Cardiorespiratory adjustments during the accentuation of respiratory sinus arrhythmia: influence from time of maneuver on minute volume, fraction of expired CO 2 , and heart rate variability

Authors

  • Alexandre Fenley Universidade Federal do Rio de Janeiro; Centro de Ciência da Saúde; Programa de Pós-Graduação em Educação Física e Medicina
  • Leonardo da Costa Silva Universidade Federal do Rio de Janeiro; Centro de Ciência da Saúde; Programa de Pós-Graduação em Educação Física e Medicina
  • Hugo Valverde Reis Universidade Federal do Rio de Janeiro; Centro de Ciência da Saúde; Programa de Pós-Graduação em Educação Física e Medicina
  • Luciana Malosá Sampaio Universidade Nove de Julho; Programa de Pós-Graduação em Ciências da Reabilitação
  • Audrey Borghi-Silva Universidade Federal de São Carlos; Departamento de Fisioterapia; Laboratório de Fisioterapia Cardiopulmonar
  • Michel Silva Reis Universidade Federal do Rio de Janeiro; Centro de Ciência da Saúde; Programa de Pós-Graduação em Educação Física e Medicina

DOI:

https://doi.org/10.1590/1809-2950/14696023012016

Abstract

Heart rate (HR) fluctuate during the respiratory cycle. This phenomenon is known as respiratory sinus arrhythmia. The deep breathing test is to keep a paced breathing in six breathing per minute and I:E relationship 1:1. The purpose of this study is to access minute volume, expired fraction of carbon dioxide (EFCO2) and autonomic control of heart rate during deep breathing test longer than 90 seconds. Sixteen young healthy male (18 - 25 years old) were assessed. The subjects were instructed to perform inspirations and expirations with duration of 10 seconds per cycle, I:E = 1:1, and consequently respiratory rate of 6 cycles per minute, for about four minutes with one minute after and before, totaling six minutes. HR was recorded beat-to-beat using a cardio frequencimeter; MV and EFCO2 was measured and recorded using a mobile ergoespirometer. To analyse statistics differences, ANOVA one way (Tuckey post-hoc) and Kruskall Wallis (Dunn post-hoc) were used (p<0.05). When deep breathing test in course, EFCO2, MV and time domain heart rate variability shows no statistics difference over time. To perform deep breathing test in young healthy male, longer than 90 seconds, can be safety, without risks of hypocapnia and no interference from EFCO2 changes in time domain heart rate variability analysis of M-RSA.

Downloads

Download data is not yet available.

References

Heart rate variability. Standards of measurement,

physiological interpretation, and clinical use. Task Force of

the European Society of Cardiology and the North American

Society of Pacing and Electrophysiology. Eur Heart J.

;17(3):354-81.

Shields RW. Heart rate variability with deep breathing

as a clinical test of cardiovagal function. Cleve Clin J Med.

;76(Suppl 2):S37-40.

Joseph CN, Porta C, Casucci G, Casiraghi N, Maffeis M, Rossi M,

et al. Slow breathing improves arterial baroreflex sensitivity

and decreases blood pressure in essential hypertension.

Hypertension. 2005;46(4):714-8.

Reis MS, Arena R, Deus AP, Simões RP, Catai AM, BorghiSilva A. Deep breathing heart rate variability is associated

with respiratory muscle weakness in patients with chronic

obstructive pulmonary disease. Clinics (Sao Paulo).

;65(4):369-75.

Rosengård-Bärlund M, Bernardi L, Sandelin A, Forsblom C,

Groop PH, Group FS. Baroreflex sensitivity and its response

to deep breathing predict increase in blood pressure

in type 1 diabetes in a 5-year follow-up. Diabetes Care.

;34(11):2424-30.

Reis MS, Deus AP, Simões RP, Aniceto IA, Catai AM, BorghiSilva A. Autonomic control of heart rate in patients with

chronic cardiorespiratory disease and in healthy participants

at rest and during a respiratory sinus arrhythmia maneuver.

Rev Bras Fisioter. 2010;14(2):106-13.

Hayano J, Mukai S, Sakakibara M, Okada A, Takata K, Fujinami

T. Effects of respiratory interval on vagal modulation of heart

rate. Am J Physiol. 1994;267(1 Pt 2):H33-40.

Moreira GL, Ramos EMC, Vanderlei LCM, Ramos D, Manzano

BM, Fosco LC. Efeito da técnica de oscilação oral de alta

frequência aplicada em diferentes pressões expiratórias

sobre a função autonômica do coração e os parâmetros

cardiorrespiratórios. Fisioter Pesq. 2009;16(2):113-9.

Grossman P, Wilhelm FH, Spoerle M. Respiratory sinus

arrhythmia, cardiac vagal control and daily activity. Am J

Physiol Heart Circ Physiol. 2004;287(2):728-34.

Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans:

how breathing pattern modulates heart rate. Am J Physiol.

;241(4):H620-9.

Reis MS, Arena R, Archiza B, de Toledo CF, Catai AM, BorghiSilva A. Deep breathing heart rate variability is associated

with inspiratory muscle weakness in chronic heart failure.

Physiother Res Int. 2014;19(1):16-24.

Caetano J, Delgado Alves J. Heart rate and cardiovascular

protection. Eur J Intern Med. 2015.

Williamson JW. The relevance of central command for

the neural cardiovascular control of exercise. Exp Physiol.

;95(11):1043-8.

Mitchell JH. Neural control of the circulation during exercise:

insights from the 1970-1971 Oxford studies. Exp Physiol.

;97(1):14-9.

Guillén-Mandujano A, Carrasco-Sosa S. Additive effect of

simultaneously varying respiratory frequency and tidal

volume on respiratory sinus arrhythmia. Auton Neurosci.

;186:69-76.

Lopes TC, Beda A, Granja-Filho PC, Jandre FC, GiannellaNeto A. Cardio-respiratory interactions and relocation of

heartbeats within the respiratory cycle during spontaneous

and paced breathing. Physiol Meas. 2011;32(9):1389-401.

Cooper HE, Clutton-Brock TH, Parkes MJ. Contribution

of the respiratory rhythm to sinus arrhythmia in normal

unanesthetized subjects during positive-pressure

mechanical hyperventilation. Am J Physiol Heart Circ Physiol.

;286(1):H402-11.

Published

2016-03-03

Issue

Section

Original Research

How to Cite

Cardiorespiratory adjustments during the accentuation of respiratory sinus arrhythmia: influence from time of maneuver on minute volume, fraction of expired CO 2 , and heart rate variability . (2016). Fisioterapia E Pesquisa, 23(1), 68-73. https://doi.org/10.1590/1809-2950/14696023012016