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Abstract. We review some recent results concerning recurrence and
transience for branching random walks in random environment on d-
dimensional lattices and on trees. We obtain some generalizations of
these results for the case when the branching random walk in random
environment takes place on arbitrary infinite connected Cayley graph.

1. Introduction

In this paper we are interested mainly in studying transience/recurrence
of general branching random walks in random environment on Cayley
graphs. Roughly speaking, the model is the following. Start with one
particle at the origin of the graph. Then, at every (discrete) moment each
particle produces a random configuration of offspring in the set of neigh-
bouring sites, independently of other particles. This random configuration
is generated according to a certain measure, which depends on the particle’s
location but does not depend on time. These measures themselves are sup-
posed to be random, and, before the branching random walk starts, they are
placed into the sites of the graph in an i.i.d. way. We study a fairly general
case, i.e., the branching and transition mechanisms are not supposed to be
independent, and, moreover, the immediate offspring of a particle should
not be necessarily independent either (we allow, for instance, the following
situation: if a particle has two children, then necessarily they jump to the
same place). We suppose also that particles always generate at least one
offspring, so that the global extinction is not possible.
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Branching random walks in random environment are useful as micro-
scopic models for reaction-diffusion-convection phenomena in a space in-
homogeneous medium. This model received considerable attention in the
past few years. A multidimensional (d ≥ 3) branching random walk for
which the transition probabilities are those of the simple random walk, and
the particles can branch only in some special sites (randomly placed, with
a decreasing density) was considered by den Hollander, Menshikov and
Popov [10], and several sufficient conditions for recurrence and transience
were obtained. A modification of that model was considered by Volkov
in [15]. Branching random walks in many-dimensional random environ-
ment are considered also in [1, 14], where some questions related to the
local and total particle populations are studied.

Dimension d = 1 leads to more explicit results, thanks to the order
structure (see, e.g., [3, 11]). In the case d = 1 with nearest neighbor
jumps, particles have to visit all intermediate locations, and, for a location-
independent jump law, Greven and den Hollander [9] and Baillon, Clément,
Greven and den Hollander [2] could prove some useful variational formulas.
As can be seen in [12], the case where particles move on the tree has a
flavour similar to d = 1. The case of inhomogeneous jumps with constant
branching rate can be formulated as a tree-indexed random walk. In this
case, a complete classification of recurrence/transience is obtained by Gan-
tert and Müller [8], involving the branching rate and the spectral radius of
the transition operator. In [13] this classification is obtained for the case
when the branching and transition environments are chosen independently
from each other. Some results concerning the speed of the rightmost parti-
cle for the case when the extinction is possible were obtained by Devulder
in [5].

In this paper we are mainly interested in the transience and recurrence
properties of the model. As mentioned above, in the case of constant
branching or when the branching and the transitions are independent, this
problem is well understood. When the branching and the transitions are
not independent, some progress was achieved in [3, 11, 12, 4], and here we
summarize and provide some generalizations of the results of those papers.

2. Formal definitions and basic properties of the model

Suppose that G is a finitely generated infinite group. We usually write
the group operation multiplicatively (except for the case G = Z

d), and e
stands for the neutral element. For a fixed set S ⊂ G, the Cayley graph
G(G, S) is defined as a graph with the vertex set G, and the edge set E(G, S),
where

E(G, S) = {(x, y) : x−1y ∈ S}
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(equivalently, from x the edges go to xs, s ∈ S). Throughout this paper
we suppose that S is a generating set of G, so that the graph is connected.
Note that, in general, we do not suppose that S is symmetric, so the graph
can be oriented. We refer to the site corresponding to e as the origin of the
graph.

Now, let us describe the model. Define (with Z+ = {0, 1, 2, . . .})

V =
{

v = (vs, s ∈ S) : vs ∈ Z+,
∑

s∈S

vs ≥ 1
}

,

and for v ∈ V put |v| =
∑

s∈S vs; note that |v| ≥ 1 for all v ∈ V. Further-
more, define M to be the set of all probability measures ω on V:

M =
{

ω = (ω(v), v ∈ V) : ω(v) ≥ 0 for all v ∈ V,
∑

v∈V

ω(v) = 1
}

.

Finally, let Q be a probability measure on M. Now, for each x ∈ G we
choose a random element ωx ∈ M according to the measure Q, indepen-
dently. The collection ω = (ωx, x ∈ G) is called the environment. Given
the environment ω, the evolution of the process is described in the follow-
ing way: start with one particle at some fixed site of G. At each integer
moment the particles branch independently using the following mechanism:
for a particle at site x ∈ G, a random element v = (vs, s ∈ S) is chosen
with probability ωx(v), and then the particle is substituted by vs particles
in xs for all s ∈ S.

We denote by P,E the probability and expectation with respect to ω (in
fact, since the environment is i.i.d., P =

⊗

x∈G Qx, where Qx are copies of
Q), and by P

x
ω, E

x
ω the (so-called “quenched”) probability and expectation

for the process starting from x in the fixed environment ω.

As already mentioned, this notion of branching random walk is more
general than that of [3, 11, 12], since here we do not suppose that the
immediate descendants of a particle jump independently.

Suppose that the two conditions below are fulfilled:

Condition B.

Q{ω : there exists v ∈ V such that ω(v) > 0 and |v| ≥ 2} > 0.

Condition E. There is a set S′ ⊂ S which is a generating set for the
group G and such that

Q
{

ω :
∑

v:vs≥1

ω(v) > 0 for any s ∈ S′
}

= 1.
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Condition B ensures that the model cannot be reduced to random walk
without branching, and Condition E is a natural ellipticity condition which
ensures that the walk cannot be reduced to a proper subgroup of G.

Due to Condition B, for almost all environments the population size
tends to infinity, as can be seen from Lemma 2.5 below. This shows that
the branching random walk is always transient as a process on Z

G
+. So, we

introduce more appropriate notions of recurrence and transience.

Definition 2.1. For the particular realization of the random environment
ω, the branching random walk is called recurrent if

P
0
ω[the origin is visited infinitely often] = 1.

Otherwise, the branching random walk is called transient.

By the Markov property, the recurrence is equivalent to

P
0
ω[the origin is visited at least once] = 1.

In principle, the above definition could depend on the starting point of the
process and on the realization of the environment ω (in fact, as Example 1
below shows, this can be the case when the environment is nonrandom). It
is possible to prove, however, that a natural dichotomy takes place:

Proposition 2.2. We have either:

(i) For P-almost all ω, the branching random walk is recurrent, in
which case P

x
ω[the origin is visited infinitely often] = 1 for all x ∈

G, or:
(ii) For P-almost all ω, the branching random walk is transient, in

which case P
x
ω[the origin is visited infinitely often] = 0 for all x ∈

G.

It is not difficult to construct (see e.g. the example after the proof of The-
orem 4.3 in [3]) environments ω such that Px

ω[0 is visited infinitely often] is
strictly between 0 and 1. The next example (which is Example 1 from [4])
shows that randomness of the environment is essential for our statements
(and also shows, by the way, that there is no hope to prove Proposition 2.2
by arguments of the type “recurrence should not be sensitive to changes of
the environment in finite regions”).

Example 1. Let G = Z, S = {−1, 1}, and consider two measures ω(1), ω(2):

(i) under ω(1), with probability 2/3 there is only one child which is
located one step to the left and with probability 1/3 there is only
one child which is located one step to the right;
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(ii) under ω(2), with probability 1/3 there is only one child which is
located one step to the right and with probability 2/3 there are two
children one being located to the right and the other to the left.

If all sites x < 0 have the environment ω(1) (we say they are of type
1) and all sites x ≥ 0 are of type 2, we have P

x
ω[0 is visited infinitely

often] is 1 for x ≥ 0 and is less than 1 for x < 0. Changing the site
x = 0 from type 2 to type 1 turns the branching random walk from re-
current to transient. This example also shows that, in general, the recur-
rence does depend on the environment locally. Moreover, it shows that
P

0
ω[the origin is visited infinitely often] may be different from 0 and 1. We

will see below that, selecting randomly the environment in an i.i.d. fashion,
makes this branching random walk recurrent (for this particular example
it follows e.g. from Theorem 1.5 of [4]). �

Similarly to [3, 4, 8, 11, 12, 13], for this model it holds that transience
and recurrence of the process only depend on the support of the measure Q,
i.e., the smallest closed subset F ⊂ M such that Q(F ) = 1. Note that ω
belongs to the support if and only if Q(N ) > 0 for all neighborhood N of
ω in M.

Theorem 2.3. Suppose that the branching random walk is recurrent (re-
spectively, transient) for almost all realizations of the random environment
from the distribution Q. Then for any measure Q′ (which satisfies Condi-
tion E) with suppQ ⊆ suppQ′ (respectively, suppQ′ ⊆ suppQ) the process
is recurrent (respectively, transient) for almost all realizations of the ran-
dom environment from the distribution Q′.

The fact that recurrence and transience only depend on the support of
the measure Q is quite natural for this kind of model. Besides [3, 4, 8, 11,
12, 13], we can mention also [6]: in Theorem 3 of that paper it is shown
that, for the branching diffusion, the intensity of ‘mild’ Poissonian obstacles
plays no role for exponential growth and local extinction.

2.1. Seeds

To prove Proposition 2.2 and Theorem 2.3, we have to introduce the
notion of a seed :

Definition 2.4. Fix a finite set U ⊂ G such that e ∈ U , and Hx ⊂ M
with Q(Hx) > 0 for all x ∈ U . With H = (Hx, x ∈ U), the couple (U,H)
is called a seed. We say that ω has a (U,H)-seed at z ∈ G if

ωzx ∈ Hx for all x ∈ U,

and that ω has a (U,H)-seed in the case z = e. We call z the center of the
seed.
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Lemma 2.5. With probability 1 the branching random walk visits infinitely
many distinct (U,H)-seeds (to visit the seed means to visit the site where
the seed is centered).

Proof. The idea of the proof is the following: since the environment is
i.i.d., we are not obliged to construct it completely in the beginning, but
we can rather reveal it gradually, as new sites get visited by the particles.
In particular, the following situation will happen infinitely often: at a given
moment (say, t) a site (say, x) is visited for the first time, and there ex-
ists y ∈ U such that all the sites of the set xy−1U = {xy−1u, u ∈ U} were
unvisited by time t−1. This means that x may be a part of an (U,H)-seed
centered in xy−1. Using the Borel-Cantelli lemma and Condition E, it is
elementary to show that infinitely many seed centers will be visited. �

As we will see, the notion of seed becomes powerful when combined
with independence of the medium. Hence we give two more definitions (cf.
Definitions 2.4 and 2.5 of [4]).

Definition 2.6. For a particular realization of the random environment ω,
we define the branching random walk restricted on set M ⊂ Z

d simply
by discarding all particles that step outside M , and write Pω|M , Eω|M for
corresponding probability and expectation.

The next definition is a particular case of Definition 2.5 of [4].

Definition 2.7. Let U be a finite subset of G with e ∈ U . Let p be a prob-
ability distribution on Z+ with mean larger than 1, i.e., p = (p0, p1, p2, . . .)
with pi ≥ 0,

∑

pi = 1,
∑

ipi > 1. An (U,H)-seed is called p-recurrent if
for any ω such that ωx ∈ Hx, x ∈ U , we have

P
y

ω|U [e will be visited by at least i “free” particles] ≥
∞

∑

j=i

pj

for all i ≥ 1 and all y ∈ W . By “free” particles we mean that none is the
descendant of another one.

Note that, by definition of the restricted branching random walk, the
above probability depends on the environment inside U only.

The next lemma shows the importance of p-recurrent seeds.

Lemma 2.8. Suppose that there exists an (U,H)-seed that is p-recurrent
for some p. Then this implies the recurrence of the branching random walk
for a.e. environment ω.

Proof. The proof of this lemma is quite analogous to that of Lemma 2.6
of [4], so we give only a sketch. By Lemma 2.5, an infinite number of
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(U,H)-seeds will be visited almost surely. Now, each time a p-recurrent
seed is visited, one can define a Galton-Watson branching process there (by
restricting the particles on the set zU , where z is the center of the seed; the
“descendants” of a particle in z are free particles visiting z, see the proof of
Lemma 2.6 of [4] for more details). This branching process is supercritical
(since the distribution of the first generation dominates p), and so it does
not get extinct with a positive probability. Moreover, one can consider an
infinite number of visited p-recurrent seeds that are nonoverlapping, and
so the nonextinctions occur independently. Thus, at least one of those
branching processes survives forever, and from this it is straightforward to
obtain that the origin is visited infinitely often. �

Proof of Proposition 2.2. Again, this is very similar to the proof of Propo-
sitions 1.2 and 1.3 from [4], so we give only a sketch. First, if we assume
that the event {P0

ω[the origin is visited infinitely often] = 1} has positive
P-probability, this would imply that (since the branching is present)

P
0
ω[the origin is visited by (at least) two free particles] = 1.

Then, we can take t large enough so that

P
0
ω[the origin is visited by (at least) two free particles before time t] > 3/4.

Since the jumps are bounded, this probability depends only on a finite
piece of the environment, and so we can construct a p-recurrent seed with
p = (1/4, 0, 3/4, 0, 0, . . .). From Lemma 2.8, we conclude that the branching
random walk is recurrent for Q-a.e. environment. Therefore the set of
recurrent environments has P-probability 0 or 1.

On the other hand, using ellipticity one obtains that

ω recurrent ⇐⇒ P
0
ω[x is visited infinitely often] = 1,

for all x ∈ G. Since the law of ω is stationary, this means that the recurrence
is also equivalent to

P
x
ω[0 is visited infinitely often] = 1

for all x ∈ G.

Analogously, assume that with positive P-probability,

P
x
ω[the origin is visited infinitely often] > 0

for some x ∈ G. Similarly to the previous argument, here also it is possible
to prove that this implies the existence of a recurrent seed (with another p,
see the proof of Proposition 1.3 from [4] for more details), so it remains
only to apply Lemma 2.8 once again. �

Proof of Theorem 2.3. From Lemma 2.8 and the proof of Proposition 2.2
it can be extracted that the process is recurrent if and only if there exists
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a p-recurrent seed which has a positive Q-probability. So, if a measure Q′

has a bigger support, then that seed has also a positive Q′-probability, so
the process in the environment constructed using Q′ is recurrent as well.
This proves Theorem 2.3. �

3. Conditions for transience and recurrence

To formulate the sufficient (and sometimes necessary) condition for the
transience, we need some definitions.

Definition 3.1. A function ϕ : G → R \ {0} is called multiplicative, if
ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G.

Note that, if ϕ is multiplicative, then ϕ(e) = 1 and ϕ(x−1) = (ϕ(x))−1

for all x ∈ G.

Definition 3.2. A function ψ : G → R\{0} is called almost multiplicative,
if ψ(e) = 1 and there exist N , rk(s), k = 1, . . . ,N , s ∈ S and noninter-
secting sets Gk, k = 1, . . . , N , such that

G \ {e} = G1 ∪ . . . ∪GN ,

and for all k = 1, . . . , N , s ∈ S, x ∈ Gk we have

ψ(xs) = rk(s)ψ(x).

Let us define for ω ∈ M, s ∈ S

µω
s =

∑

v∈V

vsω(v),

i.e., µω
s is the mean number of particles sent from x to xs when the envi-

ronment at x is ω.

The next theorem gives a sufficient condition for the transience.

Theorem 3.3. Suppose that there exists a positive function ψ(x) such that
there exists u ∈ G with ψ(u) < 1, ψ is almost multiplicative in the sense of
Definition 3.2, and for any k and any x ∈ Gk

∑

s∈S

µω
s rk(s) ≤ 1 (1)

for all ω ∈ suppQ. Then the branching random walk is transient.

An immediate consequence of this result is the following
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Corollary 3.4. Suppose that on G there exists a multiplicative function ϕ,
which is positive and nontrivial (i.e., ϕ 6≡ 1), and such that

∑

s∈S

µω
sϕ(s) ≤ 1. (2)

Then the branching random walk is transient.

(Note that, if ϕ is nontrivial, then there exists x ∈ G such that ϕ(x) < 1.)

Proof of Theorem 3.3. Let ηn(y) be the number of particles in site y at
time n. Define

Fn =
∑

y∈G

ηn(y)ψ(y).

Suppose that the process starts from u ∈ G with ψ(u) < 1, and let us also
modify the environment in such a way that any particle which enters the
origin neither moves nor branches anymore. Using (1), we prove now that
the process (Fn, n = 0, 1, 2, . . .) is a supermartingale:

E
u
ω

(

Fn+1 | η1(·), . . . , ηn(·)
)

=

= ηn(e) +
∑N

k=1

(

∑

x∈Gk
ηn(x)ψ(x) ×

∑

s∈S µ
ωx
s rk(s)

)

≤ Fn.

Since the process Fn is also nonnegative, it converges a.s. as n → ∞ to
some random variable F∞. By Fatou’s lemma,

E
u
ωF∞ ≤ E

u
ωF0 = ψ(u) < 1.

On the other hand, any particle stuck in e contributes at least one unit
to F . From this we obtain that with positive probability the branching
random walk will not enter to the origin, so the proof of Theorem 3.3 is
finished. �

Concerning the conditions for the recurrence, we can mention that (as
shown in the previous section), if there exists a p-recurrent seed, then the
branching random walk is recurrent. In many examples this seed can be
constructed explicitly; most of the sufficient conditions for the recurrence
are proven by showing that, under certain circumstances, it is possible to
construct a recurrent seed. See e.g. equations (4), (5), and Theorem 1.5
of [4]. However, in some situations it is possible to obtain necessary and
sufficient conditions for transience/recurrence. In fact, what stated in The-
orem 3.3, maybe, is also necessary for the transience (and sometimes it is
possible to prove that, see Sections 3.1 and 3.2 below); at least, the author
does not know of any counterexamples.
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Figure 1. The binary tree (d = 2, a1 := a, a2 := b, a3 := c)

3.1. Branching random walk in random environment on a tree

Consider a nonabelian group Td generated by elements a1, . . . , ad+1, with
the rule a2

i = e, i = 1, . . . , d+ 1. With S = {a1, . . . , ad+1}, the correspond-
ing Cayley graph becomes the usual d-ary tree, see Figure 1.

We have the following result:

Theorem 3.5. The branching random walk in random environment on the
d-ary tree is transient if and only if there exists a collection of positive
numbers λ1, . . . , λd+1, such that for all ω ∈ suppQ

λ−1
i µω

ai
+

∑

j 6=i

λjµ
ω
aj

≤ 1 for all i = 1, . . . , d+ 1. (3)

Proof. First, we prove that the existence of λ1, . . . , λd+1 satisfying (3)
implies transience. On Td, any positive multiplicative function is trivial, so
we will use Theorem 3.3.

Clearly, any x ∈ Td can be uniquely represented as x = b1 . . . bm, where
bi ∈ {a1, . . . , ad+1}, and bj 6= bj+1 for j = 1, . . . ,m − 1. Define for k =
1, . . . , d+ 1

Gk = {x = b1 . . . bm : bm = ak},
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and let Ak(x) be the number of occurrences of ak in that representation
x = b1 . . . bm. For any x 6= e, consider the function

ψ(x) = λ
A1(x)
1 . . . λ

Ad+1(x)
d+1 .

This function is almost multiplicative in the sense of Definition 3.2, with

rk(aj) =

{

λj , for j 6= k,

λ−1
j , for j = k.

Moreover, from (3) it is straightforward to obtain that (1) holds, and so
the branching random walk is transient (observe that, due to Condition B,
the situation λi ≤ 1 for all i = 1, . . . , d+ 1, is not possible).

Now, let us prove that, if the branching random walk is transient, then
there exist λ1, . . . , λd+1 satisfying (3).

First, let us observe that the main result of [12] (Theorem 2.1) is valid
also for the model of the present paper (i.e., when the immediate descen-
dants of a particle are not supposed to be independent). To see that this
is true, one can reason as follows:

(i) One has to prove the modified version of Lemma 3.1 of [12], specifi-
cally, that transience implies that there exists a function f : G → R+

such that for all x ∈ G \ {e}
∑

s∈S

µωx
s f(xs) = f(x).

Similarly to [12], such a function can be constructed in the following
way: turn e into an absorbing state, and let f(x) be the expectation
of the total number of particles absorbed in e. Moreover, it is clear
that there exists a site x (in fact, infinitely many of such sites) such
that f(x) < 1, because otherwise we would be able to construct a
recurrent seed.

(ii) Then, note that the functions hξ and Hi (defined in formulas (2.1)
and (2.2) of [12]) only depend on the transition and branching prob-
abilities through the mean offsprings sent to the neighbouring sites
(i.e., through the quantities we call µω

s ).
(iii) The rest of the proof of Theorem 2.1 of [12] goes through smoothly

in this generalized situation as well.

Then, with this observation, we can apply Theorem 2.1 of [12] to the
branching random walk in random environment on a tree (in the sense
of [12]) with d+1 types of sites. The rule of choosing the type of the site is
the following: a site of type j has descendants of types {1, . . . , d+ 1} \ {j}.
(The root, in fact, should have descendants of types 1, . . . , d + 1, but that
does not change anything.) In the notation of [12], we obtain that, if the
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branching random walk is transient, then there exist λ1, . . . , λd+1 such that
λi ≥ Hi(λ1, . . . , λi−1, λi+1, . . . , λd+1), which is equivalent to (3). �

3.2. Branching random walk in random environment on an integer
lattice

Here we suppose that G = Z
d, and so we write the group operation

additively. The generating set S is supposed to contain ±ei, i = 1, . . . , d,
where ei are the coordinate vectors of Z

d. Any positive multiplicative
function on Z

d has the form ϕ(y) = λu·y, λ > 0, u ∈ S
d−1, and u · y is the

scalar product, where S
d−1 is the unit sphere. So, the following result (cf.

Theorem 1.6 of [4]) is a direct consequence of Corollary 3.4:

Theorem 3.6. Suppose that there exist u ∈ Sd−1, λ > 0 such that for all
ω ∈ suppQ we have

∑

y∈S

µω
yλ

u·y ≤ 1. (4)

Then the branching random walk in random environment is transient.

As noted in [4], the existence of u, λ satisfying (4) is also necessary for
the transience in the case d = 1, S = {−1, 1}. In [13] it was proved that (4)
is necessary and sufficient for the transience in the case when branching
and transition probabilities are chosen independently. In fact, the author
has good reasons to conjecture that the following holds:

Conjecture. If the branching random walk in random environment in Z
d

is transient, then there exist u ∈ S
d−1, λ > 0 such that for all ω ∈ suppQ

we have
∑

y∈S

µω
yλ

u·y ≤ 1. (5)
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[14] P. Révész, Supercritical branching random walk in d-dimensional random envi-
ronment. Applied Statistical Science, III, 41–51, Nova Sci. Publ., Commack, NY,
1998.

[15] S. Volkov, Branching random walk in random environment: fully quenched case.
Markov Processes Relat. Fields 7 (2001) (2), 349–353.

São Paulo J.Math.Sci. 1, 2 (2007), 205–217


