Ecuación de predicción del consumo máximo de oxígeno para el shuttle test modificado en adolescentes sanos

Autores/as

DOI:

https://doi.org/10.1590/1809-2950/e22012423en

Palabras clave:

Consumo de Oxígeno, Shuttle Test Modificado, Adolescente

Resumen

Dada una laguna en la literatura con respecto a la
ecuación para predecir el consumo máximo de oxígeno (VO2
) en
adolescentes de ambos sexos, el objetivo de este estudio es proponer
una ecuación para predecir el VO2
máximo en adolescentes sanos
usando el shuttle test modificado (MST). Se trata de un estudio
transversal, realizado con 84 adolescentes sanos con edades entre
12 y 18 años, de ambos sexos. El MST es una prueba de campo dictada
por una señal sonora que indica el aumento de velocidad cada
minuto. Se realizaron dos MST con al menos 30 minutos de descanso
entre ellos. Para el análisis se consideró la prueba con mayor distancia
recorrida. El monitoreo del VO2
fue realizado directamente por
espirometría de circuito abierto. La edad media fue de 14,67±1,82 años;
y la distancia recorrida, de 864,86±263,48m. Las variables incluidas
en la ecuación de predicción fueron la distancia recorrida y el sexo,
que explicaron el 53% de la variabilidad del VO2
máximo durante la
realización del MST. La ecuación de referencia para el VO2
máximo
predicho con el MST fue VO2
máximo previsto=18,274+(0,18×Distancia
recorrida, en metros)+(7,733×Sexo); R2=0,53 y p<0,0001 (sexo:
0 para chicas, 1 para chicos). La ecuación MST propuesta para
predecir el VO2 máximo en adolescentes sanos de ambos sexos
puede utilizarse como una referencia para evaluar la capacidad
de ejercicio en adolescentes sanos y para investigar la función
cardiopulmonar en adolescentes con capacidad funcional reducida

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Nici L, Donner C, Wouters E, Zuwallack R, Ambrosino N, Bourbeau J, et al. American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation. Am J Respir Crit Care Med. 2006;173(12):1390-413. doi: 10.1164/rccm.200508-1211ST.

Palange P, Ward SA, Carlsen KH, Casaburi R, Gallagher CG, Gosselink R, et al. Recommendations on the use of exercise testing in clinical practice. Eur Respir J. 2007;29(1):185-209. doi: 10.1183/09031936.00046906.

American Thoracic Society; American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.

Bradley J, Howard J, Wallace E, Elborn S. Reliability, repeatability, and sensitivity of the modified shuttle test in adult cystic fibrosis. Chest. 2000;117(6):1666-71. doi: 10.1378/chest.117.6.1666.

Verschuren O, Bosma L, Takken T. Reliability of a shuttle run test for children with cerebral palsy who are classified at Gross Motor Function Classification System level III. Dev Med Child Neurol. 2011;53(5):470-2. doi: 10.1111/j.1469-8749.2010.03893.x.

Tsopanoglou SP, Davidson J, Goulart AL, Barros MCM, Santos AMN. Functional capacity during exercise in very-low-birthweight premature children. Pediatr Pulmonol. 2014;49(1):91-8. doi: 10.1002/ppul.22754.

Sperandio EF, Vidotto MC, Alexandre AS, Yi LC, Gotfryd AO, Dourado VZ. Functional exercise capacity, lung function and chest wall deformity in patients with adolescent idiopathic scoliosis. Fisioter Mov. 2015;28(3):563-72. doi: 10.1590/0103-5150.028.003.ao15.

Vardhan V, Palekar T, Dhuke P, Baxi G. Normative values of incremental shuttle walk test in children and adolescents: an observational study. Int J Pharma Bio Sci. 2017;8(4):478-83. doi: 10.22376/ijpbs.2017.8.4.b478-483.

Lanza FC, Zagatto EP, Silva JC, Selman JPR, Imperatori TBG, Zanatta DJM, et al. Reference equation for the incremental shuttle walk test in children and adolescents. J Pediatr. 2015;167(5):1057-61. doi: 10.1016/j.jpeds.2015.07.068.

Vendrusculo FM, Heinzmann-Filho JP, Campos NE, Gheller MF, Almeida IS, Donadio MVF. Prediction of peak oxygen uptake using the modified shuttle test in children and adolescents with cystic fibrosis. Pediatr Pulmonol. 2019;54(4):386-92. doi: 10.1002/ppul.24237.

Lanza FC, Reimberg MM, Ritti-Dias R, Scalco RS, Wandalsen GF, Sole D, et al. Validation of the modified shuttle test to predict peak oxygen uptake in youth asthma patients under regular treatment. Front Physiol. 2018;9:919. doi: 10.3389/fphys.2018.00919.

Assumpção PK, Heinzmann-Filho JP, Isaia HA, Holzschuh F, Dalcul T, Donadio MVF. Exercise capacity assessment by the Modified Shuttle Walk Test and its correlation with biochemical parameters in obese children and adolescents. Indian J Pediatr. 2018;85(12):1079-85. doi: 10.1007/s12098-018-2649-5.

Gomes AL, Mendonça VA, Silva TS, Pires CKV, Lima LP, Gomes AM, et al. Correction: cardiorespiratory and metabolic responses and reference equation validation to predict peak oxygen uptake for the incremental shuttle waking test in adolescent boys. PLoS One. 2018;13(12):e0208826. doi: 10.1371/journal.pone.0208826.

Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. J Chronic Dis. 1972;25(6-7):329-43. doi: 10.1016/0021-9681(72)90027-6.

Bradley J, Howard J, Wallace E, Elborn S. Validity of a modified shuttle test in adult cystic fibrosis. Thorax. 1999;54(5):437-9. doi: 10.1136/thx.54.5.437.

Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153-6. doi: 10.1016/S0735-1097(00)01054-8.

Lima LP, Leite HR, Matos MA, Neves CDC, Lage VKS, Silva GP, et al. Cardiorespiratory fitness assessment and prediction of peak oxygen consumption by Incremental Shuttle Walking Test in healthy women. PLoS One. 2019;14(2):e0211327. doi: 10.1371/journal.pone.0211327.

Dourado VZ, Guerra RLF. Reliability and validity of heart rate variability threshold assessment during an incremental shuttlewalk test in middle-aged and older adults. Braz J Med Biol Res. 2013;46(2):194-9. doi: 10.1590/1414-431X20122376.

Dourado VZ, Banov MC, Marino MC, Souza VL, Antunes LCO, McBurnie MA. A simple approach to assess VT during a field walk test. Int J Sports Med. 2010;31(10):698-703. doi: 10.1055/s-0030-1255110.

Rogol AD. Sex steroids, growth hormone, leptin and the pubertal growth spurt. Endocr Dev. 2010;17:77-85. doi: 10.1159/000262530.

Anderson SE, Must A. Interpreting the continued decline in the average age at menarche: results from two nationally representative surveys of U.S. girls studied 10 years apart. J Pediatr. 2005;147(6):753-60. doi: 10.1016/j.jpeds.2005.07.016.

Buttke DE, Sircar K, Martin C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003–2008). Environ Health Perspect. 2012;120(11):1613-8. doi: 10.1289/ehp.1104748.

Slyper AH. The pubertal timing controversy in the USA, and a review of possible causative factors for the advance in timing of onset of puberty. Clin Endocrinol (Oxf). 2006;65(1):1-8. doi: 10.1111/j.1365-2265.2006.02539.x.

Aksglaede L, Olsen LW, Sørensen TIA, Juul A. Forty years trends in timing of pubertal growth spurt in 157,000 Danish school children. PLoS One. 2008;3(7):e2728. doi: 10.1371/journal.pone.0002728.

Kelly A, Winer KK, Kalkwarf H, Oberfield SE, Lappe J, Gilsanz V, et al. Age-based reference ranges for annual height velocity in US children. J Clin Endocrinol Metab. 2014;99(6):2104-12. doi: 10.1210/jc.2013-4455.

Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060-5. doi: 10.1210/jcem.75.4.1400871.

Eisenmann JC, Malina RM. Age- and sex-associated variation in neuromuscular capacities of adolescent distance runners. J Sports Sci. 2003;21(7):551-7. doi: 10.1080/0264041031000101845.

Pate RR, Wang CY, Dowda M, Farrell SW, O’Neill JR. Cardiorespiratory fitness levels among US youth 12 to 19 years of age: findings from the 1999-2002 National Health and Nutrition Examination Survey. Arch Pediatr Adolesc Med. 2006;160(10):1005-12. doi: 10.1001/archpedi.160.10.1005.

Castro-Piñeiro J, Ortega FB, Keating XD, GonzálezMontesinos JL, Sjöstrom M, Ruiz JR. Percentile values for aerobic performance running/walking field tests in children aged 6 to 17 years; influence of weight status. Nutr Hosp. 2011;26(3):572-8. doi: 10.3305/nh.2011.26.3.4597.

Olds T, Tomkinson G, Léger L, Cazorla G. Worldwide variation in the performance of children and adolescents: an analysis of 109 studies of the 20-m shuttle run test in 37 countries. J Sports Sci. 2006;24(10):1025-38. doi: 10.1080/02640410500432193.

Descargas

Publicado

2023-06-06

Número

Sección

Pesquisa Original

Cómo citar

Ecuación de predicción del consumo máximo de oxígeno para el shuttle test modificado en adolescentes sanos. (2023). Fisioterapia E Pesquisa, 30(1), e22012423pt. https://doi.org/10.1590/1809-2950/e22012423en