Evolução de Coronavírus aviário (AvCoV) em células BHK-21 e VERO

Autores

  • Paulo Eduardo Brandão Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal
  • Beatriz Alcântara Leite Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal
  • Sueli Akemi Taniwaki Miyagi Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2020.166086

Palavras-chave:

Coronavírus aviário, Espícula, Nsp3, Cultivo celular

Resumo

O Coronavírus aviário AvCoV infecta uma variedade de tecidos de galinhas e de outras espécies aviárias. Apesar de este vírus poder ser isolado em ovos embrionados de galinha, apenas alguns dos 6 genótipos / 33 linhagens podem crescer em cultivo celular, sendo a cepa Beuadette (linhagem GI-11) a mais utilizada para estudos in vitro. Considerando as diferentes linhagens celulares e ovos embrionados como habitats para o AvCoV, este estudo teve por objetivo estudar a diversidade de genes que codificam para a proteína não-estrutural 3 (nsp3) e espícula (S) após passagens seriadas em células BHK-21 e VERO. Após 14 passagens, de uma amostra Beuadette adaptada a ovos embrionados, os títulos virais variaram em ambas as células, com os maiores títulos sendo de 8,72 log cópias genômicas/µL para Vero e 6,36 cópias genômicas/µL para BHK-21. Nenhum polimorfismo foi encontrando para nsp3. Considerando a proteína S, não somente foram encontradas substituições de aminoácidos (Vero: 8a passagem A150S e 14a passagem S150A; BHK-21: 4a passagem S53F, 8a passagem F53Y e S95R), mas também, variantes subconsensuais foram detectadas pelos cromatogramas com intensidades flutuantes. Uma vez que as regiões destes aa se encontram no domínio de ligação de receptor de S, pode-se especular que diferenças em receptores celulares entre Vero e BHK-21, além da velocidade da morte celular, levaram à seleção de diferentes cepas dominantes, enquanto que a estabilidade de nsp3 concorda com sua função como protease com papel na replicação de AvCoV. Como conclusão, a evolução de quase-espécies de AvCoV é influenciada pelo modelo biológico sob consideração e uma transição gradual é vista para variantes dominantes e subdominantes. 

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Armesto M, Cavanagh D, Britton P. The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity. PLoS One. 2009;4(10):e7384. http://dx.doi. org/10.1371/journal.pone.0007384. PMid:19816578.

Bickerton E, Maier HJ, Stevenson-Leggett P, Armesto M, Britton P. The S2 subunit of infectious bronchitis virus Beaudette is a determinant of cellular tropism. 2018;92(19):e01044-18. http:// dx.doi.org/10.1128/JVI.01044-18. PMid:30021894.

BLAST: Basic Local Alignment Search Tool [Internet]. Bethesda: BLAST; 2018 [cited 2020 Jan 28]. Available from: http://www.ncbi.nlm.nih.gov/BLAST/

Callison SA, Hilt DA, Boynton TO, Sample BF, Robison R, Swayne DE, Jackwood MW. Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens. J Virol Methods. 2006;138(1-2):60-5. http://dx.doi.org/10.1016/j. jviromet.2006.07.018. PMid:16934878.

Casais R, Dove B, Cavanagh D, Britton P. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol. 2003;77(16):9084-9. http://dx.doi. org/10.1128/JVI.77.16.9084-9089.2003. PMid:12885925.

Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res. 2007;38(2):281-97. http://dx.doi.org/10.1051/ vetres:2006055. PMid:17296157.

Colvero LP, Villarreal LY, Torres CA, Brañdo PE. Assessing the economic burden of avian infectious bronchitis on poultry farms in Brazil. OIE Rev Sci Tech. 2015;34(3):993-9. http://dx.doi.org/10.20506/ rst.34.3.2411. PMid:27044167.

Cook JKA, Jackwood M, Jones RC. The long view: 40 years of infectious bronchitis research. Avian Pathol. 2012;41(3):239-50. http://dx.doi.org/10.1080/03079457.2 012.680432. PMid:22702451.

Coria MF, Ritchie AE. Serial passage of 3 strains of avian infectious bronchitis virus in african green monkey kidney cells (VERO). Avian Dis. 1973;17(4):697-704. http://dx.doi. org/10.2307/1589036. PMid:4203249.

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):18192. http://dx.doi.org/10.1038/s41579-018-0118-9. PMid:30531947.

Cunningham CH, Spring MP, Nazerian K. Replication of avian infectious bronchitis virus in african green monkey kidney cell line VERO. J Gen Virol. 1972;16(3):423-7. http:// dx.doi.org/10.1099/0022-1317-16-3-423. PMid:4627930.

Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76(2):159-216. http://dx.doi.org/10.1128/MMBR.05023-11. PMid:22688811.

Empresa Brasileira de Pesquisa Agropecuária. Electropherogram quality analysis [Internet]. Brasília: EMBRAPA; 2018 [cited 2020 Jan 28]. Available from: http://asparagin.cenargen. embrapa.br/phph/

Fang SG, Shen S, Tay FPL, Liu DX. Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells. Biochem Biophys Res Commun. 2005;336(2):417-23. http://dx.doi.org/10.1016/j. bbrc.2005.08.105.

International Committee on Taxonomy of Viruses. ICTV Taxonomy history: avian coronavirus [Internet]. USA: ICTV; 2018 [cited 2020 Jan 28]. Available from: https://talk.ictvonline. org/taxonomy/p/taxonomy-history?taxnode_id=20181880

Jackwood MW, Hilt DA, Callison SA. Detection of infectious bronchitis virus by real-time reverse transcriptase–polymerase chain reaction and identification of a quasispecies in the Beaudette strain. Avian Dis. 2003;47(3):718-24. http:// dx.doi.org/10.1637/6075. PMid:14562902.

Jones RC, Worthington KJ, Capua I, Naylor CJ. Efficacy of live infectious bronchitis vaccine against a novel European genotype, Italy 02. VetRec. 2005;156(20):646-7. http:// dx.doi.org/10.1136/vr.156.20.646.

Keep S, Bickerton E, Armesto M, Britton P. The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated beaudette strain. J Gen Virol. 2018;99(8):1097102. http://dx.doi.org/10.1099/jgv.0.001098. PMid:29893665.

Laconi A, van Beurden SJ, Berends AJ, Krämer-Kühl A, Jansen CA, Spekreijse D, Chénard G, Philipp HC, Mundt E, Rottier PJM, Hélène Verheije M. Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo. J Gen Virol. 2018;99(10):1381-90. http:// dx.doi.org/10.1099/jgv.0.001130. PMid:30067172.

Leyson CLM, Jordan BJ, Jackwood MW. Insights from molecular structure predictions of the infectious bronchitis virus S1 spike glycoprotein. Infect Genet Evol. 2016;46:124-9. http:// dx.doi.org/10.1016/j.meegid.2016.11.006. PMid:27836775.

Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237-61. http:// dx.doi.org/10.1146/annurev-virology-110615-042301. PMid:27578435.

Lin Tl, Loa CC, Wu CC. Complete sequences of 3’ end coding region for structural protein genes of Turkey coronavirus. Virus Res. 2004;106(1):61-70. http://dx.doi.org/10.1016/j. virusres.2004.06.003.

Liu C, Xu HY, Liu DX. Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus. J Virol. 2001;75(14):6402-9. http://dx.doi. org/10.1128/JVI.75.14.6402-6409.2001. PMid:11413307.

Nikfarjam L, Farzaneh P. Prevention and detection of mycoplasma contamination in cell culture. Cell J. 2012;13(4):203-12. PMid:23508237.

Ono EAD, Taniwaki SA, Brandão P. Short interfering RNAs targeting a vampire-bat related rabies virus phosphoprotein mRNA. Braz J Microbiol. 2017;48(3):566-9. http://dx.doi. org/10.1016/j.bjm.2016.11.007. PMid:28223028.

Otsuki K, Noro K, Yamamoto H, Tsubokura M. Studies on avian infectious bronchitis virus (IBV) - II. Propagation of IBV in several cultured cells. Arch Virol. 1979;60(2):115-22. http://dx.doi.org/10.1007/ BF01348027. PMid:226034.

Phillips JE, Jackwood MW, McKinley ET, Thor SW, Hilt DA, Acevedol ND, Williams SM, Kissinger JC, Paterson AH, Robertson JS, Lemke C. Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus. Virus Genes. 2012;44(1):63-74. http://dx.doi.org/10.1007/s11262-0110668-7. PMid:21909766.

Promkuntod N, van Eijndhoven REW, de Vrieze G, Gröne A, Verheije MH. Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus. Virology. 2014;448:26-32. http://dx.doi.org/10.1016/j.virol.2013.09.018. PMid:24314633.

R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015 [cited 2020 Jan 28]. Available from: http:// www.R-project.org/

Rossa GAR, Torres CA, Villarreal LYB, Silva SOS, Richtzenhain LJ, Brandão PE. On the diversity of papain-like and nsp2 genes of Brazilian strains of infectious bronchitis virus. In: Proceedings of the VII International Symposium on Avian Corona- and Pneumoviruses and Complicating Pathogens; 2012 June 18-21; Rauischolzhausen, Germany. USA: Web of Science Group; 2012. p. 98-109.

Shan D, Fang S, Han Z, Ai H, Zhao W, Chen Y, Jiang L, Liu S. Effects of hypervariable regions in spike protein on pathogenicity, tropism, and serotypes of infectious bronchitis virus. Virus Res. 2018;250:104-13. http://dx.doi. org/10.1016/j.virusres.2018.04.013. PMid:29684409.

Sjaak de Wit JJ, Cook JK, van der Heijden HM. Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathol. 2011;40(3):22335. http://dx.doi.org/10.1080/03079457.2011.566260. PMid:21711181.

Toro H, Pennington D, Gallardo RA, van Santen VL, van Ginkel FW, Zhang J, Joiner KS. Infectious bronchitis virus subpopulations in vaccinated chickens after challenge. Avian Dis. 2012a;56(3):501-8. http://dx.doi.org/10.1637/9982110811-Reg.1. PMid:23050466.

Toro H, van Santen VL, Jackwood MW. Genetic diversity and selection regulates evolution of infectious bronchitis virus. Avian Dis Dig. 2012b;56(3):449-55. http://dx.doi. org/10.1637/10072-020212-Review.1. PMid:23050459.

Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJM, DiMaio F, Rey FA, Veesler D. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016;531(7592):114-7. http://dx.doi.org/10.1038/ nature16988. PMid:26855426.

Wickramasinghe INA, de Vries RP, Grone A, de Haan CAM, Verheije MH. Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J Virol. 2011;85(17):8903-12. http://dx.doi.org/10.1128/ JVI.05112-11. PMid:21697468.

Winter C, Schwegmann-Weßels C, Cavanagh D, Neumann U, Herrler G. Sialic acid is a receptor determinant for infection of cells by avian Infectious bronchitis virus. J Gen Virol. 2006;87(Pt 5):1209-16. http://dx.doi.org/10.1099/ vir.0.81651-0. PMid:16603523.

Yamada Y, Liu XB, Fang SG, Tay FPL, Liu DX. Acquisition of cell-cell fusion activity by amino acid substitutions in spike protein determines the infectivity of a coronavirus in cultured cells. PLoS One. 2009;4(7):e6130. http://dx.doi. org/10.1371/journal.pone.0006130. PMid:19572016.

Youn S, Leibowitz JL, Collisson EW. In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication. Virology. 2005;332(1):206-15. http://dx.doi.org/10.1016/j. virol.2004.10.045. PMid:15661153.

Young L, Sung J, Stacey G, Masters JR. Detection of mycoplasma in cell cultures. Nat Protoc. 2010;5(5):929-34. PMid:20431538.

Zhang Lab [Internet]. Ann Arbor: Zhang Lab; 2018 [cited 2020 Jan 28]. Available from: http://zhanglab.ccmb.med. umich.edu/I-TASSER

Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9(1):40. http://dx.doi. org/10.1186/1471-2105-9-40. PMid:18215316.

Ziebuhr J, Gorbalenya AE, Snijder EJ. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen

Virol. 2000;81(Pt 4):853-79. http://dx.doi.org/10.1099/00221317-81-4-853. PMid:10725411.

Downloads

Publicado

2020-07-08

Edição

Seção

ARTIGO COMPLETO

Dados de financiamento

Como Citar

1.
Brandão PE, Leite BA, Miyagi SAT. Evolução de Coronavírus aviário (AvCoV) em células BHK-21 e VERO. Braz. J. Vet. Res. Anim. Sci. [Internet]. 8º de julho de 2020 [citado 18º de maio de 2024];57(2):e166086. Disponível em: https://journals.usp.br/bjvras/article/view/166086