Antimicrobial resistance in bacteria isolated from pigs with respiratory clinical signs in Brazil
DOI:
https://doi.org/10.11606/issn.1678-4456.bjvras.2020.160956Keywords:
Multidrug resistance, Streptococcus suis, Pasteurella multocida, Haemophilus parasuis, Actinobacillus pleuropneumoniae, Bordetella bronchisepticaAbstract
Antimicrobial resistance is a current and important issue to public health, and it is usually associated with the indiscriminate use of antimicrobials in animal production. This study aimed to evaluate the antimicrobial susceptibility profile in bacterial isolates from pigs with clinical respiratory signs in Brazil. One hundred sixty bacterial strains isolated from pigs from 51 pig farms in Brazil were studied. In vitro disk-diffusion method was employed using 14 antimicrobial agents: amoxicillin, penicillin, ceftiofur, ciprofloxacin, enrofloxacin, chlortetracycline, doxycycline, oxytetracycline, tetracycline, erythromycin, tilmicosin, florfenicol, lincomycin, and sulfadiazine/trimethoprim. The majority of isolates were resistant to at least one antimicrobial agent (98.75%; 158/160), while 31.25% (50/160) of the strains were multidrug resistant. Streptococcus suis and Bordetella bronchiseptica were the pathogens that showed higher resistance levels. Haemophilus parasuis showed high resistance levels to sulfadiazine/trimethoprim (9/18=50%). We observed that isolates from the midwestern and southern regions exhibited four times greater chance of being multidrug resistant than the isolates from the southeastern region studied. Overall, the results of the present study showed a great level of resistance to lincomycin, erythromycin, sulfadiazine/trimethoprim, and tetracycline among bacterial respiratory pathogens isolated from pigs in Brazil. The high levels of antimicrobial resistance in swine respiratory bacterial pathogens highlight the need for the proper use of antimicrobials in Brazilian pig farms.
Downloads
References
Associação Brasileira de Proteína Animal. Relatório Anual 2018. São Paulo: ABPA; 2018 [cited 2019 Aug 28]. Available from: http://abpa-br.com.br/storage/files/ relatorio-anual-2018.pdf
Carlson MS, Fangman TJ. Swine antibitics and feed additives: food safety considerations. Columbia: University of Misouri; 2000.
Clinical Laboratory Standards Institute. Performance standards for antimicrobial disk and diluition susceptibility test of bacteria isolated from animals. 4th ed. Wayne, PA: CLSI; 2018a [cited 2019 Aug 28]. Available from: https:// standards.globalspec.com/std/10393524/clsi-vet08
Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, M100 [ebook]. 28th ed. Wayne, PA: CLSI; 2018b [cited 2019 Aug 28]. 258 p. ISBN: 1-56238-839-8.
Dayao D, Gibson JS, Blackall PJ, Turni C. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Aust Vet J. 2016;94(7):227-31. http:// dx.doi.org/10.1111/avj.12458. PMid:27349882.
Dayao DAE, Gibson JS, Blackall PJ, Turni C. Antimicrobial resistance in bacteria associated with porcine respiratory disease in Australia. Vet Microbiol. 2014;171(1-2):232-5. http:// dx.doi.org/10.1016/j.vetmic.2014.03.014. PMid:24726505.
Dutra MC. Uso de antimicrobianos em suinocultura no Brasil: análise crítica e impacto sobre marcadores epidemiológicos de resistência [dissertation]. São Paulo: Universidade Federal de São Paulo, Faculdade de Medicina Veterinária e Zootecnia; 2017.
El Garch F, De Jong A, Simjee S, Moyaert H, Klein U, Ludwig C, Marion H, Haag-Diergarten S, Richard-Mazet A, Thomas V, Siegwart E. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009-2012: VetPath results. Vet Microbiol. 2016;(194):11-22. http://dx.doi.org/10.1016/j. vetmic.2016.04.009. PMid:27102206.
Furian TQ, Borges KA, Laviniki V, Silveira Rocha SL, Almeida CN, Nascimento VP, Salle CTP, Souza Moraes HL. Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine. Braz J Microbiol. 2016;47(1):210-6. http://dx.doi.org/10.1016/j. bjm.2015.11.014. PMid:26887247.
Heres L, Oorburg D, Urlings H. Approaches to reduce antibiotic resistance in the pork supply chain [Internet]. Wageningen: Wageningen Academic Publisher; 2013 [cited 2019 Aug 28]. Available from: http://library.wur.nl/ WebQuery/wurpubs/fulltext/278567
Jong A, Thomas V, Simjee S, Moyaert H, El Garch F, Maher K, Morrissey I, Butty P, Klein U, Marion H, Rigaut D, Vallé M. Antimicrobial susceptibility monitoring of respiratory tract pathogens isolated from diseased cattle and pigs across Europe: The VetPath study. Vet Microbiol. 2014;172(12):202-15. http://dx.doi.org/10.1016/j.vetmic.2014.04.008. PMid:24837878.
Kadlec K, Schwarz S. Antimicrobial resistance in Bordetella bronchiseptica. Microbiol Spectr. 2018;6(4). http://dx.doi. org/10.1128/microbiolspec.ARBA-0024-2017.
Kim B, Hur J, Lee JY, Choi Y, Lee JH. Molecular serotyping and antimicrobial resistance profiles of Actinobacillus pleuropneumoniae isolated from pigs in South Korea. Vet Q. 2016;36(3):137-44. http://dx.doi.org/10.1080/0165217 6.2016.1155241. PMid:26879953.
Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perpective, policy, and potential. Public Health Rep. 2012;127(1):4-22. http:// dx.doi.org/10.1177/003335491212700103. PMid:22298919.
Lönnqvist E, Barkoff AM, Mertsola J, He Q. Antimicrobial susceptibility testing of Finnish Bordetella pertussis isolates collected during 2006-2017. J Glob Antimicrob Resist. 2018;14:12-6. http://dx.doi.org/10.1016/j.jgar.2018.02.012. PMid:29486357.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, OlssonLiljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2011;18(3):268-81. http://dx.doi.org/10.1111/j.14690691.2011.03570.x. PMid:21793988.
Ministério da Agricultura, Agropecuária e Abastecimento (Brasil). Portaria no 171, de 13 de dezembro de 2018. Informa sobre a intensão de proibição de uso de antimicrobianos com a finalidade de aditivos melhoradores de desempenho de alimentos e abre prazo manifestação. Diário Oficial da União: seção 1. 2018 dez 19 [cited 2019 Aug 28]; (241):23. Available from: http://www.in.gov.br/materia/-/asset_publisher/ Kujrw0TZC2Mb/content/id/55878469
National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Approved standard. 2nd ed. Wayne: NCCLS; 2002.
Niemann L, Müller P, Brauns J, Nathaus R, Schäkel F, Kipschull K, Höltig D, Wendt M, Schwarz S, Kadlec K. Antimicrobial susceptibility and genetic relatedness of respiratory tract pathogens in weaner pigs over a 12-month period. Vet Microbiol. 2018;219:165-70. http://dx.doi.org/10.1016/j. vetmic.2018.03.030. PMid:29778191.
Opriessnig T, Giménez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Heal Res Rev. 2011;12(02):13348. http://dx.doi.org/10.1017/s1466252311000120
Palmieri C, Varaldo PE, Facinelli B. Streptococcus suis, an emerging drug-resistant animal and human pathogen. Front Microbiol. 2011;2:1-6. http://dx.doi.org/10.3389/ fmicb.2011.00235. PMid:22275909.
Portis E, Lindeman C. Antimicrobial susceptibility of porcine Pasteurella multocida, Streptococcus suis, and Actinobacillus pleuropneumniae from the United States and Canada, 2001 to 2010. J Swine Health Prod. 2013;21(1):30-41.
Rosco Diagnostica. EUCAST and CLSI-potency NeoSensitabsTM User’s Guide. Taastrup, Denmark; 2013 [cited 2019 Aug 28]. Available from: http://pishrotashkhis.com/ wp-content/uploads/2017/07/Neo-SENSITAB-CLSIEUCAST-Potency.pdf
Santana MB, Melo ADB, Cruz DR, Garbossa CAP, Andrade C, Cantarelli VS, Costa LB. Alternatives to antibiotic growth promoters for weanling pigs. Cienc Rural. 2015;45(6):10938. http://dx.doi.org/10.1590/0103-8478cr20140407.
Tang X, Zhao Z, Hu J, Wu B, Cai X, He Q, Chen H. Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China. J Clin Microbiol. 2009;47(4):951-8. http://dx.doi.org/10.1128/JCM.0202908. PMid:19158260.
World Organisation for Animal Health. OIE Annual report on the use of antimicrobial agents in animals. Paris, France: OIE; 2016 [cited 2019 Aug 28]. Available from: http://www. oie.int/fileadmin/Home/fr/Our_scientific_expertise/docs/ pdf/AMR/Survey_on_monitoring_antimicrobial_agents_ Dec2016.pdf
Zhao Y, Guo L, Li J, Huang X, Fang B. Characterization of antimicrobial resistance genes in Haemophilus parasuis isolated from pigs in China. PeerJ. 2018;6(e4613):1-17. http://dx.doi.org/10.7717/peerj.4613. PMid:29666765.
Zhou X, Xu X, Zhao Y, Chen P, Zhang X, Chen H, Cai X. Distribution of antimicrobial resistance among different serovars of Haemophilus parasuis isolates. Vet Microbiol. 2010;141(1-2):168-73. http://dx.doi.org/10.1016/j. vetmic.2009.05.012. PMid:19564084.
Downloads
Published
Issue
Section
License
The journal content is authorized under the Creative Commons BY-NC-SA license (summary of the license: https://