Efectos opioidergicos de la estimulación nerviosa eléctrica transcutánea sobre el dolor y el edema inflamatorio en un modelo de rata con esguince de tobillo

Autores/as

  • Lívia Maria Silvestre Elisei Universidade Federal de Alfenas
  • Julia Risso Parisi Universidade Federal de Alfenas; PPGB
  • Josie Resende Torres Silva Universidade Federal de Alfenas; PPGB
  • Marcelo Lourenço Silva Universidade Federal de Alfenas (Unifal) – Alfenas (MG), Brasil

DOI:

https://doi.org/10.1590/1809-2950/16836724032017

Palabras clave:

Estimulación Eléctrica Transcutánea del Nervio, Traumatismos del Tobillo, Dolor, Inflamación

Resumen

Aunque la estimulación nerviosa eléctrica transcutánea (TENS) ha sido propuesta para modular el dolor y los mecanismos subyacentes a la analgesia sigue siendo mal entendida, la evidencia del efecto antiinflamatorio es limitada. El propósito de este estudio fue examinar los mecanismos opioidérgicos de los efectos de la TENS en dos frecuencias diferentes sobre el dolor y el edema inflamatorio en un modelo de ratas con esguince de tobillo. Se utilizó el umbral a la estimulación mecánica para examinar los cambios producidos por inyección intraperitoneal del antagonista opiáceo no selectivo naloxona sobre el efecto antihiperalgésico inducido por un período de 20 minutos de 2Hz o 100Hz TENS en el modelo con esguince de tobillo, producido por sobrecarga manual de los ligamentos laterales. El esguince de tobillo indujo una reducción de larga duración en latencia de la pata retraída (PWL) después de 30 minutos por hasta 24 horas en simulación de la TENS (SH-TENS) para las ratas tratadas. El PWL reducido después de la inducción del esguince de tobillo fue restaurado parcialmente en 0,1,2,3 y 6, pero no por 24 horas, después de la terminación de 2 Hz-TENS (LF-TENS). La reducción en PWL fue menor que LF-TENS en 100Hz (HF-TENS) y tanto los efectos de LF como de HF fueron completamente bloqueados en ratas tratadas con naloxona. Las ratas tratadas con LF- y HF-TENS no alcanzaron la elevación del edema y presentaron una reducción progresiva del edema durante más de 24 horas en comparación con el grupo SH-TENS. Ambos efectos fueron reducidos por la naloxona. Efectos antihiperalgésicos y antiedematosos TENS-inducidos observados en el modelo con esguince de tobillo fueron mediados por el sistema opioide endógeno.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Chesterton LS, Foster NE, Wright CC, Baxter DG, Barlas

P. Effects of TENS frequency, intensity and stimulation

site parameter manipulation on pressure pain thresholds

in healthy human subjects. Pain. 2003;106(1-2):73-80.

doi: 10.1016/S0304-3959(03)00292-6.

Ellrich J, Lamp S. Peripheral nerve stimulation inhibits

nociceptive processing: an electrophysiological study in

healthy volunteers. Neuromodulation. 2005;8(4):225-32. doi:

1111/j.1525-1403.2005.00029.x.

Krabbenbos IP, Brandsma D, van Swol CF, Boezeman EH,

Tromp SC, Nijhuis HJ, et al. Inhibition of cortical laserevoked potentials by transcutaneous electrical nerve

stimulation. Neuromodulation. 2009;12(2):141-5. doi:

1111/j.1525-1403.2009.00204.x.

Ristić D, Spangenberg P, Ellrich J. Analgesic and

antinociceptive effects of peripheral nerve neurostimulation

in an advanced human experimental model. Eur J Pain.

;12(4):480-90. doi: 10.1016/j.ejpain.2007.07.013.

Vassal F, Créac’h C, Convers P, Laurent B, Garcia-Larrea L,

Peyron R. Modulation of laser-evoked potentials and pain

perception by Transcutaneous Electrical Nerve Stimulation

(TENS): a placebo-controlled study in healthy volunteers.

Clin Neurophysiol. 2013;124(9):1861-7. doi: 10.1016/j.

clinph.2013.04.001.

Garrison DW, Foreman RD. Effects of Transcutaneous

Electrical Nerve Stimulation (TENS) electrode placement

on spontaneous and noxiously evoked dorsal horn cell activity in the cat. Neuromodulation. 2002;5(4):231-7.

doi: 10.1046/j.1525-1403.2002.02036.x.

Melzack R, Wall PD. Pain mechanisms: a new theory. Science.

;150(3699):971-9.

Sluka KA, Bailey K, Bogush J, Olson R, Ricketts A. Treatment

with either high or low frequency TENS reduces the

secondary hyperalgesia observed after injection of kaolin

and carrageenan into the knee joint. Pain. 1998;77(1):97-102.

doi: 10.1016/S0304-3959(98)00090-6.

Radhakrishnan R, King EW, Dickman JK, Herold CA,

Johnston NF, Spurgin ML, et al. Spinal 5-HT2

and 5-HT3

receptors mediate low, but not high, frequency TENSinduced antihyperalgesia in rats. Pain. 2003;105(1-2):205-13.

doi: 10.1016/S0304-3959(03)00207-0.

Zhang RX, Lao L, Wang L, Liu B, Wang X, Ren K, et al.

Involvement of opioid receptors in electroacupunctureproduced anti-hyperalgesia in rats with peripheral

inflammation. Brain Res. 2004;1020(1-2):12-7. doi: 10.1016/j.

brainres.2004.05.067.

Zhang RX, Wang L, Liu B, Qiao JT, Ren K, Berman BM,

et al. Mu opioid receptor-containing neurons mediate

electroacupuncture-produced anti-hyperalgesia in rats with

hind paw inflammation. Brain Res. 2005;1048(1-2):235-40.

doi: 10.1016/j.brainres.2005.05.008.

Taguchi R, Taguchi T, Kitakoji H. Involvement of peripheral

opioid receptors in electroacupuncture analgesia for

carrageenan-induced hyperalgesia. Brain Res. 2010;1355:97-

doi: 10.1016/j.brainres.2010.08.014.

Wang Y, Hackel D, Peng F, Rittner HL. Long-term

antinociception by electroacupuncture is mediated via

peripheral opioid receptors in free-moving rats with

inflammatory hyperalgesia. Eur J Pain. 2013;17(10):1447-57.

doi: 10.1002/j.1532-2149.2013.00325.x.

Woolf CJ, Mitchell D, Barrett GD. Antinociceptive effect of

peripheral segmental electrical stimulation in the rat. Pain.

;8(2):237-52. doi: 10.1016/0304-3959(88)90011-5.

Daher JB, de Melo MD, Tonussi CR. Evidence for a spinal

serotonergic control of the peripheral inflammation in the rat.

Life Sci. 2005;76(20):2349-59. doi: 10.1016/j.lfs.2004.11.012.

Daher JB, Tonussi CR. A spinal mechanism for the peripheral

anti-inflammatory action of indomethacin. Brain Res.

;962(1-2):207-12. doi: 10.1016/S0006-8993(02)04056-8.

Willis WD Jr. Dorsal root potentials and dorsal root reflexes: a

double-edged sword. Exp Brain Res. 1999;124(4):395-421.

Chen YW, Tzeng JI, Lin MF, Hung CH, Wang JJ. Transcutaneous

electrical nerve stimulation attenuates postsurgical allodynia

and suppresses spinal substance P and proinflammatory

cytokine release in rats. Phys Ther. 2015;95(1):76-85.

doi: 10.2522/ptj.20130306.

Kim HY, Koo ST, Kim JH, An K, Chung K, Chung JM.

Electroacupuncture analgesia in rat ankle sprain pain model:

neural mechanisms. Neurol Res. 2010;32(Suppl 1):10-7.

doi: 10.1179/016164109X12537002793689.

Koo ST, Park YI, Lim KS, Chung K, Chung JM. Acupuncture

analgesia in a new rat model of ankle sprain pain. Pain.

;99(3):423-31. doi: 10.1016/S0304-3959(02)00164-1.

Brock SC, Tonussi CR. Intrathecally injected morphine

inhibits inflammatory paw edema: the involvement of nitric

oxide and cyclic-guanosine monophosphate. Anesth Analg.

;106(3):965-71. doi: 10.1213/ane.0b013e318162cebf.

Cunha TM, Verri WA Jr, Valerio DA, Guerrero AT, Nogueira

LG, Vieira SM, et al. Role of cytokines in mediating

mechanical hypernociception in a model of delayed-type

hypersensitivity in mice. Eur J Pain. 2008;12(8):1059-68. doi:

1016/j.ejpain.2008.02.003.

Bennett MI, Hughes N, Johnson MI. Methodological quality in

randomised controlled trials of transcutaneous electric nerve

stimulation for pain: low fidelity may explain negative findings.

Pain. 2011;152(6):1226-32. doi: 10.1016/j.pain.2010.12.009.

Sluka KA, Walsh D. Transcutaneous electrical nerve

stimulation: basic science mechanisms and clinical

effectiveness. J Pain. 2003;4(3):109-21. doi: 10.1054/

jpai.2003.434.

Millan MJ. Descending control of pain. Prog Neurobiol.

;66(6):355-474. doi: 10.1016/S0301-0082(02)00009-6.

Cunha TM, Roman-Campos D, Lotufo CM, Duarte HL,

Souza GR, Verri WA Jr, et al. Morphine peripheral analgesia

depends on activation of the PI3Kgamma/AKT/nNOS/

NO/KATP signaling pathway. Proc Natl Acad Sci U S A.

;107(9):4442-7. doi: 10.1073/pnas.0914733107.

Fields HL, Emson PC, Leigh BK, Gilbert RF, Iversen LL.

Multiple opiate receptor sites on primary afferent fibres.

Nature. 1980;284(5754):351-3. doi: 10.1038/284351a0.

Wybran J. Enkephalins and endorphins as modifiers of the

immune system: present and future. Fed Proc. 1985;44(1 Pt

:92-4.

Carr DJ, DeCosta BR, Kim CH, Jacobson AE, Guarcello V,

Rice KC, et al. Opioid receptors on cells of the immune

system: evidence for delta- and kappa-classes. J Endocrinol.

;122(1):161-8.

Kapitzke D, Vetter I, Cabot PJ. Endogenous opioid analgesia

in peripheral tissues and the clinical implications for pain

control. Ther Clin Risk Manag. 2005;1(4):279-97.

Kulkarni-Narla A, Walcheck B, Brown DR. Opioid receptors on

bone marrow neutrophils modulate chemotaxis and CD11b/

CD18 expression. Eur J Pharmacol. 2001;414(2-3):289-94.

Toda K. Response of raphe magnus neurons after acupuncture

stimulation in rat. Brain Res. 1982;242(2):350-3.

Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending

control of nociception: specificity, recruitment and

plasticity. Brain Res Rev. 2009;60(1):214-25. doi: 10.1016/j.

brainresrev.2008.12.009.

Descargas

Publicado

2017-09-09

Número

Sección

Pesquisa Original

Cómo citar

Efectos opioidergicos de la estimulación nerviosa eléctrica transcutánea sobre el dolor y el edema inflamatorio en un modelo de rata con esguince de tobillo. (2017). Fisioterapia E Pesquisa, 24(3), 288-294. https://doi.org/10.1590/1809-2950/16836724032017