Effects of GaAs laser and stretching on muscle contusion in rats

Authors

  • Daniela Gallon Corrêa SSegundo Centro Integrado de Defesa Aérea e Controle de Tráfego Aéreo. Curitiba. PR. Brasil
  • Juliana T. Okita Universidade Católica do Parana. PR. Brasil
  • Hilana Rickli Fiuza Martins Faculdade Guairacá de Prudentópolis. Guarapuava. PR. Brasil
  • Anna Raquel Silveira Gomes Universidade Federal do Paraná. PR. Brasil

DOI:

https://doi.org/10.1590/1809-2950/13903823012016

Abstract

Laser and stretching are used to treat skeletal muscle injuries. This study aimed to evaluate the effects of GaAs laser and stretching in the morphology of the tibialis anterior (TA) muscle after contusion. Thirty-six male rats (349±23g) were divided into six groups (n=6): control group (CG); lesion group (LG); lesion and laser group (LLG); lesion and stretching group (LSG); lesion, laser and stretching group (LLSG); and stretching group (SG). TA was wounded by a contusion apparatus. We used GaAs laser 4.5 J/cm2 dose for 32 s each, beginning 48 h after lesion, for 7 days, once a day. Manual passive stretching was applied by 10 repetitions for 1 minute, initiating on the 8th day, once a day, 3 times a week, during 3 weeks. After 4 weeks, rats were euthanized and we analyzed: muscle weight and length, cross sectional area of muscle fibers (CSAMF), serial sarcomere number (SSN), sarcomere length, and percentage of connective tissue. Comparisons among groups were made by ANOVA and post hoc Tukey tests, with the significance level set at ≤ 0.05. The serial sarcomere number of LLSG was higher than LSG. The sarcomere length of LSG was superior to LLG, LLSG, and SG. SG increased SSN compared to CG, while the percentage of connective tissue of SG decreased in comparison to LLSG. Thus, the sarcomerogenesis of injured muscles was enhanced by laser therapy, stretching, and association of both. The stretching protocol was enough to increase SSN of intact muscles.

Downloads

Download data is not yet available.

References

Smith C, Kruger MJ, Smith RM, Myburg KH. The

inflammatory response to skeletal muscle injury: illuminating

complexities. Sports Med. 2008;38(11):947-69. http://dx.doi.

org/10.2165/00007256-200838110-00005

Schaser KD, Disch AC, Stover JF, Lauffer A, Bail HJ, Mittlmeier

T. Prolonged superficial local cryotherapy attenuates

microcirculatory impairment, regional inflammation, and

muscle necrosis after closed soft tissue injury in rats. Am J

Sports Med. 2007;35(1):93-102.

Shu B, Yang Z, Li X, Zhang LQ. Effect of different

intensity pulsedultrasoundon the restoration of rat

skeletalmusclecontusion. Cell Biochem Biophys. 2012;62:329-

http://dx.doi.org/10.1007/s12013-011-9310-5

Falcai MJ, Monte-Raso VL, Okubo R, Zamarioli A, Carvalho

LC, Shimano AC. Biomechanical and histological analysis

of the gastrocnemius in rats subjected to muscle injury

and treatment with low-level laser therapy. Rev Bras

Ortop. 2010; 45(4):444-8. http://dx.doi.org/10.1590/

S0102-36162010000400018

Jarvinen TAH, Jarvinen TLN, Kaariainen M, Kalimo

H. Muscle injuries biology and treatment. Am J

Sports Med. 2005;33(5):745-64. http://dx.doi.

org/10.1177/0363546505274714

Weiss N, Oron U. Enhancement of muscle regeneration

in the rat gastroquinemius muscle by low energy laser

irradiation. Anat Embryol. 1992;186(5):497-503. http://dx.doi.

org/10.1007/BF00185463

Moreira FF, Oliveira ELP, Barbosa FS, Silva JG. Laserterapia

de baixa intensidade na expressão de colágeno após lesão

muscular cirúrgica. Fisioter Pesqui. 2011;18(1):37-42.

Bolton PA, Young SR, Dyson M. Macrophage responsiveness

to light therapy. A dose response study. Laser Ther.

;2:101-6.

Young S, Bolton P, Dyson M, Harvey W, Diamantopoulus C.

Macrophage responsiveness to light therapy. Laser Surg

Med. 1989;9(5):497-505.

Miro L. Estudio capilaroscópico de la acción de un laser GaAs

sobre la microcirculación. Investig Clin Laser. 1984;12:9-14.

Santos DR, Liebano,RE, Baldan CS, Masson IB, Soares RP,

Junior IE. The low-level laser therapy on muscle injury

recovery: literature review. J Health Sci Inst. 2010;28(3):286-8.

Gomes ARS, Coutinho EL, França CN, Polonio J, Salvini TF.

Effect of one stretch a week applied to the immobilized

soleus muscle on rat muscle fiber morphology. Braz J

Med Biol Res. 37(10) 2004. http://dx.doi.org/10.1590/

S0100-879X2004001000005

Boppart MD, Hirshman MF, Sakamoto K, Fielding RA,

Goodyear LJ. Static stretch increases c-Jun NH2-terminal

kinase activity and p38 phosphorylation in rat skeletal

muscle. Am J Physiol Cell Physiol. 2001;280: C352–C8.

Inoue T, Suzuki S, Hagiwara R, Iwata M, Banno Y, Okita M.

Effects of Passive Stretching on Muscle Injury and HSP

Expression during Recovery after Immobilization in Rats.

Pathobiology 2009;76:253-9.

Koh TJ, Peterson JM, Pizza FX, Brooks SV. Passive stretches

protect skeletal muscle ofadult and old mice from lengthening contraction- induced injury. J Gerontol A Biol Sci Med Sci.

;58:592-7.

Hwang JH, Ra Y, Lee KM, Lee JY, Ghil SH. Therapeutic effect

of passive mobilization exercise on improvement of muscle

regeneration and prevention of fibrosis after laceration injury

of rat. Arch Phys Med Rehabil. 2006;87(1):20-6. http://dx.doi.

org/10.1016/j.apmr.2005.08.002

Macedo ACB, Ywazaki JL, Pacheco J, Gonçalves S, Gomes ARS.

Efeitos agudos do alongamento muscular do gastrocnêmio

após contusão em ratos. Fisioter Pesqui. 2014;1(1):53-9.

http://dx.doi.org/10.1590/1809-2950/446210114

Pertille A, Macedo AB, Oliveira CPV. Evaluation of muscle

regeneration in aged animals after treatment with low-level

laser therapy. Rev Bras Fisioter. 2012;16(6):495-501.

Reurink G, Goudswaard GJ, Tol JL, Verhaar JAN, Weir A,

Moen MH. Therapeutic interventions for acute hamstring

injuries: a systematic review. Br J Sports Med. 2012;46:103-9.

Schultz E, Lipton BH. Skeletal muscle satellite cells:

changes in proliferation potential as a function of age.

Mech Ageing Dev. 1982;20(4):377-83. http://dx.doi.

org/10.1016/0047-6374(82)90105-1

Council NR. Guide for the Care and Use of Laboratory

Animals. National Academy Press. Washington, DC; 1996.

p.56-70.]

Minamoto VB, Bunho SR, Salvini TF. Regenerated rat

skeletal muscle after periodic contusions. Braz J Med

Biol Res. 2001;34(11):1447-52. http://dx.doi.org/10.1590/

S0100-879X2001001100012

Minamoto VB, Grazziano CR, Salvini TF. The effect

of single and periodic contusion on the rat soleus

muscle at different stages of regeneration. Anat

Rec. 1999;254(2):281-7. http://dx.doi.org/10.1002/

(SICI)1097-0185(19990201)254:2<281::AID-AR14>3.0.CO;2-Z

Peviani SM, Gomes ARS, Moreira RFC, Moriscot AS, Salvini

TF. Short bouts of stretching increase Myo-D Myostatin and

Atrogin-1 in rat soleus muscle. Muscle Nerve. 2007;35(3):363-

http://dx.doi.org/10.1002/mus.20695

Baxter D. Laserterapia de baixa intensidade. In: Kitchen S, ed.

Eletroterapia: prática baseada em evidências. 11ª ed. Barueri:

Manole;2003. p.171-88.

Ansved T. Effects of immobilization on the rat soleus muscle

in relation to age. Acta Physiol Scand. 1995;154(3):291-302.

http://dx.doi.org/10.1111/j.1748-1716.1995.tb09913.x

Coutinho EL, Gomes ARS, França CN, Oishi J, Salvini T. Effect

of passive stretching on the immobilized soleus muscle fiber

morphology. Braz J Med Biol Res. 2004;37(12):1853-61. http://

dx.doi.org/10.1590/S0100-879X2004001200011

William PE, Catanese T, Lucey EG, Goldspink G. The

importance of stretch and contractile activity in the

prevention of connective tissue accumulation in muscle. J

Anat. 1988;158:109-14.

Mattiello-Sverzut AC, Carvalho LC, Cornachione A,

Nagashima M, Neder L, Shimano AC. Morphological effects

of electrical stimulation and intermittent muscle stretch

after immobilization in soleus muscle. Histol Histopathol.

;21(9):957-64.

Baoge L, Van Den Steen E, Rimbaut S, Philips S, Witvrouw

E, Almqvist KF, et al. Treatment of skeletal muscle injury: A

Review. ISRN Orthopedics. Volume 2012.

Amaral AC, Salvini T. Dose-dependency of low energy HeNe

laser effect in regeneration of skeletal muscle in mice. Lasers

Med Sci. 2001;16(1):44-51.

Peters D, Barash IA, Burdi M, Yuan PS, Mathew L, Fridén

J, Lieber RL. Asynchronous functional, cellular and

transcriptional changes after a bout of eccentric exercise

in the rat. J Physiol. 2003;15(553):947-57. http://dx.doi.

org/10.1113/jphysiol.2003.048462

Coutinho EL, Gomes DC, Salvini T, Vidal BC. Bouts of passive

after immobilization of the rat soleus muscle increase

collagen macromolecular organization and muscle fiber

area. Connect Tissue Res. 2006;47(5):278-86. http://dx.doi.

org/10.1080/03008200600995940

Morrone G, Guzzardella GA, Orientili L, Giavaresi G, Fini M,

Rocca M, Torricelli P, Martini L, Giardino R. Muscular trauma

treated with a Ga-Al-As diode laser: in vivo experimental

study. Laser Med Sci 1998;13(4):293-8. http://dx.doi.

org/10.1007/s101030050011

Tabary, JC.; Tabary, C; Tardieu, C.; Tardieu, G. and Goldspink,

G. Physiological and structural changes in the cat’s soleus

muscle due to immobilization at different lengths by plaster

casts. J. Physiol. 1972;224:231-44.

Williams PE, Goldspink G. The longitudinal growth of striated

muscle fibres. J Cell Sci. 1971;9:751-67.

Williams, PE; Goldspink G.. The effect of immobilization on

the longitudinal growth of striated muscle fibres. J. Anat.

;116:45-55.

Williams PE, Goldspink G. Changes in sarcomere length

and physiological properties in immobilized muscle. J Anat.

;127(Pt 3):459-68.

Järvinen TAH, Järvinen M, Kalimo H. Regeneration of injured

skeletal muscle after the injury. Muscles, Ligaments Tendons

J. 2013;3(4):337-45.

Downloads

Published

2016-03-03

Issue

Section

Original Research

How to Cite

Effects of GaAs laser and stretching on muscle contusion in rats . (2016). Fisioterapia E Pesquisa, 23(1), 3-11. https://doi.org/10.1590/1809-2950/13903823012016