019). Modelagem da interação água/rocha nos aquíferos fraturados da região de Itabuna/BA. Anuário do Instituto de Geociências, 42(1), 735-741. https://doi.org/10.11137/2019_1_735_741

Valcarcel Rojas, L., Santos Junior, J. A., Corcho-Alvarado, J. A., Santos Amaral, R., Röllin, S., Ortueta Milan, M., Zahily Herrero, F., Francis, K., Cavalcanti, M., Santos, J. M. (2020). Quality and management status of the drinking water supplies in a semiarid region of Northeastern Brazil. Journal of Environmental Science and Health, 55(10), 1247-1256. https://doi.org/10.1080/10934529.2020.1782668

Xiao, J., Jin, Z. D., Wang, J., Zhang, F. (2015). Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau. Quaternary International, 380-381, 237-246. https://doi.org/10.1016/j.quaint.2015.01.021

Zhang, Y., Wu, J., Xu, B. (2018). Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environmental Earth Sciences, 77, 273. https://doi.org/10.1007/s12665-018-7456-9

Published

2022-03-31

Issue

Section

Articles

How to Cite

Carvalho, A. K. N. de, & Souza, R. F. de. (2022). Hydrochemistry of surface and groundwater in Carnaúba dos Dantas/RN. Geologia USP. Série Científica, 22(1), 55-75. https://doi.org/10.11606/issn.2316-9095.v22-188974