A systematic review of tetracycline resistance genes in animals and derived products in Latin America and the Caribbean
DOI:
https://doi.org/10.11606/issn.1678-4456.bjvras.2023.213883Keywords:
Antimicrobial resistance, Domestic animals, Epidemiology, Escherichia coli, Food safety, Molecular microbiology, Salmonella spp, Staphylococcus sppAbstract
We aimed to systematize and assess scientific information on tetracycline (TET) resistance genes in animals, products, and by-products in the Latin America and the Caribbean (LAC) region. PRISMA guidelines were followed. Only original articles published in peer-reviewed journals were considered. Sixty articles published between 2003 and 2023 met the inclusion criteria. The geographical areas of study were Brazil, Mexico, Chile, and Costa Rica, and, to a lesser extent, Colombia, Bolivia, Cuba, Jamaica, Puerto Rico, and Uruguay. The studies were related to livestock, wild animals, and pets. The most common isolated bacteria were Escherichia coli and Salmonella spp. The tet genes found in higher frequency in the samples or isolates evaluated were tetA, tetB, tetM, tetL, tetK, tetC, tetO, tetD, tetG, tetW, tetS, tetQ, tetE, tetH, tetJ, tetZ, and tetY. Studies evaluating the presence of tet genes in animals in LAC are limited despite TET being antibiotics widely used in animals. It is necessary to establish cross border public policies that allow the constant training of medical and related personnel regarding the responsible use of antibiotics in animals and the effective monitoring of the phenomenon in the region.
Downloads
References
Alikhan N, Moreno L, Castellanos L, Chattaway M, McLauchlin J, Lodge M, O’Grady J, Zamudio R, Doughty E, Petrovska L, Cunha M, Knöbl T, Moreno A, Mather A. Dynamics of Salmonella enterica and antimicrobial resistance in the Brazilian poultry industry and global impacts on public health. PLoS Genet. 2022;18(6):e1010174. http://dx.doi.org/10.1371/journal.pgen.1010174. PMid:35653335.
Arnold C, Schüpbach-Regula G, Hirsiger P, Malik J, Scheer P, Sidler X, Spring P, Peter-Egli J, Harisberger M. Risk factors for oral antimicrobial consumption in Swiss fattening pig farms: a case-control study. Porcine Health Manag. 2016;2(1):5. http://dx.doi.org/10.1186/s40813-016-0024-3. PMid:28405431.
Askari Rizvi S. Tetracycline: classification, structure activity relationship and mechanism of action as a theranostic agent for infectious lesions: a mini review. Biomed J Sci Tech Res. 2018;7(2). http://dx.doi.org/10.26717/BJSTR.2018.07.001475.
Baez M, Espinosa I, Collaud A, Miranda I, Montano D, Feria A, Hernández-Fillor R, Obregón D, Alfonso P, Perreten V. Genetic features of extended-spectrum β-lactamase-producing Escherichia coli from poultry in Mayabeque Province, Cuba. Antibiotics. 2021;10(2):107. http://dx.doi.org/10.3390/antibiotics10020107. PMid:33499392.
Baquero FF, Lanza V, Duval M, Coque T. Ecogenetics of antibiotic resistance in Listeria monocytogenes. Mol Microbiol. 2020;113(3):570-9. http://dx.doi.org/10.1111/ mmi.14454. PMid:32185838.
Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017;3(3):529-63. http://dx.doi.org/10.3934/microbiol.2017.3.529. PMid:31294175.
Cabello F, Godfrey H, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann A. Antimicrobial use in aquaculture re‐examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013;15(7):1917-42. http://dx.doi.org/10.1111/1462-2920.12134. PMid:23711078.
Cartes C, Isla A, Lagos F, Castro D, Muñoz M, Yañez A, Haussmann D, Figueroa J. Search and analysis of genes involved in antibiotic resistance in Chilean strains of Piscirickettsia salmonis. J Fish Dis. 2017;40(8):1025-39. http://dx.doi.org/10.1111/jfd.12579. PMid:27982445.
Chile. Servicio Nacional de Pesca y Acuicultura – SERNAPESCA. Informe sanitario de la acuicultura [Internet]. Santiago de Chile; 2016 [cited 2023 Feb 13]. Available from: www.sernapesca.cl
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232-60. http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001. PMid:11381101.
Collignon P, McEwen S. One Health: its importance in helping to better control antimicrobial resistance. Trop Med Infect Dis. 2019;4(1):22. http://dx.doi.org/10.3390/tropicalmed4010022. PMid:30700019.
Concha C, Miranda CD, Santander J, Roberts MC. Genetic characterization of the tetracycline-resistance gene tet(X) carried by two epilithonimonas strains isolated from farmed diseased rainbow trout, Oncorhynchus mykiss in Chile. Antibiotics. 2021;10(9):1051. http://dx.doi.org/10.3390/antibiotics10091051. PMid:34572633.
Costa L, Falcão D, Grassotti T, Christiano F, Frazzon J, Frazzon A. Antimicrobial resistance of enterococci isolated from food in South Brazil: comparing pre- and post-RDC 20/2011. An Acad Bras Cienc. 2022;94(1):e20201765. http://dx.doi.org/10.1590/0001-3765202220201765. PMid:35293513.
Cuny C, Friedrich A, Kozytska S, Layer F, Nübel U, Ohlsen K, Strommenger B, Walther B, Wieler L, Witte W. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol. 2010;300(2-3):109-17. http://dx.doi.org/10.1016/j.ijmm.2009.11.002. PMid:20005777.
Delgado-Suárez EJ, Ortíz-López R, Gebreyes WA, Allard MW, Barona-Gómez F, Rubio-Lozano MS. Genomic surveillance links livestock production with the emergence and spread of multi-drug resistant non-typhoidal Salmonella in Mexico. J Microbiol. 2019;57(4):271-80. http://dx.doi.org/10.1007/s12275-019-8421-3. PMid:30721457.
Delgado-Suárez EJ, Palós-Guitérrez T, Ruíz-López FA, Hernández Pérez CF, Ballesteros-Nova NE, Soberanis-Ramos O, Méndez-Medina RD, Allard MW, Rubio-Lozano MS. Genomic surveillance of antimicrobial resistance shows cattle and poultry are a moderate source of multi-drug resistant non-typhoidal Salmonella in Mexico. PLoS One. 2021;16(5):e0243681. http://dx.doi.org/10.1371/journal.pone.0243681. PMid:33951039.
Di Francesco A, Salvatore D, Sakhria S, Catelli E, Lupini C, Abbassi MS, Bessoussa G, Ben Yahia S, Ben Chehida N. High frequency and diversity of tetracycline resistance genes in the microbiota of broiler chickens in Tunisia. Animals. 2021;11(2):377. http://dx.doi.org/10.3390/ani11020377. PMid:33540893.
Duarte R, Miranda O, Bellei B, Brito M, Teixeira L. Phenotypic and molecular characteristics of Streptococcus agalactiae isolates recovered from milk of dairy cows in Brazil. J Clin Microbiol. 2004;42(9):4214-22. http://dx.doi.org/10.1128/JCM.42.9.4214-4222.2004. PMid:15365014.
Farmer JJ, Farmer MK, Holmes B. The Enterobacteriaceae: general characteristics. In: Topley WWC, editor. Topley & Wilson’s microbiology and microbial infections [Internet]. Hoboken: John Wiley & Sons; 2010 [cited 2023 Feb 13]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9780470688618.taw0051
Ferreira A, Pavelquesi S, Monteiro E, Rodrigues L, Silva C, Silva I, Orsi D. Prevalence and antimicrobial resistance of Salmonella spp. in aquacultured Nile tilapia (Oreochromis niloticus) commercialized in Federal district, Brazil. Foodborne Pathog Dis. 2021;18(11):778-83. http://dx.doi.org/10.1089/fpd.2021.0010. PMid:34197185.
Figueroa J, Castro D, Lagos F, Cartes C, Isla A, Yáñez A, Avendaño-Herrera R, Haussmann D. Analysis of single nucleotide polymorphisms (SNPs) associated with antibiotic resistance genes in Chilean Piscirickettsia salmonis strains. J Fish Dis. 2019;42(12):1645-55. http://dx.doi.org/10.1111/jfd.13089. PMid:31591746.
Food and Agriculture Organization – FAO. 2050: a third more mouths to feed [Internet]. Rome: FAO; 2009 [cited 2023 Feb 13]. Available from: https://www.fao.org/news/story/en/item/35571/icode/#:~:text=According%20to%20the%20latest%20UN,will%20occur%20in%20developing%20countries.
Food and Agriculture Organization – FAO. Lessons and opportunities on adaptation to climate change in the context of the project “Strengthening the adaptive capacity to climate change in the fisheries and aquaculture sector of Chile” [Internet]. Rome: FAO Regional Office for Latin America and the Caribbean; 2021 [cited 2023 Feb 13]. Available from: https://www.fao.org/americas/eventos/ver/en/c/1401195/.
Frazão M, Cao G, Medeiros M, Duque S, Allard M, Falcão J. Antimicrobial resistance profiles and phylogenetic analysis of Campylobacter jejuni strains isolated in Brazil by whole genome sequencing. Microb Drug Resist. 2021;27(5):660-9. http://dx.doi.org/10.1089/mdr.2020.0184. PMid:33021437.
Frazzon A, Gama B, Hermes V, García C. Prevalence of antimicrobial resistance and molecular characterization of tetracycline resistance mediated by tet(M) and tet(L) genes in Enterococcus spp. isolated from food in Southern Brazil. World J Microbiol Biotechnol. 2010;26(2):365-70. http://dx.doi.org/10.1007/s11274-009-0160-x.
Freitas A, Faria A, Pinto T, Merquior V, Neves D, Costa R, Teixeira L. Distribution of species and antimicrobial resistance among enterococci isolated from the fecal microbiota of captive blue-fronted parrot (Amazona aestiva) in Rio de Janeiro, Brazil. Sci Total Environ. 2018;615:1428-37. http://dx.doi.org/10.1016/j.scitotenv.2017.09.004. PMid:29055593.
Furlan J, Santos L, Ramos M, Gallo I, Stehling E. Fecal cultivable aerobic microbiota of dairy cows and calves acting as reservoir of clinically relevant antimicrobial resistance genes. Braz J Microbiol. 2020;51(3):1377-82. http://dx.doi.org/10.1007/s42770-020-00265-6. PMid:32246396.
Gaerste-Díaz YC, Lozano-Zarain P, Torres C, Castro González NP, Rocha-Gracia RC. Genotyping of antimicrobial resistance and virulence in Staphylococcus isolated from food of animal origin in Mexico. Indian J Microbiol. 2018;58(4):525-8. http://dx.doi.org/10.1007/s12088-018-0745-x. PMid:30262964.
Gargano V, Sciortino S, Gambino D, Costa A, Agozzino V, Reale S, Alduina R, Vicari D. Antibiotic susceptibility profile and tetracycline resistance genes detection in Salmonella spp. strains isolated from animals and food. Antibiotics. 2021;10(7):809. http://dx.doi.org/10.3390/antibiotics10070809. PMid:34356729.
Gazal L, Brito K, Kobayashi R, Nakazato G, Cavalli L, Otutumi L, Brito B. Antimicrobials and resistant bacteria in global fish farming and the possible risk for public health. Arq Inst Biol. 2020;87:e0362019. http://dx.doi.org/10.1590/1808-1657000362019.
Gómez L, Atehortúa C, Orozco S. La influencia de las mascotas en la vida humana. Rev Colomb Cienc Pecu. 2007;20:377-86.
Gordon R, Lowy F. Pathogenesis of methicillin resistant Staphylococcus aureus infection. Clin Infect Dis. 2008; 46(S5):S350-9. http://dx.doi.org/10.1086/533591. PMid:18462090.
Gozi K, Froes J, Deus Ajude L, Silva C, Baptista R, Peiró J, Marinho M, Mendes L, Nogueira M, Casella T. Dissemination of multidrug-resistant commensal Escherichia coli in feedlot lambs in Southeastern Brazil. Front Microbiol. 2019;10:1394. http://dx.doi.org/10.3389/fmicb.2019.01394. PMid:31293542.
Grassotti T, Angelis D, Fontoura L, Araújo A, Pereira R, Soares R, Wagner P, Frazzon J, Frazzon A. Antimicrobial resistance profiles in Enterococcus spp. isolates from fecal samples of wild and captive black capuchin Monkeys (Sapajus nigritus) in South Brazil. Front Microbiol. 2018;9:2366. http://dx.doi.org/10.3389/fmicb.2018.02366. PMid:30356681.
Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6(4):a025387. http://dx.doi.org/10.1101/cshperspect.a025387. PMid:26989065.
Haubert L, Mendonça M, Lopes G, Itapema M, Silva W. Listeria monocytogenes isolates from food and food environment harbouring tetM and ermB resistance genes. Lett Appl Microbiol. 2016;62(1):23-9. http://dx.doi.org/10.1111/lam.12516. PMid:26518475.
Hedayatianfard K, Akhlaghi M, Sharifiyazdi H. Detection of tetracycline resistance genes in bacteria isolated from fish farms using polymerase chain reaction. Vet Res Forum. 2014;5(4):269-75. PMid:25610578.
Henríquez P, Kaiser M, Bohle H, Bustos P, Mancilla M. Comprehensive antibiotic susceptibility profiling of Chilean Piscirickettsia salmonis field isolates. J Fish Dis. 2016;39(4):441-8. http://dx.doi.org/10.1111/jfd.12427. PMid:26660665.
Institute of Medicine. Improving food safety through a one health approach: workshop summary. Washington, DC: National Academies Press; 2012. http://dx.doi.org/10.17226/13423.
Jara M. Tetraciclinas: un modelo de resistencia antimicrobiana. Av Cienc Vet. 2010;22(1-2). http://dx.doi.org/10.5354/0716- 260X.2007.915.
Jesús-Laboy KM, Godoy-Vitorino F, Piceno YM, Tom LM, Pantoja-Feliciano IG, Rivera-Rivera MJ, Andersen GL, Domínguez-Bello MG. Comparison of the fecal microbiota in feral and domestic goats. Genes. 2011;3(1):1-18. http://dx.doi.org/10.3390/genes3010001. PMid:24704840.
Jia J, Gomes-Silva G, Plath M, Pereira B, UeiraVieira C, Wang Z. Shifts in bacterial communities and antibiotic resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil. Ecotoxicol Environ Saf. 2021;211:111955. http://dx.doi.org/10.1016/j.ecoenv.2021.111955. PMid:33497859.
Jiménez Velásquez SDC, Torres Higuera LD, Parra Arango JL, Rodríguez Bautista JL, García Castro FE, Patiño Burbano RE. Profile of antimicrobial resistance in isolates of Staphylococcus spp. obtained from bovine milk in Colombia. Rev Argent Microbiol. 2020;52(2):121-30. http://dx.doi.org/10.1016/j.ram.2019.05.004. PMid:31537323.
Kalinowski A. Sustaining competitiveness in times of uncertainty and volatility: a Latin American perspective [Internet]. Fayetteville: University of Arkansas; 2021 [cited 2023 Feb 13]. Available from: https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1008&context=panc
Kleinubing N, Ramires T, Würfel SFR, Haubert L, Scheik LK, Kremer FS, Lopes GV, Silva WP. Antimicrobial resistance genes and plasmids in Campylobacter jejuni from broiler production chain in Southern Brazil. Lebensm Wiss Technol. 2021;144:111202. http://dx.doi.org/10.1016/j.lwt.2021.111202.
Koga V, Maluta R, Silveira W, Ribeiro R, Hungria M, Vespero E, Nakazato G, Kobayashi R. Characterization of CMY-2-type beta-lactamase-producing Escherichia coli isolated from chicken carcasses and human infection in a city of South Brazil. BMC Microbiol. 2019;19(1):174. http://dx.doi.org/10.1186/s12866-019-1550-3. PMid:31362706.
LaPlante K, Dhand A, Wright K, Lauterio M. Re-establishing the utility of tetracycline-class antibiotics for current challenges with antibiotic resistance. Ann Med. 2022;54(1):1686-700. http://dx.doi.org/10.1080/07853890.2022.2085881. PMid:35723082.
Ljungquist O, Ljungquist D, Myrenås M, Rydén C, Finn M, Bengtsson B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs: a pilot study. Infect Ecol Epidemiol. 2016;6(1):31514. http://dx.doi.org/10.3402/iee.v6.31514. PMid:27330043.
Lopes G, Michael G, Cardoso M, Schwarz S. Antimicrobial resistance and class 1 integron-associated gene cassettes in Salmonella enterica serovar Typhimurium isolated from pigs at slaughter and abattoir environment. Vet Microbiol. 2016;194:84-92. http://dx.doi.org/10.1016/j. vetmic.2016.04.020. PMid:27142182.
Lopes G, Pissetti C, Cruz D, Silva L, Cardoso M. Resistance phenotypes and genotypes of Salmonella enterica subsp. enterica isolates from feed, pigs, and carcasses in Brazil. J Food Prot. 2015;78(2):407-13. http://dx.doi.org/10.4315/0362-028X.JFP-14-274. PMid:25710159.
López A, Ortúzar R, Alippi A. Tetracycline and oxytetracycline resistance determinants detected in Bacillus cereus strains isolated from honey samples. Rev Argent Microbiol. 2008;40(4):231-7. PMid:19213248.
Martínez-Vázquez AV, Rivera-Sánchez G, Lira-Méndez K, Reyes-López MA, Bocanegra-García V. Prevalence, antimicrobial resistance and virulence genes of Escherichia coli isolated from retail meat in Tamaulipas, Mexico. J Glob Antimicrob Resist. 2018;14:266-72. http://dx.doi.org/10.1016/j.jgar.2018.02.016. PMid:29501529.
Martínez-Vázquez AV, Vázquez-Villanueva J, Leyva-Zapata LM, Barrios-García H, Rivera G, Bocanegra-García V. Multidrug resistance of Escherichia coli strains isolated from bovine feces and carcasses in Northeast Mexico. Front Vet Sci. 2021;8:643802. http://dx.doi.org/10.3389/fvets.2021.643802. PMid:33969038.
Martini C, Lange C, Brito M, Ribeiro JB, Mendonça LC, Vaz EK. Characterisation of penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine milk samples in Minas Gerais, Brazil. J Dairy Res. 2017;84(2):202-5. http://dx.doi.org/10.1017/S0022029917000061. PMid:28290267.
Martins A, Pinheiro T, Imperatori A, Freire S, Sá-Freire L, Moreira BM, Bonelli RR. Plesiomonas shigelloides: a notable carrier of acquired antimicrobial resistance in small aquaculture farms. Aquaculture. 2019;500:514-20. http://dx.doi.org/10.1016/j.aquaculture.2018.10.040.
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort J Vet Res. 2020;87(1):e1-20. http://dx.doi.org/10.4102/ojvr.v87i1.1869. PMid:33054262.
Mattiello S, Drescher G, Barth Junior V, Ferreira C, Oliveira S. Characterization of antimicrobial resistance in Salmonella enterica strains isolated from Brazilian poultry production. Antonie van Leeuwenhoek. 2015;108(5):1227-38. http://dx.doi.org/10.1007/s10482-015-0577-1. PMid:26337044.
Mayorga M, Rodríguez-Cavallini E, López-Ureña D, BarqueroCalvo E, Quesada-Gómez C. Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin. Anaerobe. 2015;36:19-24. http://dx.doi.org/10.1016/j.anaerobe.2015.09.003. PMid:26385434.
Michael G, Cardoso M, Schwarz S. Molecular analysis of multiresistant porcine Salmonella enterica subsp. enterica serovar Bredeney isolates from Southern Brazil: identification of resistance genes, integrons and a group II intron. Int J Antimicrob Agents. 2008;32(2):120-9. http://dx.doi.org/10.1016/j.ijantimicag.2008.02.024. PMid:18571903.
Miles T, McLaughlin W, Brown P. Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Vet Res. 2006;2(1):7. http://dx.doi.org/10.1186/1746-6148-2-7. PMid:16460561.
Miranda C, Kehrenberg C, Ulep C, Schwarz S, Roberts M. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother. 2003;47(3):883-8. http://dx.doi.org/10.1128/AAC.47.3.883-888.2003. PMid:12604516.
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC, Browne AJ, Chipeta MG, Fell F, Hackett S, Haines-Woodhouse G, Kashef Hamadani BH, Kumaran EAP, McManigal B, Achalapong S, Agarwal R, Akech S, Albertson S, Amuasi J, Andrews J, Aravkin A, Ashley E, Babin F-X, Bailey F, Baker S, Basnyat B, Bekker A, Bender R, Berkley JA, Bethou A, Bielicki J, Boonkasidecha S, Bukosia J, Carvalheiro C, Castañeda-Orjuela C, Chansamouth V, Chaurasia S, Chiurchiù S, Chowdhury F, Clotaire Donatien R, Cook AJ, Cooper B, Cressey TR, Criollo-Mora E, Cunningham M, Darboe S, Day NPJ, De Luca M, Dokova K, Dramowski A, Dunachie SJ, Duong Bich T, Eckmanns T, Eibach D, Emami A, Feasey N, Fisher-Pearson N, Forrest K, Garcia C, Garrett D, Gastmeier P, Giref AZ, Greer RC, Gupta V, Haller S, Haselbeck A, Hay SI, Holm M, Hopkins S, Hsia Y, Iregbu KC, Jacobs J, Jarovsky D, Javanmardi F, Jenney AWJ, Khorana M, Khusuwan S, Kissoon N, Kobeissi E, Kostyanev T, Krapp F, Krumkamp R, Kumar A, Kyu HH, Lim C, Lim K, Limmathurotsakul D, Loftus MJ, Lunn M, Ma J, Manoharan A, Marks F, May J, Mayxay M, Mturi N, Munera-Huertas T, Musicha P, Musila LA, Mussi-Pinhata MM, Naidu RN, Nakamura T, Nanavati R, Nangia S, Newton P, Ngoun C, Novotney A, Nwakanma D, Obiero CW, Ochoa TJ, Olivas-Martinez A, Olliaro P, Ooko E, Ortiz-Brizuela E, Ounchanum P, Pak GD, Paredes JL, Peleg AY, Perrone C, Phe T, Phommasone K, Plakkal N, Ponce-deLeon A, Raad M, Ramdin T, Rattanavong S, Riddell A, Roberts T, Robotham JV, Roca A, Rosenthal VD, Rudd KE, Russell N, Sader HS, Saengchan W, Schnall J, Scott JAG, Seekaew S, Sharland M, Shivamallappa M, Sifuentes-Osornio J, Simpson AJ, Steenkeste N, Stewardson AJ, Stoeva T, Tasak N, Thaiprakong A, Thwaites G, Tigoi C, Turner C, Turner P, van Doorn HR, Velaphi S, Vongpradith A, Vongsouvath M, Vu H, Walsh T, Walson JL, Waner S, Wangrangsimakul T, Wannapinij P, Wozniak T, Young Sharma TEMW, Yu KC, Zheng P, Sartorius B, Lopez AD, Stergachis A, Moore C, Dolecek C, Naghavi M. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55. http://dx.doi.org/10.1016/S0140-6736(21)02724-0. PMid:35065702.
Nobrega D, Calarga A, Nascimento L, Chande C, de Lima E, Langoni H, Brocchi M. Molecular characterization of antimicrobial resistance in Klebsiella pneumoniae isolated from Brazilian dairy herds. J Dairy Sci. 2021;104(6):7210-24. http://dx.doi.org/10.3168/jds.2020-19569. PMid:33773789.
Núncio ASP, Webber B, Pottker ES, Cardoso B, Esposito F, Fontana H, Lincopan N, Girardello R, Pilotto F, Dos Santos LR, Rodrigues LB. Genomic characterization of multidrug-resistant Salmonella Heidelberg E2 strain isolated from chicken carcass in southern Brazil. Int J Food Microbiol. 2022;379:109863. http://dx.doi.org/10.1016/j.ijfoodmicro.2022.109863. PMid:35940116.
O’Neill J. Tackling drug-resistant infections globally: Final report and recommendations [Internet]. London: Government of the United Kingdom; 2016 [cited 2023 Feb 13]. Available from: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.
Oliveira R, Aragão B, Melo R, Silva D, Carvalho R, Juliano M, Farias M, Lira N, Mota R. Bovine mastitis in Northeastern Brazil: occurrence of emergent bacteria and their phenotypic and genotypic profile of antimicrobial resistance. Comp Immunol Microbiol Infect Dis. 2022;85:101802. http://dx.doi.org/10.1016/j.cimid.2022.101802. PMid:35395518.
Page M, McKenzie J, Bossuyt P, Boutron I, Hoffmann T, Mulrow C, Shamseer L, Tetzlaff J, Akl E, Brennan S, Chou R, Glanville J, Grimshaw J, Hróbjartsson A, Lalu M, Li T, Loder E, Mayo-Wilson E, McDonald S, McGuinness L, Stewart L, Thomas J, Tricco A, Welch V, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. http://dx.doi.org/10.1136/bmj.n71. PMid:33782057.
Peak N, Knapp C, Yang R, Hanfelt M, Smith M, Aga D, Graham D. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ Microbiol. 2007;9(1):143-51. http://dx.doi.org/10.1111/j.1462-2920.2006.01123.x. PMid:17227419.
Peirano G, Agersø Y, Aarestrup F, Reis E, Prazeres D. Occurrence of integrons and antimicrobial resistance genes among Salmonella enterica from Brazil. J Antimicrob Chemother. 2006;58(2):305-9. http://dx.doi.org/10.1093/jac/dkl248. PMid:16782743.
Pérez V, Custódio D, Silva E, Oliveira J, Guimarães A, Brito M, Souza-Filho A, Heinemann M, Lage A, Dorneles E. Virulence factors and antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis in Brazil. Braz J Microbiol. 2020;51(4):2111-22. http://dx.doi.org/10.1007/s42770-020-00363-5. PMid:32815081.
Pinto T, Costa N, Corrêa A, Oliveira I, Mattos M, Rosado A, Benchetrit L. Conjugative transfer of resistance determinants among human and bovine Streptococcus agalactiae. Braz J Microbiol. 2014;45(3):785-9. http://dx.doi.org/10.1590/S1517-83822014000300004. PMid:25477908.
Pontes P, Coutinho S, Iovine R, Cunha M, Knöbl T, Carvalho V. Survey on pathogenic Escherichia coli and Salmonella spp. in captive cockatiels (Nymphicus hollandicus). Braz J Microbiol. 2018;49(Suppl 1):76-82. http://dx.doi.org/10.1016/j.bjm.2018.05.003. PMid:30170962.
Ribeiro V, Lincopan N, Landgraf M, Franco B, Destro M. Characterization of class 1 integrons and antibiotic resistance genes in multidrug-resistant Salmonella enterica isolates from foodstuff and related sources. Braz J Microbiol. 2011;42(2):685-92. http://dx.doi.org/10.1590/S1517-83822011000200033. PMid:24031680.
Riccobono E, Pallecchi L, Mantella A, Bartalesi F, Zeballos I, Trigoso C, Villagran A, Bartoloni A, Rossolini G. Carriage of antibiotic-resistant Escherichia coli among healthy children and home-raised chickens: a household study in a resource-limited setting. Microb Drug Resist. 2012;18(1):83-7. http://dx.doi.org/10.1089/mdr.2011.0003. PMid:21711148.
Roberts M. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 2005;245(2):195-203. http://dx.doi.org/10.1016/j.femsle.2005.02.034. PMid:15837373.
Roberts M, Schwarz S. Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans. J Environ Qual. 2016;45(2):576-92. http://dx.doi.org/10.2134/jeq2015.04.0207. PMid:27065405.
Rojas-Jiménez J, Jiménez-Pearson MA, Duarte-Martínez F, Brenes-Mora E, Arguedas R, Barquero-Calvo E. First report of a multidrug-resistant ST58 Escherichia coli harboring extended-spectrum beta-lactamase of the CTX-M-1 class in a fecal sample of a captive baird’s tapir (Tapirus bairdii) in Costa Rica, Central America. Microb Drug Resist. 2022;28(1):143-8. http://dx.doi.org/10.1089/mdr.2020.0339. PMid:34314636.
Rueda Furlan JP, Moura Q, Lima Gonzalez IH, Locosque Ramos P, Lincopan N, Guedes Stehling E. Draft genome sequence of a multidrug-resistant CTX-M-65-producing Escherichia coli ST156 colonizing a giant anteater (Myrmecophaga tridactyla) in a Zoo. J Glob Antimicrob Resist. 2019;17:19-20. http://dx.doi.org/10.1016/j.jgar.2019.03.005. PMid:30877057.
Sacristán I, Esperón F, Acuña F, Aguilar E, García S, López M, Cevidanes A, Neves E, Cabello J, Hidalgo-Hermoso E, Poulin E, Millán J, Napolitano C. Antibiotic resistance genes as landscape anthropization indicators: using a wild felid as sentinel in Chile. Sci Total Environ. 2020;703:134900. http://dx.doi.org/10.1016/j.scitotenv.2019.134900. PMid:31757538.
Said M, Tirthani E, Lesho E. Enterococcus infections [Internet]. Treasure Island: StatPearls Publishing; 2022 [cited 2023 Feb 13]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK567759/
Santamaría J, López L, Soto C. Detection and diversity evaluation of tetracycline resistance genes in grasslandbased production systems in Colombia, South America. Front Microbiol. 2011;2:252. http://dx.doi.org/10.3389/fmicb.2011.00252. PMid:22174707.
Santestevan N, Angelis Zvoboda D, Prichula J, Pereira R, Wachholz G, Cardoso L, Moura T, Medeiros A, Amorin D, Tavares M, d’Azevedo P, Franco A, Frazzon J, Frazzon A. Antimicrobial resistance and virulence factor gene profiles of Enterococcus spp. isolates from wild Arctocephalus australis (South American fur seal) and Arctocephalus tropicalis (Subantarctic fur seal). World J Microbiol Biotechnol. 2015;31(12):1935-46. http://dx.doi.org/10.1007/s11274-015-1938-7. PMid:26347323.
Sartori L, Sellera F, Moura Q, Cardoso B, Cerdeira L, Lincopan N. Multidrug-resistant CTX-M-15-positive Klebsiella pneumoniae ST307 causing urinary tract infection in a dog in Brazil. J Glob Antimicrob Resist. 2019;19:96-7. http://dx.doi.org/10.1016/j.jgar.2019.09.003. PMid:31520809.
Shutter M, Akhondi H. Tetracycline. Treasure Island: StatPearls Publishing; 2022. Silva C, Oliveira C, Leite E, Cibulski S, Fernandes M, Vasconcelos P, Dias L, Silva N, Garino Júnior F, Fernandes A. CTX-M-15-producing Klebsiella pneumoniae ST273 associated with nasal infection in a domestic cat. J Glob Antimicrob Resist. 2022;38:203-5. http://dx.doi.org/10.1016/j.jgar.2022.01.004. PMid:35026464.
Silva J, Castro G, Gonçalves MS. In vitro antimicrobial susceptibility and genetic resistance determinants of Streptococcus agalactiae isolated from mastitic cows in Brazilian dairy herds. Semina: Ciênc Agrár. 2017;48(4 Suppl 1):2581-93. http://dx.doi.org/10.5433/1679-0359.2017v38n4Supl1p2581.
Silva N, Guimarães F, Manzi M, Budri P, Gómez-Sanz E, Benito D, Langoni H, Rall V, Torres C. Molecular characterization and clonal diversity of methicillin-susceptible Staphylococcus aureus in milk of cows with mastitis in Brazil. J Dairy Sci. 2013;96(11):6856-62. http://dx.doi.org/10.3168/jds.2013-6719. PMid:24054305.
Silva N, Guimarães F, Manzi MP, Gómez-Sanz E, Gómez P, Araújo-Júnior JP, Langoni H, Rall VL, Torres C. Characterization of methicillin-resistant coagulase-negative staphylococci in milk from cows with mastitis in Brazil. Antonie van Leeuwenhoek. 2014;106(2):227-33. http://dx.doi.org/10.1007/s10482-014-0185-5. PMid:24817534.
Snyder G, Thorn K, Furuno J, Perencevich E, Roghmann M, Strauss S, Netzer G, Harris A. Detection of methicillinresistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol. 2008;29(7):583-9. http://dx.doi.org/10.1086/588701. PMid:18549314.
Talavera-González JM, Talavera-Rojas M, SorianoVargas E, Vázquez-Navarrete J, Salgado-Miranda C. In vitro transduction of antimicrobial resistance genes into Escherichia coli isolates from backyard poultry in Mexico. Can J Microbiol. 2021;67(5):415-25. http://dx.doi.org/10.1139/cjm-2020-0280. PMid:33395360.
Tasina E, Haidich AB, Kokkali S, Arvanitidou M. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis. 2011;11(11):834-44. http://dx.doi.org/10.1016/S1473-3099(11)70177-3. PMid:21784708.
United Nations Environment Programme – UNEP. Areas of biodiversity importance [Internet]. Cambridge: UNEP; 2023 [cited 2023 Feb 13]. Available from: https://www.biodiversitya-z.org/themes/areas?category_id=23.
Varela-Guerrero JA, Talavera-Rojas M, Gutiérrez-Castillo AC, Reyes-Rodríguez NE, Vázquez-Guadarrama J. Phenotypicgenotypic resistance in Salmonella spp. isolated from cattle carcasses from the north central zone of the State of Mexico. Trop Anim Health Prod. 2013;45(4):995-1000. http://dx.doi.org/10.1007/s11250-012-0323-x. PMid:23224863.
Vásquez-Aguilar AA, Toledo-Manuel FO, Barbachano-Guerrero A, Hernández-Rodríguez D. Detection of antimicrobial resistance genes in Escherichia coli isolated from black howler monkeys (Alouatta pigra) and domestic animals in fragmented rain-forest areas in Tabasco, Mexico. J Wildl Dis. 2020;56(4):922-7. http://dx.doi.org/10.7589/2019-10-243. PMid:32402234.
Vilela F, Gomes C, Passaglia J, Rodrigues D, Costa R, Tiba Casas M, Fernandes S, Falcão J, Campioni F. Genotypic resistance to quinolone and tetracycline in Salmonella dublin strains isolated from humans and animals in Brazil. Microb Drug Resist. 2019;25(2):143-51. http://dx.doi.org/10.1089/mdr.2017.0329. PMid:30222519.
Wall B, Marshall L, Mateus A, Pfeiffer D. Drivers, dynamics and epidemiology of antimicrobial resistance in animal production. Rome: Food and Agriculture Organization of the United Nations; 2016.
Wang N, Guo X, Yan Z, Wang W, Chen B, Ge F, Ye B. A comprehensive analysis on spread and distribution characteristic of antibiotic resistance genes in livestock farms of Southeastern China. PLoS One. 2016;11(7):e0156889. http://dx.doi.org/10.1371/journal.pone.0156889. PMid:27388166.
Williams GW, Anderson DP. The Latin American livestock industry: growth and challenges [Internet]. Choices; 2019 [cited 2023 Feb 13]. Available from: https://www.choicesmagazine.org/choices-magazine/submitted-articles/the-latin-american-livestock-industry-growth-and-challenges.
World Health Organization – WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed [Internet]. Geneva: WHO; 2017 [cited 2023 Feb 13]. Available from: https://www.who.int/news/item/27-02-2017-whopublishes-list-of-bacteria-for-which-new-antibiotics-areurgently-needed.
World Health Organization – WHO. Critically important antimicrobials for human medicine [Internet]. 6th rev. Geneva: WHO; 2018 [cited 2023 Feb 13]. Available from: https://www.who.int/publications/i/item/9789241515528.
World Health Organization – WHO. Lista OMS de antimicrobianos de importancia crítica para la medicina humana [Internet]. Geneva: Food and Agriculture Organization & World Health Organization; 2019 [cited 2023 Feb 13]. Available from: https://apps.who.int/iris/bitstream/handle/10665/325037/WHO-NMH-FOSFZD-19.1-spa.pdf?ua=1.
World Organisation for Animal Health – WOAH. Lista de agentes antimicrobianos importantes para la medicina veterinaria [Internet]. Geneva: Food and Agriculture Organization & World Health Organization; 2021 [cited 2023 Feb 13]. Available from: https://apps.who.int/iris/handle/10665/325037.
World Small Animal Veterinary Association – WSAVA. Guide du bien-être animal pour les médecins vétérinaires et leur équipe [Internet]. Ontario: Global Veterinary Community; 2020. 89 p. [cited 2023 Feb 13]. Available from: https://wsava.org/wp-content/uploads/2020/01/
WSAVA-Animal-Welfare-Guidelines-French.pdf. Würfel SFR, Jorge S, Oliveira NR, Kremer FS, Sanchez CD, Campos VF, Silva Pinto L, Silva WP, Dellagostin OA. Campylobacter jejuni isolated from poultry meat in Brazil: in silico analysis and genomic features of two strains with different phenotypes of antimicrobial susceptibility. Mol Biol Rep. 2020;47(1):671-81. http://dx.doi.org/10.1007/s11033-019-05174-y. PMid:31749118.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Veterinary Research and Animal Science
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal content is authorized under the Creative Commons BY-NC-SA license (summary of the license: https://