Assessment of postural balance using the Modified Sensory Integration Test in a population of non-fallers

Authors

DOI:

https://doi.org/10.11606/issn.2317-0190.v31i2a226101

Keywords:

Postural Balance, Aged, Accidental Falls, Smartphone

Abstract

Postural static balance relies on the integration of sensory inputs from various systems. Loss of this postural control increases the risk of falls. Objective: Assessing postural balance by measuring oscillation in degrees using the Clinical Test of Sensory Integration and modified Balance (mCTSIB) in non-faller individuals. Methods: Cross-sectional observational study. One hundred and seven individuals underwent mCTSIB on three types of surfaces with oscillation measured using a smartphone fixed to the trunk. Test performance was measured by mean and maximum trunk oscillation in degrees. Correlation, regression, ANOVA, and ROC curve analyses were performed, dividing the group into young adults and older adults. Results: Oscillation was affected by support surface and visual deprivation (p < 0.0001). Test performance was worse in older adults, with a 6% increase in fall risk for every 1-year increase in age (95% CI: 1.02-1.10). Mean total oscillation and mean oscillation with eyes open variables showed cut-off values with good sensitivity and specificity for predicting fall risk. Conclusion: Applying mCTSIB with oscillation measured in degrees using a mobile device provided an objective and quantitative assessment of postural balance suitable for outpatient settings as a low-cost, easy-to-apply, and highly accessible tool for discriminating fall risk.

Downloads

References

EtkiŞimşek TT, Şimşek İE. Balance and postural control. Comparative Kinesiology of the Human Body, Elsevier. Academic Press. 2020:467-75. Doi: https://doi.org/10.1016/B978-0-12-812162-7.00026-6

Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 200;35Suppl2:ii7-ii11. Doi: https://doi.org/10.1093/ageing/afl077

Kaewmanee T, Liang H, Aruin AS. Effect of predictability of the magnitude of a perturbation on anticipatory and compensatory postural adjustments. Exp Brain Res. 2020;238(10):2207-2219. Doi: https://doi.org/10.1007/s00221-020-05883-y

Simoneau G, Ulbrecht J, Derr J, Cavanagh P. Role of somatosensory input in the control of human posture. Gait & Posture 1995;3(3):115–22. Doi: https://doi.org/10.1016/0966-6362(95)99061-O

Keyvanara M, Sadigh MJ, Meijer K, Esfahanian M. A model of human postural control inspired by separated human sensory systems. Biocybernetics and Biomedical Engineering 2021;41(1):255–64. Doi: https://doi.org/10.1016/j.bbe.2020.12.008

Winter D. Human balance and posture control during standing and walking. Gait & Posture 1995;3(4):193–214. Doi: https://doi.org/10.1016/0966-6362(96)82849-9

Sadiq B, Mahmood A. Physiological Based Motor Control of Postural Balance. 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan: Institute of Electrical and Electronics Engineers (IEEE); 2019:1–6. Doi: https://doi.org/10.1109/ICECCE47252.2019.8940766

Politi L, Salerni L, Bubbico L, Ferretti F, Carucci M, Rubegni G, et al. Risk of falls, vestibular multimodal processing, and multisensory integration decline in the elderly-Predictive role of the functional head impulse test. Front Neurol. 2022;13:964017. Doi: https://doi.org/10.3389/fneur.2022.964017

Totilienė M, Uloza V, Lesauskaitė V, Damulevičienė G, Kregždytė R, Kaski D, et al. Impaired Subjective Visual Vertical and Increased Visual Dependence in Older Adults With Falls. Front Aging Neurosci. 2021;13:667608. Doi: https://doi.org/10.3389/fnagi.2021.667608

Barollo F, Hassan M, Petersen H, Rigoni I, Ramon C, Gargiulo P, et al. Cortical Pathways During Postural Control: New Insights From Functional EEG Source Connectivity. IEEE Trans Neural Syst Rehabil Eng. 2022;30:72-84. Doi: https://doi.org/10.1109/TNSRE.2022.3140888

Horak FB. Clinical assessment of balance disorders. Gait & Posture 1997;6(1):76–84. Doi: https://doi.org/10.1016/S0966-6362(97)00018-0

Cohen H, Blatchly CA, Gombash LL. A Study of the Clinical Test of Sensory Interaction and Balance. Physical Therapy 1993;73:346–51. Doi: https://doi.org/10.1093/ptj/73.6.346

Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys Ther. 1986;66(10):1548-50. Doi: https://doi.org/10.1093/ptj/66.10.1548

Herssens N, Verbecque E, McCrum C, Meijer K, van de Berg R, Saeys W, et al. A Systematic Review on Balance Performance in Patients With Bilateral Vestibulopathy. Phys Ther. 2020;100(9):1582-1594. Doi: https://doi.org/10.1093/ptj/pzaa08

Hsieh KL, Roach KL, Wajda DA, Sosnoff JJ. Smartphone technology can measure postural stability and discriminate fall risk in older adults. Gait Posture. 2019;67:160-165. Doi: https://doi.org/10.1016/j.gaitpost.2018.10.005

Hsieh KL, Sosnoff JJ. Smartphone accelerometry to assess postural control in individuals with multiple sclerosis. Gait Posture. 2021;84:114-119. Doi: https://doi.org/10.1016/j.gaitpost.2020.11.011

Pooranawatthanakul K, Siriphorn A. Testing the validity and reliability of a new android application-based accelerometer balance assessment tool for community-dwelling older adults. Gait Posture. 2023;104:103-108. Doi: https://doi.org/10.1016/j.gaitpost.2023.06.016

Ricci NA, Gonçalves DFF, Coimbra AM, Coimbra IB. Sensory interaction on static balance: a comparison concerning the history of falls of community-dwelling elderly. Geriatr Gerontol Int. 2009;9(2):165-71. Doi: https://doi.org/10.1111/j.1447-0594.2009.00516.x

Roman-Liu D. Age-related changes in the range and velocity of postural sway. Arch Gerontol Geriatr. 2018;77:68-80. Doi: https://doi.org/10.1016/j.archger.2018.04.007

Dounskaia N, Peterson D, Bruhns RP. Destabilization of the Upright Posture Through Elevation of the Center of Mass. Ann Biomed Eng. 2018;46(2):318-323. Doi: https://doi.org/10.1007/s10439-017-1957-7

Boonsinsukh R, Khumnonchai B, Saengsirisuwan V, Chaikeeree N. The effect of the type of foam pad used in the modified Clinical Test of Sensory Interaction and Balance (mCTSIB) on the accuracy in identifying older adults with fall history. Hong Kong Physiother J. 2020;40(2):133-143. Doi: https://doi.org/10.1142/S1013702520500134

Lee D, Kim H, An H, Jang J, Hong S, Jung S, et al. Comparison of postural sway depending on balance pad type. J Phys Ther Sci. 2018;30(2):252-257. Doi: https://doi.org/10.1589/jpts.30.252

Patel M, Fransson PA, Lush D, Gomez S. The effect of foam surface properties on postural stability assessment while standing. Gait Posture. 2008;28(4):649-56. Doi: https://doi.org/10.1016/j.gaitpost.2008.04.018

Borzuola R, Giombini A, Torre G, Campi S, Albo E, Bravi M, et al. Central and Peripheral Neuromuscular Adaptations to Ageing. J Clin Med. 2020;9(3):741. Doi: https://doi.org/10.3390/jcm9030741

Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, et al. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev. 2019;99(1):427-511. Doi: https://doi.org/10.1152/physrev.00061.2017

Wood JM, Killingly C, Elliott DB, Anstey KJ, Black AA. Visual Predictors of Postural Sway in Older Adults. Transl Vis Sci Technol. 2022;11(8):24. Doi: https://doi.org/10.1167/tvst.11.8.24

Berger W, Trippel M, Discher M, Dietz V. Influence of subjects' height on the stabilization of posture. Acta Otolaryngol. 1992;112(1):22-30. Doi: https://doi.org/10.3109/00016489209100778

Chiari L, Rocchi L, Cappello A. Stabilometric parameters are affected by anthropometry and foot placement. Clin Biomech (Bristol, Avon). 2002;17(9-10):666-77. Doi: https://doi.org/10.1016/S0268-0033(02)00107-9

Garcia PA, Queiroz LL, Caetano MBD, Silva KHCVE, Hamu TCDDS. Obesity is associated with postural balance on unstable surfaces but not with fear of falling in older adults. Braz J Phys Ther. 2021;25(3):311-318. Doi: https://doi.org/10.1016/j.bjpt.2020.08.003

Błaszczyk JW, Cieślinska-Swider J, Plewa M, Zahorska-Markiewicz B, Markiewicz A. Effects of excessive body weight on postural control. J Biomech. 2009;42(9):1295-300. Doi: https://doi.org/10.1016/j.jbiomech.2009.03.006

Goble DJ, Baweja HS. Normative Data for the BTrackS Balance Test of Postural Sway: Results from 16,357 Community-Dwelling Individuals Who Were 5 to 100 Years Old. Phys Ther. 2018;98(9):779-785. Doi: https://doi.org/10.1093/ptj/pzy062

Reynard F, Christe D, Terrier P. Postural control in healthy adults: Determinants of trunk sway assessed with a chest-worn accelerometer in 12 quiet standing tasks. PLoS One. 2019;14(1):e0211051. Doi: https://doi.org/10.1371/journal.pone.0211051

Nakagawa HB, Ferraresi JR, Prata MG, Scheicher ME. Postural balance and functional independence of elderly people according to gender and age: cross-sectional study. Sao Paulo Med J. 2017;135(3):260-265. Doi: https://doi.org/10.1590/1516-3180.2016.0325280217

Ghram A, Abidi S, Ben Abdessamie A, Weiss K, Dammak M, Jribi S, et al. Impact of Gender, Change of Base of Support, and Visual Deprivation on Postural Balance Control in Young, Healthy Subjects. Int J Sport Stud Hlth. 2021;4(2):e126891. Doi: https://doi.org/10.5812/intjssh-126891

Moran RN, Meek J, Allen J, Robinson J. Sex differences and normative data for the m-CTSIB and sensory integration on baseline concussion assessment in collegiate athletes. Brain Inj. 2020;34(1):20-25. Doi: https://doi.org/10.1080/02699052.2019.1669824

Puszczalowska-Lizis E, Bujas P, Jandzis S, Omorczyk J, Zak M. Inter-gender differences of balance indicators in persons 60-90 years of age. Clin Interv Aging. 2018;13:903-912. Doi: https://doi.org/10.2147/CIA.S157182

Mejía ST, Su TT, Hsieh KL, Griffin AM, Sosnoff JJ. The Dynamic Interplay of Objective and Subjective Balance and Subsequent Task Performance: Implications for Fall Risk in Older Adults. Gerontology. 2023;69(5):581-592. Doi: https://doi.org/10.1159/000528649

Hollinghurst R, Williams N, Pedrick-Case R, North L, Long S, Fry R, et al. Annual risk of falls resulting in emergency department and hospital attendances for older people: an observational study of 781,081 individuals living in Wales (United Kingdom) including deprivation, frailty and dementia diagnoses between 2010 and 2020. Age Ageing. 2022;51(8):afac176. Doi: https://doi.org/10.1093/ageing/afac176

Degani AM, Leonard CT, Danna-Dos-Santos A. The effects of early stages of aging on postural sway: A multiple domain balance assessment using a force platform. J Biomech. 2017;64:8-15. Doi: https://doi.org/10.1016/j.jbiomech.2017.08.029

Johansson J, Jarocka E, Westling G, Nordström A, Nordström P. Predicting incident falls: Relationship between postural sway and limits of stability in older adults. Hum Mov Sci. 2019;66:117-123. Doi: https://doi.org/10.1016/j.humov.2019.04.004

Goble DJ, Baweja HS. Postural sway normative data across the adult lifespan: Results from 6280 individuals on the Balance Tracking System balance test. Geriatr Gerontol Int. 2018;18(8):1225-1229. Doi: https://doi.org/10.1111/ggi.13452

Freeman L, Gera G, Horak FB, Blackinton MT, Besch M, King L. Instrumented Test of Sensory Integration for Balance: A Validation Study. J Geriatr Phys Ther. 2018;41(2):77-84. Doi: https://doi.org/10.1519/JPT.0000000000000110

Published

2024-06-28

Issue

Section

Original Article

How to Cite

1.
Gois TMS, Neves EL de A. Assessment of postural balance using the Modified Sensory Integration Test in a population of non-fallers. Acta Fisiátr. [Internet]. 2024 Jun. 28 [cited 2025 Apr. 16];31(2):73-80. Available from: https://journals.usp.br/actafisiatrica/article/view/226101