Hemodynamic responses during inspiratory muscle exercise in healthy young adults

Authors

DOI:

https://doi.org/10.1590/1809-2950/e2302033023pt

Keywords:

| Breathing Exercises, Hemodynamics, Young Adult

Abstract

The literature on hemodynamic responses during inspiratory muscle exercise (IME) lacks a consensus. To evaluate and compare hemodynamic responses during an IME session with and without resistive load, 15 sedentary men were subjected to two randomized IME sessions: one with 40% of maximal inspiratory pressure (IME 40%) and another without a resistive load (Sham), both of which were performed for two minutes over eight sets with oneminute intervals. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP), total peripheral resistance (TPR), stroke volume (SV), cardiac output (CO), and heart rate (HR) were measured by infrared digital photoplethysmography during five basal minutes and during the IME sessions. One-way ANOVA analysis of variance and the Student’s t test for paired data were used to analyze hemodynamic response and delta values between sessions, respectively. Effect size was evaluated by Cohen’s D. A 5% significance level was adopted. SBP responses (sham: ∆−1±2 vs. 40%: ∆−4±2mmHg, p=0.27), DBP (sham: ∆2±1 vs. 40%: ∆1±2mmHg, p=0.60) and MBP (sham: ∆2±1 vs. 40%: ∆0±2mmHg, p=0.28) were similar between sessions. HR increases were higher in the 40% IME session than in the sham session (sham: ∆9±2 vs. 40%: ∆3±2bpm, p=0.001). SV only decreased during the sham session but responses were similar between sessions (sham: ∆−2±2 vs. IME 40%: ∆−6±2ml, p=0.13). Both sessions did not change SBP, DBP, MBP, CO, and TPR, but we observed a greater increase in HR in the IME 40% session. Only the Sham session decreased SV.

Downloads

Download data is not yet available.

References

Caruso FCR, Simões RP, Reis MS, Guizilini S, Alves VLS, et al. Highintensity inspiratory protocol increases heart rate variability in myocardial revascularization patients. Braz J Cardiovasc Surg.2016;31(1):38-44. doi: 10.5935/1678-9741.20160007.

Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2(1):743-77. doi: 10.1002/cphy. c100045.

Plentz RDM, Silva VG, Dipp T, Macagnan FE, Lemos LC, et al. Treinamento (Entrenamiento) muscular inspiratório para o controle (el control) autonômico de indivíduos saudáveis (sanos). Salud(i)ciencia. 2014;21:28-34.

McConnell AK, Griffiths LA. Acute cardiorespiratory responses to inspiratory pressure threshold loading. Med Sci Sports Exerc. 2010;42(9):1696-703. doi: 10.1249/mss.0b013e3181d435cf.

Rodrigues F, Araujo AA, Mostarda CT, Ferreira J, Barros Silva MC, et al. Autonomic changes in young smokers: acute effects of inspiratory exercise. Clin Auton Res. 2013;23(4):201-7. doi: 10.1007/s10286-013-0202-1.

Florindo AA, Latorre MRDO. Validation and reliability of the Baecke questionnaire for the evaluation of habitual physical activity in adult men. Rev Bras Med Esporte. 2003;9(3):129-35. doi: 10.1590/S1517-86922003000300002. Moreira et al. Exercício inspiratório nas variáveis hemodinâmicas 9

World Health Organization. Obesity: preventing and managing the global epidemic: report of a WHO consultation [Internet]. Geneva: WHO; 2000 [cited 2023 Jun 19]. Available from: https://apps.who.int/iris/handle/10665/42330

Barroso WKS, Rodriguez CIS, Bortolotto LA, Mota-Gomes MA, Brandão AA, et al. Diretrizes Brasileiras de Hipertensão Arterial – 2020. Arq Bras Cardiol. 2021;116(3):516-658. doi: 10.36660/abc.20201238.

Malachias MVB, Souza WKSB, Plavnik FL, Rodrigues CIS, Brandão AA, et al. 7a Diretriz Brasileira de Hipertensão Arterial. Arq Bras Cardiol. 2016;107(3 Suppl 3):1-83.

Freitas IMG, Almeida LB, Pereira NP, Mira PAC, de Paula RB, et al. Baroreflex gain and vasomotor sympathetic modulation in resistant hypertension. Clin Auton Res. 2017;27(3):175-84. doi: 10.1007/s10286-017-0417-7.

American Thoracic Society; European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518-624. doi: 10.1164/rccm.166.4.518.

Black LF, Hyatt RE. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis. 1969;99(5):696-702.

Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests. II. maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999;32(6):719-27. doi: 10.1590/S0100-879X1999000600007.

Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Mahwah: Lawrence Earlbaum; 1988.

Almeida LB, Seixas MB, Trevizan PF, Camaroti Laterza M, Silva LP, et al. Efeitos do treinamento muscular inspiratório no controle autonômico: revisão sistemática. Fisioter Pesqui. 2018;25(3):345-51. doi: 10.1590/1809-2950/17015425032018.

Fisher JP. Autonomic control of the heart during exercise in humans: role of skeletal muscle afferents. Exp Physiol. 2014;99(2):300-5. doi: 10.1113/expphysiol.2013.074377.

Brum PC, Forjaz CLM, Tinucci T, Negrão CE. Adaptações agudas e crônicas do exercício físico no sistema cardiovascular. Rev Paul Educ Fis. 2004;18(Spe):21-31.

Cal Abad CC, Silva RS, Mostarda C, Silva ICM, Irigoyen MC. Efeito do exercício aeróbico e resistido no controle autonômico e nas variáveis hemodinâmicas de jovens saudáveis. Rev Bras Educ Fis Esp. 2010;24(4):535-44. doi: 10.1590/S1807-55092010000400010.

Hart EC, Joyner MJ, Wallin BG, Charkoudian N. Sex, ageing and resting blood pressure: gaining insights from the integrated balance of neural and haemodynamic factors. J Physiol. 2012;590(9):2069-79. doi: 10.1113/jphysiol.2011.224642.

Crystal GJ, Salem MR. The Bainbridge and the “reverse” Bainbridge reflexes: history, physiology, and clinical relevance. Anesth Analg. 2012;114(3):520-32. doi: 10.1213/ANE.0b013e3182312e21.

James JEA. The effects of changes of extramural, ‘intrathoracic’, pressure on aortic arch baroreceptors. J Physiol. 1971;214(1):89-103. doi: 10.1113/jphysiol.1971.sp009420.

Su J, Manisty C, Simonsen U, Howard LS, Parker KH, et al. Pulmonary artery wave propagation and reservoir function in conscious man: impact of pulmonary vascular disease, respiration and dynamic stress tests. J Physiol. 2017;595(20):6463-76. doi: 10.1113/JP274385.

Claessen G, Claus P, Delcroix M, Bogaert J, La Gerche A, et al. Interaction between respiration and right versus left ventricular volumes at rest and during exercise: a real-time cardiac magnetic resonance study. Am J Physiol Heart Circ Physiol. 2014;306(6):816-24. doi: 10.1152/ajpheart.00752.2013.

Plentz RDM, Sbruzzi G, Ribeiro RA, Ferreira JB, Dal Lago P. Inspiratory muscle training in patients with heart failure: metaanalysis of randomized trials. Arq Bras Cardiol. 2012;99(2):762-71. doi: 10.1590/s0066-782x2012001100011.

Gosselink R, De Vos J, van den Heuvel SP, Segers J, Decramer M, et al. Impact of inspiratory muscle training in patients with

COPD: what is the evidence? Eur Respir J. 2011;37(2):416-25. doi: 10.1183/09031936.00031810.

Vranish JR, Bailey EF. Daily respiratory training with large intrathoracic pressures, but not large lung volumes, lowers blood pressure in normotensive adults. Respir Physiol Neurobiol. 2015;216:63-9. doi: 10.1016/j.resp.2015.06.002.

Ferreira JB, Plentz RDM, Stein C, Casali KR, Arena R, et al. Inspiratory muscle training reduces blood pressure and sympathetic activity in hypertensive patients: a randomized controlled trial. Int J Cardiol. 2013;166(1):61-7. doi: 10.1016/j.ijcard.2011.09.069.

Helal L, Ferrari F. Treinamento muscular inspiratório em diferentes intensidades na insuficiência cardíaca: há diferenças nas alterações hemodinâmicas centrais? Arq Bras Cardiol. 2020;114(4):664-5. doi: 10.36660/abc.20200162.

Published

2023-12-07

Issue

Section

Original Research

How to Cite

Hemodynamic responses during inspiratory muscle exercise in healthy young adults. (2023). Fisioterapia E Pesquisa, 30(3), e2302033023pt. https://doi.org/10.1590/1809-2950/e2302033023pt