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Departamento de Matemática, Instituto Superior Técnico
1049-001 Lisboa, Portugal

E-mail address: barreira@math.ist.utl.pt

Jinjun Li
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Abstract. By Birkhoff’s ergodic theorem, the set of points Xϕ for
which the Birkhoff averages of a continuous function ϕ diverge has
zero measure with respect to any finite invariant measure. Thus, at
least from the point of view of ergodic theory, this set could not be
smaller. Nevertheless, it can be large from other points of view. For
example, for subshifts with the weak specification property, we showed
recently that Xϕ is residual whenever it is nonempty (it is a simple
exercise to show that Xϕ is dense whenever it is nonempty). The main
purpose of this note is to convey in the simplest possible manner the
proof of our result in the particular case of the full shift on a finite
number of symbols. This has the advantage of avoiding some accessory
technicalities that are necessary in the general case. In fact, we consider
also the more general case when the set of accumulation points of the
Birkhoff averages of a continuous function is a prescribed closed interval
and we show that it is residual whenever it is nonempty.
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1. Introduction

We first introduce the notion of the irregular set for the Birkhoff averages
of a given function. Given a continuous map f : X → X on a compact met-
ric space, the irregular set for the Birkhoff averages of a function ϕ : X → R
is defined by

Xϕ =
{

x ∈ X : lim inf
n→∞

1
n

n−1∑
i=0

ϕ(f i(x)) < lim sup
n→∞

1
n

n−1∑
i=0

ϕ(f i(x))
}

.

As a consequence of Birkhoff’s ergodic theorem, the irregular set has zero
measure with respect to any finite f -invariant measure µ on X (this means
that µ(f−1A) = µ(A) for any measurable set A ⊂ X).

Theorem 1. For a continuous map f on a compact metric space, if the
function ϕ is continuous, then µ(Xϕ) = 0 for any f-invariant finite measure
µ on X.

On the other hand, it was shown in [4] that from the point of view of
topological dynamics and dimension theory the set Xϕ can be as large as
the whole space. We formulate only a particular case of the results, for the
full shift, which is also the dynamical system considered in this note.

Theorem 2. For the full shift f on a finite number of symbols, if the
function ϕ is Hölder continuous, then Xϕ is either empty or has Hausdorff
dimension equal to the Hausdorff dimension of the whole space X.

This phenomenon was first observed by Pesin and Pitskel in [9] for the
full shift on two symbols. We refer the reader to the book [1] for a detailed
discussion and to [3, 5, 6, 7, 8, 10] for related work. Besides the Hausdorff
dimension one may also consider the topological entropy and more generally
the topological pressure of the irregular set.

Here we consider yet another point of view for which an irregular set
can be very large, unlike what happens from the point of view of ergodic
theory. Namely, for the full shift on a finite number of symbols and for an
arbitrary continuous function ϕ, we show that the set Xϕ is either empty
or residual (we recall that a set is said to be residual if it contains a dense
Gδ set).

Theorem 3. For the full shift f on a finite number of symbols, if the
function ϕ is continuous, then Xϕ is either empty or residual.

This is a particular case of results of ours in [2] that consider the general
class of subshifts with the weak specification property. Roughly speaking,
a symbolic system is said to have the weak specification property if under
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iteration one can go from one cylinder set to another (see (1) for the def-
inition) eventually staying outside both of them for a bounded period of
time, independently of the initial and final cylinder sets.

In fact, we show in the remainder of the paper that some subsets of the
irregular set are also residual. Namely, given an interval I ⊂ R, let

XI =
{
x ∈ X : Aϕ(x) = I

}
,

where Aϕ(x) is the set of accumulation points of the sequence of Birkhoff
averages

1
n

n−1∑
i=0

ϕ(f i(x)).

This is the content of Theorem 4, of which Theorem 3 is a corollary. We
refer the reader to [2] for details.

In order to show that the set XI is residual we bridge together strings
of sufficiently large length corresponding to Birkhoff averages with differ-
ent limits in the interval I. Going back and forth between strings corre-
sponding to these limits one can ensure that the resulting Birkhoff averages
diverge and thus their initial points belong to the irregular set. The argu-
ments in [2] are also inspired in this idea, although since we are considering
arbitrary subshifts with the weak specification property various technical
complications arise that to some extent hide the main idea of the proof.

2. Formulation of the result

Let σ be the shift map on Σ = {1, . . . , k}N, where k ≥ 2 is an integer.
Moreover, let ϕ : Σ → R be a continuous function and consider the level
sets

Bϕ(α) =
{

ω ∈ Σ : lim
n→∞

Sϕ(ω, n) = α
}

,

where

Sϕ(ω, n) =
1
n

n−1∑
i=0

ϕ(σi(ω)).

We also consider the nonempty closed interval
Lϕ =

{
α ∈ R : Bϕ(α) 6= ∅

}
and the set Aϕ(ω) of accumulation points of the sequence n 7→ Sϕ(ω, n).

Theorem 4. Let ϕ : Σ → R be a continuous function. Given a closed
interval I ⊂ Lϕ that is not a singleton, if the set

Σϕ,I :=
{
ω ∈ Σ : Aϕ(ω) = I

}
is nonempty, then it is residual.
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Proof. We first introduce some notation. For n ∈ N, let Σn = {1, . . . , k}n

and Σ∗ =
⋃

n∈N Σn. For each ω ∈ Σn, we write |ω| = n and

[ω] = {ρ ∈ Σ : ρ|n = ω}, (1)

where
(ω1 · · · )|n = (ω1 · · ·ωn).

Given W1, . . . ,Wn ⊂ Σ∗ and ω ∈ Σ∗, we write

ωW1 · · ·Wn =
{
ωω1 · · ·ωn : ωi ∈ Wi, 1 ≤ i ≤ n

}
and W ./n = W1 · · ·Wn when W1 = · · · = Wn = W .

We proceed with the proof of the theorem. For each α ∈ R, n ∈ N and
ε > 0, write

F (α, n, ε) =
{
ω|n : ω ∈ Σ and |Sϕ(ω, n)− α| < ε

}
.

Now let k ∈ N and choose αk,1, . . . , αk,qk
∈ I such that

I ⊂
qk⋃

i=1

B
(
αk,i, 1/k

)
(2)

and

|αk,i+1 − αk,i| <
1
k

for i = 0, . . . , qk − 1, |αk,qk
− αk+1,1| <

1
k
. (3)

Moreover, let ε1 > ε2 > · · · be a sequence of positive numbers decreasing
to zero and let

n1,1 < n1,2 < · · · < n1,q1 < n2,1 < n2,2 < · · · < n2,q2 < · · ·

be a sequence of positive integers such that

F (αk,i, nk,i, εk) 6= ∅ for k ∈ N, 1 ≤ i ≤ qk.

It follows from Birkhoff’s ergodic theorem that this choice can be made.
Let Ω0 ∈

⋃
n∈N Σn. For each ω ∈ Ω0, we choose integers {Nk,i}k∈N,i=1,...,qk

(depending on ω) such that:

(i) N1,i ≥ 2n1,i+1 for 2 ≤ i ≤ q1 − 1,
Nk,i ≥ 2nk,i+1 for k ≥ 2, 1 ≤ i ≤ qk − 1,
Nk,qk

≥ 2nk+1,1 for k ≥ 1;
(ii) Nk,i+1 ≥ 2|ω|+N1,1n1,1+N1,2n1,2+···+Nk,ink,i ,

Nk+1,1 ≥ 2|ω|+N1,1n1,1+N1,2n1,2+···+Nk,qk
nk,qk for k ∈ N, 1 ≤ i ≤ qk−1.
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Moreover, we define sets Ωk,i ⊂ Σ∗ for k ∈ N and i = 1, . . . , qk by

Ω1,1 =
⋃

ω∈Ω0

ωF (α1,1, n1,1, ε1)./N1,1 ,

Ω1,2 =
⋃

η∈Ω1,1

ηF (α1,2, n1,2, ε1)./N1,2 ,

· · ·

Ω2,1 =
⋃

η∈Ω1,q1

ηF (α2,1, n2,1, ε2)./N2,1 ,

and so on. Finally, let

Ek,i =
⋃

ω∈Ωk,i

[ω] and E =
∞⋂

k=1

qk⋂
i=1

Ek,i.

Clearly, E is a Gδ set since each cylinder set [ω] is open. Moreover, by
construction, each set Ek,i is dense and so it follows from Baire’s theorem
that E is also dense.

It remains to show that E ⊂ Σϕ,I (since then Σϕ,I contains the dense Gδ

set E and hence is residual). We must prove that Aϕ(ω) = I for ω ∈ E.
We recall that for each ω ∈ E, there exists ω0 ∈ Ω0 such that

ω ∈ ω0F (α1,1, n1,1, ε1)./N1,1 · · · . (4)

We first show that I ⊂ Aϕ(ω). Given

α ∈ I ⊂
qk⋃

i=1

B
(
αk,i, 1/k

)
,

take ik ∈ {1, . . . , qk} such that α ∈ B
(
αk,ik , 1/k

)
. For simplicity of the

exposition, we assume that ik 6∈ {1, qk}. Let

srk
= |ω0|+

q1∑
j=1

N1,jn1,j + · · ·+
ik∑

j=1

Nk,jnk,j , (5)

where rk = (k, ik). We will prove that

|Sϕ(ω, srk
)− αrk

| → 0 when k →∞. (6)

It follows from (6) that

|Sϕ(ω, srk
)− α| ≤ |Sϕ(ω, srk

)− αrk
|+ |αrk

− α|

< |Sϕ(ω, srk
)− αrk

|+ 1
k
→ 0
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when k →∞. Therefore, α ∈ Aϕ(ω) and I ⊂ Aϕ(ω). In order to prove (6),
write

srk
= s̃rk

+ Nrk
nrk

. (7)
Since

|αrk
| ≤ ‖ϕ‖ := max

ω∈Σ
|ϕ(ω)|,

we have∣∣∣∣∣∣
srk

−1∑
i=0

ϕ(σi(ω))− srk
αrk

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
esrk

−1∑
i=0

ϕ(σi(ω))− s̃rk
αrk

∣∣∣∣∣∣ +

∣∣∣∣∣∣
srk

−1∑
i=esrk

ϕ(σi(ω))−Nrk
nrk

αrk

∣∣∣∣∣∣
≤ 2s̃rk

‖ϕ‖+
Nrk

−1∑
q=0

∣∣∣∣∣∣
nrk

−1∑
j=0

ϕ(σj(σesrk
+qnrk (ω)))− nrk

αrk

∣∣∣∣∣∣ .

(8)

Now we consider the numbers
vn(ϕ) = sup

{
|ϕ(ω)− ϕ(ω′)| : ω, ω′ ∈ Σ, ω|n = ω′|n

}
and

Vn(ϕ) =
n∑

j=1

vj(ϕ).

By (4) and the definition of the set F (αrk
, nrk

, εk), one can choose sequences
ω0, . . . , ωNrk

−1 ∈ Σ such that

σesrk
+qnrk (ω)|nrk

= ωq|nrk
(9)

and
|Sϕ(ωq, nrk

)− αrk
| < εk (10)

for q = 0, . . . Nrk
− 1. Denoting the last absolute value in (8) by Cq, it

follows from (9) and (10) that
Cq

nrk

≤
∣∣Sϕ(σesrk

+qnrk (ω), nrk
)− Sϕ(ωq, nrk

)
∣∣ + |Sϕ(ωq, nrk

)− αrk
|

≤
Vnrk

nrk

+ εk

(11)

for q = 0, . . . Nrk
− 1. Together with (8) this implies that∣∣∣∣∣∣

srk
−1∑

i=0

ϕ(σi(ω))− srk
αrk

∣∣∣∣∣∣ ≤ 2s̃rk
‖ϕ‖+ Nrk

(Vnrk
(ϕ) + nrk

εk).
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Now we observe that it follows from condition (ii) that s̃rk
/srk

tends to
zero when k →∞. Indeed, using (5), (7) and condition (ii), we have

srk

s̃rk

− 1 =
Nrk

s̃rk

nrk
≥ 2esrk

s̃rk

nrk

and thus, srk
/s̃rk

→ +∞ when k → ∞. Moreover, it follows from the
uniform continuity of ϕ that vn(ϕ) → 0 when n →∞. Hence, Vn(ϕ)/n → 0
when n →∞ and

Nrk
Vnrk

(ϕ)
srk

≤
Vnrk

(ϕ)
nrk

→ 0 when k →∞.

By the definition of srk
(see (7)), we have srk

> Nrk
nrk

and Nrk
/srk

<
1/nrk

. Therefore,

|Sϕ(ω, srk
)− αrk

| < 2s̃rk
‖ϕ‖

srk

+
Vnrk

(ϕ)
nrk

+ εk → 0

when k →∞, which completes the proof of (6).
Now we show that Aϕ(ω) ⊂ I. For each positive integer n > |ω0| there

exist k ∈ N, ik ∈ {1, 2, . . . , qk} and 0 ≤ p < Nk,ik+1 such that

srk
+ pntk < n ≤ srk

+ (p + 1)ntk , (12)

where tk = (k, ik + 1). Notice that k →∞ when n →∞. We claim that
|Sϕ(ω, n)− αrk

| → 0 when n →∞. (13)
For simplicity of the notation, in a similar manner to that in the former
inclusion we assume that ik 6= qk. If (13) holds, then it follows from (2)
that

dist
(
Sϕ(ω, n), I

)
≤ |Sϕ(ω, n)− αrk

|+ dist(αrk
, I) → 0

when k →∞. Since I is closed, we conclude that Aϕ(ω) ⊂ I.
Now we establish property (13). We have∣∣∣∣∣

n−1∑
i=0

ϕ(σi(ω))− nαrk

∣∣∣∣∣ ≤
∣∣∣∣∣∣
srk

−1∑
i=0

ϕ(σi(ω))− srk
αrk

∣∣∣∣∣∣
+

∣∣∣∣∣∣
srk

+pntk
−1∑

i=srk

ϕ(σi(ω))− pntkαrk

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n−1∑

i=srk
+pntk

ϕ(σi(ω))− (n− srk
− pntk)αrk

∣∣∣∣∣∣
(14)
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and we denote the last two absolute values in (14) respectively by Gn

and Hn. We shall estimate each of these terms. In a similar manner to
that in (9) and (10), one can choose ω0, . . . , ωp−1 ∈ Σ such that

σsrk
+qntk (ω)|ntk = ωq|ntk (15)

and
|Sϕ(ωq, ntk)− αtk | < εk (16)

for q = 0, . . . p− 1. Proceeding as in (11), it follows from (3), (15) and (16)
that∣∣Sϕ(σsrk

+qntk (ω), ntk)− αrk

∣∣ ≤ ∣∣Sϕ(σsrk
+qntk (ω), ntk)− αtk

∣∣ + |αtk − αrk
|

≤
Vntk

(ϕ)
ntk

+ εk +
1
k

for q = 0, . . . , p− 1. Therefore,

Gn

ntk

≤
p−1∑
q=0

∣∣Sϕ(σsrk
+qntk (ω), ntk)− αrk

∣∣
≤ p

(
Vntk

(ϕ)
ntk

+ εk +
1
k

)
.

(17)

Moreover, by (12), we have

Hn ≤ 2(n− srk
− pntk) ‖ϕ‖ ≤ 2ntk ‖ϕ‖ . (18)

Collecting the estimates (17) and (18), we obtain

|Sϕ(ω, n)− αrk
| ≤ |Sϕ(ω, srk

)− αrk
|+ 2ntk ‖ϕ‖

n

+
p(Vntk

(ϕ) + ntkεk)
n

+
pntk

kn
.

(19)

In a similar manner to that in the proof of (6), one can show that the
first term in (19) tends to zero when n → ∞. Moreover, using (12) and
condition (i), we obtain

2ntk ‖ϕ‖
n

≤ 2ntk ‖ϕ‖
srk

≤ 2ntk ‖ϕ‖
Nrk

→ 0 (20)

when n →∞. On the other hand, it follows from (12) that
pntk

kn
≤ 1

k
→ 0 (21)

and
p(Vtk(ϕ) + ntkεk)

n
≤

Vntk
(ϕ) + ntkεk

ntk

→ 0 (22)

São Paulo J.Math.Sci. 6, 2 (2012), 135–143



Full shifts and irregular sets 143

when n → ∞ (since k → ∞ when n → ∞). Hence, property (13) follows
readily from (19), (20), (22) and (21). This completes the proof of the
theorem. �
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