Weekly frequency of a motor intervention program for day care babies

Authors

  • Laís Rodrigues Gerzson Universidade Federal do Rio Grande do Sul (UFRGS) – Porto Alegre (RS), Brasil
  • Bruna Maciel Catarino Universidade Federal do Rio Grande do Sul (UFRGS) – Porto Alegre (RS), Brasil
  • Kelly Andara Universidade Federal do Rio Grande do Sul (UFRGS) – Porto Alegre (RS), Brasil
  • Paula Demarco Universidade Federal do Rio Grande do Sul (UFRGS) – Porto Alegre (RS), Brasil
  • Míriam Stock Palma Universidade Federal do Rio Grande do Sul (UFRGS) – Porto Alegre (RS), Brasil
  • Carla Skilhan de Almeida Universidade Federal do Rio Grande do Sul (UFRGS) – Porto Alegre (RS), Brasil

DOI:

https://doi.org/10.1590/1809-2950/14923223022016

Abstract

The main goal of this research was to compare the effect of a Motor Intervention Program (MIP) on the development of babies in public preschools in Porto Alegre. The study included 59 infants, stratified randomly into three groups: 18 infants met three times a week (3X G); 23 babies met once a week (1XG); and 18 control individuals (CG). Visual (three minutes), manipulation of objects (seven minutes) and strength, mobility, and stabilization (ten minutes) tasks were performed. The instrument used was the Alberta Infant Motor Scale (AIMS) to evaluate the babies' motor development. The study results showed an improved classification from 1XG babies (p = 0.007). The 3XG babies had the most significant difference in the prone posture, sitting and standing, despite being younger. In conclusion, the babies who underwent motor intervention one or three times a week had better results when compared to the control group.

Downloads

Download data is not yet available.

References

Souza RB. Pressões respiratórias estáticas máximas. J Bras

Pneumol. 2002;28(3):155-65.

Vidal P, Mattiello R, Jones M. Espirometria em Pré-Escolares.

Pulmão RJ. 2013;22(3):20-5.

Ekkernkamp E, Sorichter S. [Testing lung function: what is

new?]. Dtsch Med Wochenschr. 2014;139(31-32):1590-2.

Crenesse D, Berlioz M, Bourrier T, Albertini M. Spirometry

in children aged 3 to 5 years: reliability of forced expiratory

maneuvers. Pediatr Pulmonol. 2001;32(1):56-61.

Stocks J. Clinical implications of pulmonary function testing

in preschool children. Paediatr Respir Rev. 2006;7(Suppl

:S26-9.

Koopman M, Zanen P, Kruitwagen CL, van der Ent CK, Arets

HG. Reference values for paediatric pulmonary function

testing: The Utrecht dataset. Respir Med. 2011;105(1):15-23.

Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F,

Casaburi R, et al. General considerations for lung function

testing. Eur Respir J. 2005;26(1):153-61.

Fisioter Pesqui 2016;23(2):193-200

Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R,

Coates A, et al. Standardisation of spirometry. Eur Respir J.

;26(2):319-38.

Heinzmann-Filho JP, Vasconcellos Vidal PC, Jones MH,

Donadio MV. Normal values for respiratory muscle strength

in healthy preschoolers and school children. Respir Med.

;106(12):1639-46.

American Thoracic Society, European Respiratory Society.

ATS/ERS Statement on respiratory muscle testing. Am J

Respir Crit Care Med. 2002;166(4):518-624.

Mellies U, Stehling F, Dohna-Schwake C. Normal values

for inspiratory muscle function in children. Physiol Meas.

;35(10):1975-81.

Pessoa IM, Houri Neto M, Montemezzo D, Silva LA, Andrade

AD, Parreira VF. Predictive equations for respiratory muscle

strength according to international and Brazilian guidelines.

Braz J Phys Ther. 2014;18(5):410-8.

Arnall DA, Nelson AG, Owens B, Cebrià i Iranzo MA, Sokell GA,

Kanuho V, et al. Maximal respiratory pressure reference values for

Navajo children ages 6-14. Pediatr Pulmonol. 2013;48(8):804-8.

Tabatabaie SS, Boskabady MH, Mohammadi SS, Mohammadi

O, Saremi P, Amery S, et al. Prediction equations for

pulmonary function values in healthy children in Mashhad

city, North East Iran. J Res Med Sci. 2014;19(2):128-33.

Esteves A, Solé D, Ferraz M. Adaptation and validity of

the ATS-DLD-78-C questionnaire for asthma diagnosis in

children under 13 years of age. Braz Ped News. 1999;1:3-5.

de Onis M, Garza C, Onyango AW, Borghi E. Comparison of

the WHO child growth standards and the CDC 2000 growth

charts. J Nutr. 2007;137(1):144-8.

Borman H, Ozgür F. A simple instrument to define the

Frankfurt horizontal plane for soft-tissue measurements of

the face. Plast Reconstr Surg. 1998;102(2):580-1.

Domènech-Clar R, López-Andreu JA, Compte-Torrero L,

De Diego-Damiá A, Macián-Gisbert V, Perpiñá-Tordera M,

et al. Maximal static respiratory pressures in children and

adolescents. Pediatr Pulmonol. 2003;35(2):126-32.

Szeinberg A, Marcotte JE, Roizin H, Mindorff C, England S,

Tabachnik E, et al. Normal values of maximal inspiratory

and expiratory pressures with a portable apparatus in

children, adolescents, and young adults. Pediatr Pulmonol.

;3(4):255-8.

Miller M, Hankinson J, Brusasco V, Burgos F, Casaburi R,

Coates A, et al. Standardisation of Spirometry. Eur Resp J.

;26(2):319-38.

Chavasse R, Johnson P, Francis J, Balfour-Lynn I, Rosenthal

M, Bush A. To clip or not to clip? Noseclips for spirometry. Eur

Respir J. 2003;21(5):876-8.

Loeb JS, Blower WC, Feldstein JF, Koch BA, Munlin AL,

Hardie WD. Acceptability and repeatability of spirometry in

children using updated ATS/ERS criteria. Pediatr Pulmonol.

;43(10):1020-4.

Beydon N, Davis SD, Lombardi E, Allen JL, Arets HG, Aurora

P, et al. An official American Thoracic Society/European

Respiratory Society statement: pulmonary function

testing in preschool children. Am J Respir Crit Care Med.

;175(12):1304-45.

Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver

BH, et al. Multi-ethnic reference values for spirometry for the

-95-yr age range: the global lung function 2012 equations.

Eur Respir J. 2012;40(6):1324-43.

Jeng MJ, Chang HL, Tsai MC, Tsao PC, Yang CF, Lee YS, et

al. Spirometric pulmonary function parameters of healthy

Chinese children aged 3-6 years in Taiwan. Pediatr Pulmonol.

;44(7):676-82.

Subbarao P, Lebecque P, Corey M, Coates AL. Comparison

of spirometric reference values. Pediatr Pulmonol.

;37(6):515-22.

Santos N, Almeida I, Couto M, Morais-Almeida M, Borrego LM.

Feasibility of routine respiratory function testing in preschool

children. Rev Port Pneumol. 2013;19(1):38-41.

Veras TN, Pinto LA. Feasibility of spirometry in preschool

children. J Bras Pneumol. 2011;37(1):69-74.

França DC, Camargos PA, Martins JA, Abreu MC, Avelar e

Araújo GH, Parreira VF. Feasibility and reproducibility of

spirometry and inductance plethysmography in healthy

Brazilian preschoolers. Pediatr Pulmonol. 2013;48(7):716-24.

Nystad W, Samuelsen SO, Nafstad P, Edvardsen E, Stensrud

T, Jaakkola JJ. Feasibility of measuring lung function in

preschool children. Thorax. 2002;57(12):1021-7.

Mayer OH, Jawad AF, McDonough J, Allen J. Lung function in

-5-year-old children with cystic fibrosis. Pediatr Pulmonol.

;43(12):1214-23.

Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values

for lung function tests. II. Maximal respiratory pressures and

voluntary ventilation. Braz J Med Biol Res. 1999;32(6):719-27.

Published

2016-06-06

Issue

Section

Original Research

How to Cite

Weekly frequency of a motor intervention program for day care babies . (2016). Fisioterapia E Pesquisa, 23(2), 178-184. https://doi.org/10.1590/1809-2950/14923223022016