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Quantum Stochastic Processes, Quantum Iterated
Function Systems and Entropy

A. Baraviera; C. F. Lardizabal

A. O. Lopes and M. Terra Cunha

Abstract. We describe some basic results for Quantum Stochastic
Processes and present some new results about a certain class of pro-
cesses which are associated to Quantum Iterated Function Systems
(QIFS). We discuss questions related to the Markov property and we
present a definition of entropy which is induced by a QIFS. This defi-
nition is a natural generalization of the Shannon-Kolmogorov entropy
from Ergodic Theory.

1. Introduction

We review and discuss some main properties of Quantum Stochastic
Processes (see [6] [18] [20]) and present some new results about a certain
class of processes which are associated to a Quantum Iterated Function
System (QIFS). The concept of QIFS was introduced in the work [14], and
it is a natural object in Quantum Information Theory.

We also present a definition of entropy which is suitable for the QIFS.
This definition is a natural generalization of the Shannon-Kolmogorov en-
tropy of Ergodic Theory. We describe a parallel between the classical Kol-
mogorov entropy and the one we present here, which is different from the
one seen in [1].

The present definition of entropy is obtained by adapting the reasoning
described in [5], [12] and [13] to the setting we present in this work. The
main idea is to define this concept via the Ruelle operator and to avoid the
use of partitions. Using this definition one can consider maximal pressure
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density states. This formulation can be seen as a mini-max problem (see [5]
[12] [13]). In [1] it is described some applications of the pressure problem.

Section 2 introduces basic notations and section 3 describes QSPs fol-
lowing [18]; section 4 and 5 describes Quantum Iterated Function Systems,
following [14]. Section 6 is a brief digression on the Chapman-Kolmogorov
equation and probability amplitudes. Section 7 defines probabilities mea-
sures and quantum stochastic processes induced by QIFS. Section 8 gives
a definition of entropy induced by a QIFS and we make a few remarks on
the variational problem of pressure.

Our work is inspired by results presented in [14] and [19]. We would like
to thank these authors for supplying us with the corresponding references.
Some other references related to the topic described here are [1] [2] [3] [4]
[19].

This work is part of the thesis dissertation of C. F. Lardizabal in Prog.
Pos-Grad. Mat. UFRGS (Brazil) [10].

2. Notations

We recall some basic notation which is used in Quantum Computing.
For a comprehensive introduction to the subject, see [16]. Let Hx be a
Hilbert space of finite dimension N. A state in a quantum system is
described by [¢) € Hy. Such states are normalized, so we have ([i)) =
1. For any phase o, we identify the elements |¢') = €'®[+)) and [1)), so
we get the space of pure states, denoted by Py. Topologically, it is the
complex projective space CPY ™! with the Fubini-Study metric, given by

Drs(|9),[¢)) := arccos|(¢i)].

A qubit is a unit vector in a complex vector space of dimension 2
1) = al0) + B[1),
where |a|? + |32 = 1. We can rewrite such equation as

[Y) = e”(cosg|0> + eid)singﬂ)),

where 60, ¢, v are real numbers. As we are in projective space, the factor e””
can be ignored, so we can write

, 6
) = cosg|0) + e’¢sin§]1>

The numbers 6 and ¢ define a point on the unit sphere, the Bloch sphere,
which gives us an easy way to visualize the state of a qubit.
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Denote by p* the adjoint of p : Hy — Hy. We say that p: Hy — Hy
is hermitian if p = p*. We say that a hermitian operator P : Hy — Hy is
positive, denoting such fact by P > 0, if (Pv,v) >0, Yv € Hy.

Definition 1. A density operator (or density matriz) is an operator p
acting on Hy, with p = p*, p > 0 and trp = 1. Denote by My the space
of density operators.

If [) € Hy is a state, denote its associated projection by [i) (1|
(which defines an associated density matrix). We denote by {|0),...,|N —
1)} the canonical orthonormal basis for Hy. A density operator p can
always be written as

k
p="> i |ti) (il (1)
i=1
where the p; are positive numbers with ). p; = 1, and |¢);), i =1,2,..N—1,
is an orthonormal basis. So the |v¢;) are eigenvectors of p with the p; as
their respective eigenvalues.

If a density operator satisfies tr(p?) = 1 then such operator is a projection
and we say that p represents a pure state. If p is a nontrivial convex
combination of projections then we say p represents a mixed state; in this
case we have tr(p?) < 1. Also an operator is a density operator if and only
if its trace equals 1 and if it is positive.

3. A description of quantum stochastic process

In this section the definitions and examples were taken from [18], where it
is presented a definition of quantum stochastic process. We briefly describe
some of the results obtained in that work.

Definition 2. A state space is a pair (V, K), where

(1) V is a real Banach space with norm || - ||.

(2) K is a closed cone in V.

(3) If u,v € K then |ju|| + ||v] = [Ju + ||

(4) If u € V and € > 0 then there are ui,us € K such that u = u; — ug
and [lur|| + [Juzll < lull + €.

Definition 3. If (V, K) is a state space then there is a unique positive linear
functional T : V. — R such that 7(u) = ||u|| if v € K, and 7(u) < |Jul| if
u € V. We say that u € K is a state if 7(u) = 1.

Example 1. Let H be a finite dimensional Hilbert space and let V' be the
space of hermitian operators in H. Let K be the set of positive operators
in V. In this case we have 7(B) = tr(B) for all B operator in V.

Sao Paulo J.Math.Sci. 5, 1 (2011), 53-87



56 A. Baraviera; C. F. Lardizabal, A. O. Lopes, and M. Terra Cunha

O

Definition 4. A phase space is a measurable space (S, ¥) where § repre-
sents the set of all possible results for a measurement and 3 is a o-algebra
of subsets of 2.

Let V* be the dual space of V. We introduce a partial order on V* by
defining ¢ > 9 if ¢(u) > ¢(u), for all u € K.

Definition 5. An effect is a mapping ¢ € V* such that 0 < ¢ < 1. We
denote the space of effects by E C V*.

Definition 6. We say that x : ¥ — £ is an observable if © is a measure
taking values on the space of effects, such that ©(Q2) = 7.

If £ € ¥ ue K and 7(u) = 1 then z(E)u can be interpreted as the
probability that the result of the measurement of the physical quantity
represented by z, prepared in the state u, belongs to the set E. In the case of
quantum mechanics in Hilbert space, effects can be identified with bounded
operators A such that 0 < A <1 by the formula ¢ (W) = tr(AW).

Definition 7. An operation is a positive linear operator T : V. — V
satisfying 0 < 7(Tu) < 7(u) for all u € K. The space of operations will be
denoted by O.

Definition 8. An operator valued measure, or an OVM on a phase
space is a map T : ¥ — O such that if {E,} is a sequence of disjoint sets
in X, then Z(UE,) =Y Z(Ey).

Definition 9. Let Z : ¥ — O be an OVM, then we say that T is an
instrument if
T(Z(Q)u) = 7(u),Yu € V. (2)

We interpret such notion in the following way. Let Z be an instrument,
E e ue K. If uis the state of the system before the measurement and
if Z determines a value in E then the resulting state is given by

Z(E)u
Z(E)w) ®)

Note that for each instrument Z, there is a unique observable x7 : X — &
such that 7(Z(E)u) = zz(E)u, E € ¥, u € K. Also, it is possible that two
instruments correspond to the same observable [18].

The following are examples of instruments:
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Example 2. Let H be a Hilbert space, and let F(#) be the space of
hermitian operators A in H such that

Z(ek, Aey) < 00
keN

and have the same value in any orthonormal base {ej}ren for H. Let
Q={1,...,N},or Q =N, let {P,;};cq be a family of orthogonal projections
such that >, P, = I. Define

Z:x—=0
r7 8 — &
as
I(E)p:= Y PipP, (4)
(<)
v7(E)p:=Y_7(Pip), (5)
el

for all E C Q and p € F(H).
O

Example 3. Let H be a Hilbert space, €2 a topological space, ¥ a o-
algebra for Q and m a measure on (,X). Let {P,}seq be a family of
projections on H, such that the mapping a — P, is strongly continuous
and [, Psdm(a) = I. Then define

I:Xx—-0

TT . X €&
I(E)p:= /EPapPadm(a) (6)
er(B)pi= [ r(Puphim(a). 7)

forall EC Qepe F(H).

¢

Example 4. Let X be a locally compact Hausdorff space, V the space
of the countably additive functions on the Borel o-algebra B(X) for X
endowed with the norm of total variation. Let K be the set of nonnegative
measures on V. Let (2,%) = (X, B(X)). Then

Z(E)u(A) = p(AN E), (8)
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for pw € V, A, E € 3 is an instrument, called the sharp classical mea-
surement and the corresponding observable is

rz(E)pu = p(E) (9)
O

Definition 10. Following [18], a Quantum Stochastic Process, QSP,
is an arbitrary family of instruments {Li}ey. Let J = Z or J = R for
discrete or continuous time, respectively.

The finite dimensional distributions of the process are measures
Pt , defined in (7, B(Q")) as being the natural extensions of the

functions given by

Hig,. .ty (B0 X - X En 1) = 7((Zy,,_, (En-1) L4, _»(En—2)0--- 0Ly, (Eo))u)

(10)
where n e N, tg < --- <t, 1, t; € J,u€e V and Ey,...,E,_1 € X. The
meaning of such expression is the following: py ,  (Eo x -+ x Ej_1)
is the joint probability that successive measurements of the system by
the instruments Zy,...,Z,_1 in the moments tg,...,t,_1 produce values
in Ey, ..., E,_1, when the pre-measurement state is u.

A probability transition is a function P : Q x ¥ — R such that
P(-, E) is measurable for all £ € ¥ and P(x,-) is a probability measure for
all z € Q.

Definition 11. We say that a QSP is Markov if there exists a family of
probability transitions {Pst}s<; such that

:u’go,...,tnfl (EO X X En—l)

= / / T Pyt (Un—1,dyn) -+ Proty (%o, dyl)/ﬁo (dyo) (11)
Eo JE; En

forallty<---<tp,t; €T, ueV, Ey,..., B, € X. A Markov QSP is ho-
mogeneous if the probability transitions Ps; depend only on the difference
t—s.

Remark In contrast with the classic theory of stochastic processes,
the probability transitions of a Markov QSP do not satisfy in general the
Chapman-Kolmogorov equation.

O
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Definition 12. Let T be an instrument. Assume that between the measure-
ments the system evolves and its evolution is described by a group {T}}ic7
of isometric automorphisms of V.. Then define the QSP {Z;}1c7, where

T(E) =T ' o Z(E) o Ty (12)

is called a transformed instrument. For simplicity, we can choose J =
Z so T, =T™ and we denote such process by C(T,T).

Now we show an example of a Markov QSP.

Example 5. Let Z be the instrument given in example 4 and let © : X — X
be a measurable map. Then O generates an automorphism Tg : V — V by

To(1)(A) = n(©'(4)), peV,Ae B(X) (13)

Then we can show that C(Te,Z) is a homogeneous Markov QSP and its
transition probability is given by

P(z,E) = Xp(0z), z€ X, E € B(X) (14)
o

4. Quantum IFS

This section follows [14]. We begin with a few definitions.

Definition 13. Let G; : My — My, p; : My — [0,1], i =1,...,k and
such that Y, pi(p) = 1. We call

./TN:{MN,Gi,pi:i:1,...,k} (15)
a Quantum Iterated Function System (QIFS).
Definition 14. A QIFS is homogeneous if p; and G;p; are affine map-
pings, t =1,.... k.

Suppose that the QIFS considered is such that there are V; and W; linear
maps, i = 1,..., k, with S35 W*W; = I such that

_ ViV
Gi(p) = tr(VipV) (16)
and
pi(p) = tr(WipWy') (17)

Then we have that a QIFS is homogeneous if V;=W,;, ¢ =1,..., k. Now we
can define a Markov operator P : M(My) — M(My),

k
(Pu)(B) = Z/GAl(B)pz(p)du(p),

=1
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where M(M ) denotes the space of probability measure over My. We
also define A : My — My,

k
Alp) = _pi(p)Gilp)
i=1
If the QIFS considered is homogeneous then
Alp) = Vil (15)
We say that p € My is the integral of a mapping f : My — My,
denoted by

p = fdp
Mp

o) = [ 1o fn,
My
for all | € M},.

Theorem 1. A mized state pg is A-invariant, if and only if,

po = / pdu(p), (19)
My
for some P-invariant measure (.

For the proof, see [14], [19].

In order to define hyperbolic QIFS, we have to specify a distance on the
space of mixed states. The following are a few possibilities:

Di(p1, p2) = Vtr[(p1 — p2)?]
Da(p1, p2) = tr/(p1 — p2)?

D1, p2) = \/ 201 — tr[(p 2 papl/ )12}

Such metrics generate the same topology on M. Considering the space of
mixed states with one of those metrics we can make the following definition.

Definition 15. We say a QIFS is hyperbolic if the quantum maps G; are
contractions with respect to one of the distances on My and if the maps p;
are Holder-continuous and positive.

Proposition 1. [14] [19] If a QIFS (15) is homogeneous and hyperbolic
then the associated Markov operator admits a unique invariant measure (.
Such invariant measure determines a unique A-invariant state p € My,
given by (19).
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5. Examples of QIFS

Example 6. Q@ = My, k = 2, p1 = ps = 1/2, G1(p) = UipUt, Ga(p) =
UapU;j. The normalized identity matrix p, = I/N is A-invariant, for any
choice of unitary U; and Us. Note that we can write

P = /MN pdu(p)

where the measure p, uniformly distributed over Py, is P-invariant.

¢

Example 7. Let Q= MN7 k=2 p=p= 1/27 Gl(p) = (IO+ 291)/3>
Ga(p) = (p + 2p2)/3, where we choose the projectors p; = [1)(1| and
p2 = |2)(2| so that they are orthogonal. Since G; and G9 are contractions
with Lipschitz constant equal to 1/3, this QIFS is hyperbolic and so there
is a unique invariant measure.

O

Recall that a mapping A is completely positive (CP), if A®I is positive
for any extension of the original Hilbert space Hy — Hy @ Hg. We know
that every trace preserving CP map can be represented (in a nonunique
way) in the Stinespring-Kraus form

k k
Ap) =D VipVy', D ViVi=1,
=1 =1

where the Vj are linear operators. Besides, if Z?Zl ViV =1Ithen A(I/N) =
I/N and A will be called unital. This is the case if each of the Vj is normal,
that is, if V;V;* = V;'V;. Note that by writing G;(p) = U;pU;", we have that
example 6 is contained in this class of QIFS. We call such QIFS unitary.

For a unitary QIFS we have that p, is an invariant state for Ay and also
that ¢,, is invariant for the Markov operator Py induced by this QIFS.

Definition 16. We say that unitary matrices of same dimension are com-
mon block diagonal if they are block diagonal in the same base and with
the same blocks.

The proof of the following lemma is presented in [14].

Proposition 2. Assume that p;, i = 1,...,k are strictly positive. The the
mazximally mized state py is the unique invariant state for the operator Ay
if and only if the unitary operators U;, i = 1,... k are not common block
diagonal.
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Example 8. Let Q =Py, Uy =1, Uy =01, Us =09, Uy =03, p1 =1—p,
p2 = p3 = pg = p/3 > 0, where 01, 09,03 are the Pauli matrices. Since
such matrices are not common block diagonal the maximally mixed state
px is the unique invariant state for the mapping below, called a quantum
depolarizing channel [14]:

Au(p) = pUipUf = (1 —p)p+ %(01001 + 02p02 + 03p03).

Example 9. Let Q =Py, py =1 —p, p2 = p,
Uy = exp(—iHoT/h),

i

T
L(HoT + /O V(t)dt))

where V(t) = V(t + T'). The maximally mixed state p, = I/2 is an invari-
ant state for the operator Ay corresponding to this QIFS. For a generic
perturbation V', matrices U; and Uy are not common block diagonal so p
is the unique invariant state for Ay.

U = exp(

¢

6. On certain probability and amplitude calculations

We begin with a brief digression on the Chapman-Kolmogorov equation.
Let X = {X,,} be a sequence of measurable functions. Suppose that
P(Xpy1 = jlXn = i) = P(X1 = j|Xo = i)

for all n,4,j. Suppose that X takes values on a finite set S. Define the
matrix P = (p;;) of order |S|, with entries

bij = P(Xn+1 = ]|Xn = Z)
Define the matrix of n transitions P, = (p;;(n)), where
pij(n) = P(Xpmin = j|Xm = 1)
Also suppose that it is a Markov chain, that is

P(X, =zp|Xo =20, X1 =21,..., Xp1 =Tp_1) = (20)
P(Xn = l’n|Xn71 = :L'nfl)
for alln > 1, and zg,...,z, € S.
By using the fact that for any events Ay, Ao, A3, we have
P(Al ﬂAQ‘Ag) = P(A1|A2 ﬂAg)P(AQ‘Ag) (21)
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we can write
pij(m+n) = P(Xmin = j|Xo =i) =Y P(Xpmin = j, Xm = k| Xo = 1)

k
=" P(Xmin = jl1Xim = k) P(Xpn = k| Xo = i) (22)
k
So
pz] m—+ 7”L szk pkj (23)

which is the Chapman-Kolmogorov equatlon. We are interested in studying
quantum stochastic processes and in obtaining an adequate definition to
what we will call a Markov quantum stochastic process. First we recall
that in the previous section we have presented a description [18] of Markov
QSP in which the Chapman-Kolmogorov do not hold in general. This
fact can be seen as the general rule for quantum processes (but see [8] for
different settings).

In algebraic terms, we can argue that the deduction of (23) above is not
valid for quantum processes because of equation (21). Since we have to
take in consideration the interference between measurements, the problem
of understanding how probability measures work in a quantum setting is
a basic question. In quantum mechanics we could in principle consider
a probability space (€2, A, u) such as in classic measure theory. However,
we have that A is a o-algebra and p is a measure on A only when we are
restricted to a single measurement. When we perform several measurements
interference effects occur and so we are no longer considering a problem on
classic probability [7]. Results of more general nature are presented in [9].

We can think that interference occurs because, in contrast to classic
probability measures, which can be quite arbitrary, quantum probability
measures are obtained in a very specific way. In quantum mechanics we
have an amplitude function a : @ — C, and if B € A, we define the
amplitude of B as

AB) =) a(w) (24)

weB
and we define the probability that B occurs as
u(B) = |A(B)? (25)

Let us describe a few more details on this point. For more on the subject,
see for instance [7]. Let €2 be a nonempty set and let a : Q — C. We say that
w € is a sample point and the map a is a probability amplitude, and
(€, f) is called a quantum probability space. A set A C 2 is summable
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if 3 cqla(w)* < co and we denote the collection of summable sets by Y.
Now define A : 3y — C as A(0)) = 0 and

A(B) =) a(w) (26)
weN
We say that A(B) is the amplitude of B. Now define
o A(Bl N BQ)
A(B1|Bg) = TAB) (27)

if A(B2) # 0 and equal to zero, otherwise. In the case that A(Bz) # 0, we
have that A(-|Bz) is a complex measure on P(2), with A(Q|B2) = 1. We
say that A(Bj|Bs) is the conditional amplitude of Bj, given By. Note
that A(B) = 0 does not imply A(BNC) = 0 [7]. Because of that, formulas
of the kind A(BNC) = A(B)A(C|B) might not be true when A(B) = 0.
However, when the conditioning sets have a nonzero amplitude, we have
the formula

A(Bl ne-- -ﬂBn) = A(Bl)A(BQ‘Bl)A(B;ﬂBl ﬂBg) s A(Bn‘Bl n-- 'ﬂB,E_lg

28
which is the amplitude counterpart for equation (21). Define the matrix
A = (a;j), where a;; = A(Xp4+1 = j| X, =1). Now suppose that the chain
{X }nen is quantum Markov, that is,

A(anafn’XO:waXl :l'l,...,Xn_l :xn_l) = (29)
A(Xn = l'n|Xn71 = xnfl)
forall n > 1, xg,...,x, € S. So in a way which is similar to what we did

for probabilities, define the matrix of n transitions A, = (a;j(n)), where
aij(n) = A(Xpyn = j| X = i) and we get

a;j(m+n) Z a;p(m)agi(n (30)

so we have that A+, = A A, and An = A",

7. Probability measures induced by QIFS

In this section we present some new results. Consider a Hilbert space H
of dimension NV = 2. Let ¢1,¢2 € R and also

(T )= () o= (8 0) o

We would like to obtain the fixed points for
L(p) = aVipVi" + @2VapVy'
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Then
@ VipVi' + @@VopVy = p (32)
implies

0 [(VPLip1 + VPrzes) VPIT + (VPip: + vPizps)vViiz| = m
@2 (VP21 + V203 VP21 + (VPrip2 + v/Papa) Ve = pa

And (32) also implies that ps = p3 = 0, so we rewrite the system as

q [\/pllpl VP11 + \/p12P4\/p12} =p1
q2 [\/pmpl vp21 + \/p22p4\/p22} = P4

or
ap1 + fpa = p1 (33)
gp1+ hps = pa (34)
where

a=aqpn, f=aqpi2, g=qp2a, h=qpa
We also get that

p1L = ! P
L=,
1-nh
p1= P4
g
which is a restriction on the ¢;, namely
f 1-nh

1—a g
Therefore the solution of (33) and (34) is

But p1 + ps =1 implies

_ @pi2 0 1—gapao 0
— qipi2—qip1i+1 B - 1—qgop22+qg2p21
P 0 1-q1p11 0 _ @pa

q1p12—qip11+1 1—g2p22+q2p21

(35)
p—( P11 P2
P21 P22
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is column stochastic, that is, we have p;; > 0 and >, p;; =1, 4,5 = 1,2.
Let m be such that Pm = w. Such 7 is given by

1—

= P12 ’ P11 ) (36)
piz2 —pir+1 pi2—pin+1

Compare (36) with (35). Then fix ¢ = g2 = 1, so we get that the nonzero

entries of p are equal to the entries of w. Such a choice for the ¢; is unique.

In fact, comparing the (7,7)-th entry of p with the i-th coordinate of ,

we see that if there exists ¢, which make p and 7 equal (i.e., the diagonal

entries of p correspond to the entries of ), then

q1p12 _ C_Iiplz
api2 —apii+1 dipie —dhpun + 17

which implies
q1(dip12 — ¢ip11 + 1) = ¢4 (a1p12 — qip11 + 1)
= q1¢ip12 — dipi + ¢ = Qgipiz — igip + 4

and when we cancel terms we get g1 = ¢. In a similar way
1 — gap22 _ 1 — gyp22
L —qopo2 + @pa1 1= g5pa2 + gopn

implies
(1 — g2p22)(1 — ghpao + ghpa1) = (1 — ghpao) (1 — qo2paz + g2pa1)
= 1 — ghpoo + ¢hpa1 — QP22 + G205hP3s — Q2qhP2P21

=1 — qapaz + P21 — Ghp22 + Q20hP3s — G245P22P21
Then we get
@oP21 = Q2p21 = @5 = @2
and therefore the choice for ¢; and ¢y is unique.

O
Consider a homogeneous QIFS F = { My, Fj, p; }i=1,..., where
VipV;
Filp) = et
tr(VipVy")

where the V; are linear with ), V;*V; = I and p;(p) = tr(V;pV;*). Then A
is written as
Ap) =Y piFi=> VipV;*

By simplicity we will assume that the quantum system considered can as-
sume two states called 1 and 2.
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We say that the pair ({ X, }nen, 1), Xn : Q@ — {1,...,k}, is a Quantum
Stochastic Process, QSP (homogeneous case), associated to the QIFS F
whenever p is defined as

X1 =1, Xy =x0) = tr(Ve, Vi - Vo Ve po Vi Vi, - - Vil Vi)
(37)
where pg € My is any density operator. The operator pg is a pre-measure
ment state, that is, we have a quantum system and we prepare pg as being
its initial state (for a similar treatment to a sequence of measurements, see

the definition of finite dimensional distributions in section 3).

So we can define for any r,
tr(Ve, Vo, poVy VX
( 1100 r—1 7) (38)
tr(‘/:vrflpovxt‘_l)
Definition 17. We say that a QSP is Markov if
wWXp = X1 =21,..., X1 = 2p—1) = w(Xp = 20| X1 = 2n—1) (39)
O

Remark The condition ), V;*V; = I is enough to show that the measure
of a partition of cylinder sets equals 1. For instance, for two states 1 and
2, for k = 2 and writing

u(i) = p(X1 = i, Xz = j),

,U(Xr = $T|X7‘71 = -’L‘rfl) =

we have
p(11) + p(12) + p(21) + p(22)
= tr(ViVipVi'Vy) 4+ tr(VaVipVi Vo) + tr(ViVopVa Vi') + tr(VaVap Vs V)
= tr(ViViVipVy']) +r (Ve Va[VipVi' ) +tr (ViVi[Vap Vo ) +1r (Vy Vo [VapVy )

= tr((ViVi + ViV VapVy]) + tr (Vi Vi + V3 Vi) [Van V3 )

=tr(VipV7') +tr(VapVs) = tr(Vi'V1 + V3 Va)p) =1 (40)
However, we note that there exist examples in which we can show that the
measure of a partition of cylinder sets equals 1 even if we do not suppose
that >, V;*V; = I. This happens, for instance, in the following construction
involving stochastic matrices.

¢

Let us consider the particular case in which the operator pg € My, given
in the definition of QSP is a fixed point for A(p) = Zle VipV;* induced by
the QIFS F.
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Suppose that Vi and V5 are defined by (31). Suppose that the matrix
P = (pi;) is column stochastic and that we have m such that Pr = 7. For
instance we have

(X1 =1,Xy =2) = tr(VaVipoVi'V5') = pa1(p11p11 + p12p22) = p21l)1(1 )
41
because with the choice of V; we made, we have that the nonzero entries of
po correspond to the entries of . So we can interpret p;; as being

pij = (X = j| X1 = 1) (42)
In a similar way,
(X1 =2,Xy =1) = tr(ViVapo Vo' Vi) = p12p22 (43)
and
(X1 =1,Xo=2,X3=1) =tr(ViVaVipoVi'V5'Vi") = prapa1p11 (44)

Remark A simple calculation shows that with the V; given by (31) we
have that ). V*V; # I. However, we still have that

p(11) + p(12) + p(21) + p(22) = 1
O

To prove that the choice (31) reduces to the classic case for any sequence,
we use the following lemma.

Lemma 1. Suppose N = 2, k = 2. Then for every m, for V; given by
(81) and po corresponding to the stationary vector © for P, we have that
the product

mevwmfl T Vxlpov* V* e Va;km (45)

1~ T2

(60) = (¢?) (1)

depending on whether x,, = 1 or x,, = 2, respectively.

has the form

Proof By induction. If m = 1 then

VipoVir = ( P11p11 ?)-p12022 8 > (47)
and
« (0 0
Vapoly = ( 0 p21p11 + pazp2z ) (48)
Suppose the lemma valid for m, we consider the product
Vzm+lV$m e le po‘/x*l V$*2 T V;m V;m+1 (49)
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Suppose x,,+1 = 1. Then a simple calculation shows that

* 0 % 0 0 .
Vl(o 0)‘/1 eV1<0*)V1 (50)
has only one nonzero entry, namely the (1,1)-th entry. We proceed in a
similar way for the case that x,,.1 = 2, that is

x 0 « 0 0 "
‘/2(0 0)V2eVZ<0*>V2 (51)

has only one nonzero entry, namely the (2,2)-th entry.

O
Proposition 3. If we set
_ [ /P11 /P12 . 0 0
V1 = ( 0 0 ’ V2 - \/ZE \/@ ) (52)
then
N(Xl =x1,X0 =22,..., X, = ajn) = Pznxpn_1Prp_12n_2 " " " PrzzoProxi Prix:
(53)

where p;; denotes the (i, j)-th entry of po, eigenstate for A(p) =, VipV;*.

Proof We prove by induction. Suppose n = 1. Then
(X1 =1) =tr(VipoVi") = p11pi1 + pizpe2 = p1

(X1 =2) =tr(VapoVy') = pa1p11 + pazpaz = p22
For the sake of clarity we also show the case n = 2. We have, after some
routine calculations that

(X1 =1,Xy =1) = tr(ViVipoVi'Vi") = p11p11 (54)
WXy =1,Xe =2) =tr(VaVipoVi'V5) = pa1pnn (55)
(X1 =2,X, =1) =tr(ViVapo V5 Vi) = p12p22 (56)
(X1 =2, Xo =2) = tr(VaVapo V5 V') = paapao (57)
Now suppose the lemma holds for n, let us prove it for n + 1.
First suppose x,4+1 = 1. Then
WXy =x1,..., Xy =2, Xpp1 =1)
=tr(ViVa, -+ Vi Vay po Vi Vi -+ Vi Vi VI (58)

Using lemma 1, we have two cases. If x,, = 1 then

Tl T2 ITn—1 Tn

Vi o Vi Vo po Vo V2 -V VX :<

')
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and therefore

WV ViV Vi V2, Vv =i (0 ) v = (5 )

Tl X2 Tn—1" Tn

and so by taking the trace we get
tr(ViVig, - Vo Vi  po Vo Vi3 - VX VX V)

Tl T2 ITn—1 Tn

= P11P1z, 1 Pxp_12n_o " PrzzoProxi Prixy (59)
In a similar way, if x,, = 2,

Vo o Vi Ve poVEVE -V V*:<80>

x1 Va2 Tn—1"'Tn *

ViV, - -~Vx21@1p0v;31V12 ’ .‘Vznflvmn‘/l =W < 0 =x ) = < *%12 0 )
and taking the trace gives
tr(ViVig, - Vo Vi po Vo V2 - VX VX V)

xr1 " X2 Tn—1" Tn

= P12P2xy,_1Pxp_12n_2 " Pr3zzoProxi Prizr (60)

Now we suppose x,+1 = 2, and we proceed in an analogous way.
IU’(XI = 1'17 o 7Xn = xnaXn—f—l = 2)
=tr(VaVe, -+ Vi Vi po Vi, Vo -+ Vi, Vi, V2) (61)

By lemma 1, we have two cases. If x,, =1 then

Vi -+ Vs Vi po Vi Vi - Vi Vi = ( S 8 >

x1 Va2 1
therefore
%%Mﬂ@%m%W;W@J@W—%<S8)@-(%ﬂ8)
and taking the trace we get
tr(VaVa, -+ Vi Ver poVa, Vi -+ Vi, Vi, Vo)
= P21P1an 1 Pon12n-2 " " DrswaDrozs Pz (62)

Analogously if x, =2

Vi - Vi Ver po Vi Vi - Vi v*:<8

1 T2 In—1 Tn

* O
N———

Tl X2 Tn—1

VaVeo - Vay Vi ooV, Vay -+ Vi, V;Vz*:‘@(g 3)%*:(*%” 8)
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and taking the trace
tr(VaVi, -+ Vo, Vi po Vi, Vi - - Vi VI V)

1 X2 Tn—1

= P22P2z,, 1 Pxp_12n_o " PrzzoProxiPrixy (63)

Corollary 1. The quantum stochastic process induced by

V1:<‘/]09T @)7‘/2:(\/1% \/?@> o

1s Markov.

Proof By the proposition, we have that the measure p reduces to the
Markov measure for matrices.

O

Lemma 2. For V; linear maps and py fized point for A =Y . VipV*, we
have for any m,n,

,U/(Xl :$17X2 = (I:Q,---;Xn :xn) =
M(Xm = xlme—&-l = T2y uXm—i-n = xn)

Proof We prove the lemma for the case in which we have two possible
states 1 and 2. We have

(X =21, Xont1 = 22, .« o, Xonn = )

= Z M(X1:i17X2:i2a---aXm—1:im—laXm:qfl,---aXm—l-n:xn)
U15eetm—1
- Z tr(Ve, - Vi Vi - Vi Vipo Vi Vi -+
12,5l —1

+tr(Va, -+ Vo, Vi Vi Vapo Vo' Vis -+ )

m—1

= Z tr(vzn”'vﬁl‘/:i,n,1 ‘/7,2,00‘/*‘/* * V* V;n)

i2 Vi3 im—1"T1
12,y im—1

Repeating the procedure above for i3, i3, etc. we get
H(Xm =21, Xm+1 = 225+ s Xondn = xn) = tT‘(Vxn T VxlpOV;g*l T ‘/z*n)
This concludes the proof.
O

Sao Paulo J.Math.Sci. 5, 1 (2011), 53-87



72 A. Baraviera; C. F. Lardizabal, A. O. Lopes, and M. Terra Cunha

Example 10. Let us make an inspection with respect to the Chapman-
Kolmogorov equation, that is, we would like to know if the equality

Nzg m+ n Z Mzk Mkj (65)

holds, where
Mij(n) = w(Xmin = jlXm = 1)
Take for instance, m =n =1 = j = 1. Then

Zuzk m) g (n) = par(Dpa1(1) + pa2(1)p21 (1)
_ 757"(V1lev1 Vit ) + tT(VQ‘/lPkaVé*) t?”(Vﬂ/szQ*Vl*) (66)
tr(VipVy)? tr(VipVy) tr(VapVy)

and
pij(m+n) = p1(2) = p(Xz = 1{X; = 1)
_ tr(MViVipVrVevy) | tr(ViVaVipViVavy)
tr(VipVy) tr(VipVy)
Now let Vi, Vo be given by (52), then we obtain classic calculations, so the
Chapman-Kolmogorov equation holds. Now take

v=(00) v=(s3) @

then we get, from (66) and (67):
tr(ViVipVivi)? | tr(VaVipVir V) tr(ViVapVs Vi) _q P11
tr(VipVy)? tr(VipVy') tr(VapVs') p11 + 4p2o
and

(67)

(69)

tr(ViViVipVivivy) " tr(ViVaVipVy Vi vy)
tr(VipVy) tr(VipVy’)
Then in this case we have that the Chapman-Kolmogorov equation holds
if and only if pap = 0 that is, if p;; = 1. Also, we note that >, V;*V; # I.
To conclude this example, we take V7 and V5 with >, V;*V; = I, namely,

1% s 9y 50 71
1_<0 0>’2_ 0 1 (7D

Take for instance pg = £|1)(1| + 2(2)(2], a fixed point for the associated A.
A simple calculation shows that (66) and (67) are different. Therefore our
calculation shows that the Chapman-Kolmogorov equation does not hold
in general (for our setting).

—1+1=2  (70)

O
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We would like to obtain a nonhomogeneous version for the measure we
defined in (37) in the homogeneous case, i.e., we are looking for a mea-
sure induced by a nonhomogeneous QIFS. Let W;, ¢ = 1,...,k be linear
operators such that >, W*W; = I. Let pg € M. Define

w(X1=x1,..., Xy =xp) :=
tr(VV@QDQ1p0¥Zil@2;)tr(PV;SVQQV@1pOL§zV;;P@;;)

tT(Vxlp()V;‘l) tT(‘/;C2VI1p0V* Vi )

x1 Va2
tr(Wa, Va, 5" VipoVyy - Ve Wy

Tp—2 znfl)
tr(Vay—g - Var po Vi -+ Vi )
tr(Wzannfl T VxlpOVJ;: e V* W* )

Tn—1 Tn 72
tr(Va,_y o+ Varpo Vil - Vi ) 72)
that is,
,u(X1 :xl,...,Xn:xn) =
o tr(Wy, Vg oV po Vi - Vi WX
tr(We,poWi) [ [ W Voo oo VenpoVi o Ve W) (73)

=2 tr(vxiflvxi72 T Vxlp()vm*l T Vﬂ:ifg‘/j’t*ifl)

Remark A calculation shows that if we suppose ), W W; = I, then
Z piy - ip) =1
i17-~~7;n

Besides, if we suppose that W; = V; for all i, then we recover the measure
definition for homogeneous QSP.

o
Consider a QIFS F = {Mn, F;,pi}i=1,.. k, where
VipVi*
Fi(p) = — %
)= i)

where the V; are linear and p;(p) = tr(W;pW;*), com >, WW; =1

Definition 18. We say that the pair ({ X, }nen, 1), Xn : Q@ — {1,...,k},
is « Quantum Stochastic Process associated to the nonhomogeneous
QIFS F if p is defined by (73), where py € My is any density operator.

Remark In the definition above we can, of course, consider the particular
case in which pg is a fixed point for
VipVit

k
Alp) = ZtT(WiPWi*)W,

i=1
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induced by the QIFS F.
¢

Recall that by lemma 2, a homogeneous QSP is always stationary. This
is no longer true in general for nonhomogeneous QSP.

Example 11. Let {X,, },,en be a QSP induced by a nonhomogeneous QIFS.
We would like to know whether

w(X1=1,X2=2)=p(Xz=1,X3=2) (74)
By definition we have:
tr(WaVipo Vi W3)
tr(VipoVy')

H(Xl = 1,X2 = 2) = tT‘(Wlp()Wl*) (75)

And also
wWXe=1,X3=2)=pu(X1=1,Xo=1,X3=2)4+u(X; =2,Xo =1, X3 =2)
tr(WiVipo Vi W) tr(WaViVapo Vi Vi W)
tr(VipoVy) tr(ViVipo Vi Vi)
tr(WiVapo Vo W) tr(WaViVapo Vo ViEWS)
tr(VapoVy) tr(ViVapo Vo Vi)

— tr(W1poW7)

+ir(WapoWy)

(76)

=tr

VipoVi* (tT(WﬂﬁponWf))

WoVi |tr(W1poWi
2 1|:T( 1P0 l)tr(vvlpo‘/l*) tT(V1V1P0V1*V1*)

tr(VapoVs') \ tr(ViVapoVs V') b

Note that in the homogeneous case we have that both fractions in paren-
thesis on equation (77) are equal to 1, so if pg is a fixed point for A, then
we have stationarity, a fact we have already proved. But in the nonhomo-
geneous case, the terms in parenthesis are not equal to 1 in general.

+ir(WapoW5) (77)

O

8. A definition of entropy for QIFS

We will present a notion of entropy for “invariant” (or “stationary”)
measures with support on density matrices. This definition is obtained
by adapting the reasoning described in [5], [12] and [13] to the present
situation. The main idea is to define this concept via the Ruelle operator
and to avoid the use of partitions.
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Denote by p an arbitrary choice of mappings p; : My =R, i=1,... k
for a certain k. Let

my(Mpy) :={f : My — R : { is measurable and bounded}
Let Uy : my(Mn) — mp(Mn),
k

Up)(p) =Y pilp)f(Fi(p))

i=1

Let us consider all possible choices of mappings p; : My — R which satisfy
U1 =1 (78)

Each p determines an operator U,. The set of all possible p that satisfy

(78) will be denoted by P.

Let (Mn, F;,pi)i=1,.k be a QIFS. An example of Markov operator for
measures is the one we defined before, given by V, : MY(My) — M*(My),

k
Vov)(B) = / p;dy,
(Vpr)(B) ; 8)

which we will call the Markov operator Markov induced by the p;.
That is, we will consider all ¥, with p € P. We say that v is invariant for
the F; if for some p € P we have that V,v = v.

Let My be the set of all invariant measures for a fixed choice of the
dynamics Fj, i = 1,...,k. For such measures v € Mp, and based on [5],
[12] and [13], define

k
. foF;
ho(v) = flerg+/log(;:1 7 )dv

Above, BT denotes the bounded, positive, borelean functions on M y.

Proposition 4. For v € Mp, we have that 0 < ho(v) < logk.

In order to prove this proposition, we need the following lemma.

Lemma 3. [13] Let f > 1+ a and numbers a; € [l + o, 0], i = 1,... k.
Then there exists € > 1 such that

k

log (e Z ai) > Zk: log (ea;).
i=1

=1
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The proof of this lemma follows by choosing

1log>F  a
c— exp (L1 0)
k Zi:l log a;
Lemma 4. If f € B and v € My then

il/fomyz/fdy

Proof First suppose that f = 1, where B is a measurable set. We have
that

k . .
;/13 o Fydv > ;/pi($)1B(Fi(l‘))dV(l‘) = ;/Fi_l(B) pi(z)dv(z)

=V, (v)(B) =v(B) = /1Bdl/

Then, assume that f = Z§:1 bjlp,, i.e., a simple function. Then

k l ! k
Z/ijlBjOF’idV:ijZ/lBjOFidV
i=1" j=1 j=1 =1

l k !
>3 ) [ o), F@)is = b 0)(B)
j=1 =1 j=1

l
= bjI/(Bj) = fdl/

Now let f = lim, f,, a limit of a sequence of simple functions. Note that we
suppose f € BT, so f is bounded, and since v is a probability measure on
My, it follows that f is integrable. By the bounded convergence theorem,
we have that

k k k
Z/foFidy:Z/limfnoFidyzlimZ/fnoE-dy
=1 i=1 i=1

> lim / fodv = / im fdy = / fdv
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The following proof is an adaptation of results seen in [13].

Proof of proposition 4 Let us restrict the proof for the case in which
we have a QIFS (M, F, pi)i=1,...k, where F;(p) = V;pV;*, with linear V;.

First note that if f = 1, we have flog(Zf:1 1)dv = logk, so ho(v) <
log k.
Let I = [log (Zle %)du and suppose, without loss of generality, that

14+a < f < B (note that this integral is invariant by the projective mapping
f = Af). Then

k k
I= /log (; efe(}Fi)dZ/ = /log (; efoFi)dl/—/log (ef)dv (79)
Define
a; = f o Fi(p)
Then

>60>1

il . 9

1logSF . foF

clp) = exp (B2 SO Iy
dimilog foF;

by the compactness of M. With such choice we obtain, by lemma (3),

k k
log(eo > foFi)>> log(eof o Fy) (80)
=1 =1

Apply (80) on (79), then

k
I> log (eof o F;)dv — [ log (e f)dv
> J1o (e [ oo

Then by lemma (4) applied on the function log (ef) (note that we have
log (e0f) € BT because ey > 1), we get

I> /log(ef)du—/log(ef)duz()
([

The computation in the next example shows that the concept of entropy
described here is different from the one presented in [1] [2].

Example 12. We will consider an example of a probability n such that
V(n) = n and we will compute the entropy of 7.
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Suppose a QIFS, such that

Z VipV;*
i ‘T?* “[1 7’* _ I F — ?
for i = 1,...,k. Denote my(Mpy) the space of bounded and measurable

functions in M y.
Consider A : My — My,

:zi:pi(/?) i ZtrW W*)%

Suppose there exists a density matrix p which A-invariant. As we know,
such state is the barycenter of 1 which is V-invariant [1].

Suppose Vi = u, then we can write

/fdu /fdvu Z/pz )du(p) =

_VipVit « VipVi*
tr(W;pW;) d
Z/ n 0! (i) Z/ ' i)
Therefore, for any f € my(My), we got the condition

/fdu Z/tr WipW;) f z/‘f;/‘/*))du (81)

Let us consider a particular example where N = 2, k = 4, and

_( V/pux 0 _ (0 P12
W—( o o) =0 Y0 )

v 00\ ,_(0 0
5=\ vpzr 0 ) AT 0 o2 )

in such way that the p;; are the entries of a column stochastic matrix P.
Let m = (1, m2) be a vector such that Pm = 7. A simple calculation shows
that for p, the density matrix such that has entries p;;, we have

x 0 * 0

VipVi = < pllopll 0 ) L VapVy = < P120P22 0 ) (82)
«_ (0 0 «_ (0 0

Varls = < 0 pa1pnn ) - VapVi = ( 0 pazpa22 ) ’ (83)
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and therefore
*

iy (10 Vaply
tr(VipVy') 00 )7 tr(VapVy)
VapVs (0 0 VipVy'

0 1

tr(VapVs') tr(VapVy')
that is, the above values do not depend on p.
Define
10 00
px:<0 0>apy:<0 1> (86)
and

n= 7r15pz + 7T25py (87)
Note that the barycenter of 7 is

1 0 0 0 T 0
Pnzﬁlpx‘|’7r2py:7“<0 0>+772<0 1>:< 01 7T2)

One can show directly that V(n) = n (see [1]). Define

n=(00) »=(01) @

n= 7r15p1 + 7T25p2 (89)
Note that the barycenter of 7 is

10 00 0
Pn:W1P1+7T2P2=7Tl<O 0>+7r2<0 1>=<761 7T2>

From this it will also follow that Vn = 7 [1]. We will show that the entropy
of such 7 is log(2) — m log(m) — w2 log(m2). Remember that

s (£ 55
- Jon (S 5 e (i

and also

(90)
For such choice of V; take
VipV* .
= fl———>==), i=1,....4 91
=1 () oy
Note that
C1 = Cy, C3=2¢4 (92)
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Then we can write

/log (Z / <},Fi>d77 = /log <Zci)dn - Z/tr(WipWi*) log ¢;dn.

i (93)

Therefore

/log<zi:‘fc}ﬂ)dn=mlog(zi:ci) —l—mlog(ZcZ')

1

- Z {tr(Vi,olVi*)m log (¢;) + tr(V;p2 V" )ma log (cl)}

= 71 log (2¢1 + 2¢3) + w2 log (2¢1 + 2¢3)
=3 [r(Vip Vi) log () + tr(Vipa Vi )ma log (c:)|

= log (2(c1 +¢3)) — Z [tT(VimVi*)Wl log (¢;) + tr(Vip2V;")m2 log (Ci)]

)

= log (2(c1 + ¢3))
- [Wl <p%1 log(c1) + p1apa1 log(ca) + paipi1 log(cz) + paapar IOg(C4))

+7 (p11p12 log(c1) 4 prapaz log(ca) + po1pi2log(cs) + pao 108;(64))}
= log (2(c1 + ¢3))
- [pn log(c1)(mip11 + mopi2) + pi2log(c2) (mip21 + m2p22)

+p21 log(cs)(m1p11 + map12) + p2a log(ca)(mipar + 7T2p22)}
= log (2(c1 + ¢3))
- [7?1]911 log(c1) + mapi2 log(c2) + mipai log(cs) + map2o log(04)}
= log (2(¢1 + ¢3)) — (m11log(c1) + w2 log(cs))
Finally,

/ log (Z ! C}E>dn — log (2(cy + ¢3)) — (w1 log(cy) + ma log(cs)).  (94)

Now we will use Lagrange multipliers. Define b : Ri — R, where Ri is
the set of positive coordinates, by

b(x,y) = log (2(z +y)) — (m1 log(x) + m2log(y))
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We impose the restriction
r+y=a
for fixed a > 0. We will get bellow the critical point of b under such
restriction. After that we consider a general a > 0.
Define
gz y)=r+y—a
and
L(z,y,A\) =b+ Ag
Then, VI' = 0 implies

L Mmooy (95)
r+y x
L m (96)
T+y Y
r+y=a (97)
from which follows
T =Tma, y=maa. (98)
Therefore,
Cl = Cy = mMa, C3=C4= T2a (99)

From (94) we get

/log (Z / C}Fi>dn = log (2(m1a + m2a)) — (m log(mia) + w2 log(maa))

= log(2a) — 7 log(ma) — m log(maa)
= log(2) + log(a) — m log(m1) — m1 log(a) — mo log(ma) — 2 log(a)
= log(2) — w1 log(m1) — 72 log(ms) (100)

This value of entropy is different from the value computed in the same
example of QIFS in [1], [2] whichis — ), ; mipji log pji (Example 7 in section
11 [1]).

o

Given the expression

k
ho(v) := inf /log(z Jo Fz)dy,
i=1

feB+ f

for a fixed probability v, which is invariant by the shift acting on the space
), a natural question is to identify the f which realizes the infimum above.

We will describe below the analysis of the classical case (in the sense
of Stochastic Processes, and not QSP). Our purpose is to explain why
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the definition presented above is a natural generalization of the setting for
Markov Processes. In the case the probability v comes from a Markov
Process this will be now derived.

Let Q = IN, where I,,, = {1,...,m}, and let C = {C, : t € UpenI?} the
collection of cylinder sets in §2, where

Co={well:wi)=ijj=1,....r0=(i1,...,ir) €I}

and denote by o(C) the o-algebra generated by the cylinders in 2.

Let (P,m) be a Markov chain, so that P = (p;;) is a matrix of order n,
with p;; > 0, Zj pij = 1 (row stochastic), and m = (m1,...,m,) is the left
eigenvector with eigenvalue 1. So 7P = m, that is, ), mp;; = 7;.

Associated to the matrix P we have the following measure.

Definition 19. The Markov measure (associated to the chain (P, 7)) of
a cylinder is defined as

V(CL) 1= T3y PiqiaPisis * " Pip_qir (101)
¢

We are interested in the following problem: find the infimum f in

k
= in foli v
ho(v) = feIB%er /log(;:1 7 )d (102)

for such v defined above.

¢

We use the notation 7j to denote the cylinder set in I} which consists of
the set of sequences (wj,ws,...) such that w; =i and wy = j. Denote by
1 the indicator function of ij. To simplify, suppose m = 2 so the alphabet
considered contains only two symbols, denoted by 1 and 2. Define the
following function f : I)' — R+,

2
fla) =Y ayly() (103)
ij=1

where a;; € RT. That is, f is a simple function, constant on 7j. In this
form, log f =}, ;log aij15;.
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Let us suppose that F; : IN — IN is the mapping F;(wi,ws,...) =

(i, w1, ws,...). If vis a Markov measure, we have
/ logfdy:/ Z log ()15 dy— Z log (a;j)v Z mipij log a;;
L 13 i 4=1 i,5=1 3,7=1
(104)
Also, we have for w = (i,7,...),
fo Fyw Zaw F(F(w)) = a; (105)

To see that, note that by the expression above we have a sum of terms such
that (¢,7) = (,7), therefore a;; = ay;.

Then

/bgi /logéfow_ [1os i

/log Zf o Fy)dv — Z mipij log ay (106)

i,j=1

Note that for any w € IN, w = (1,...) or w = (2,...). Then, by (105) we
get

2
| oanntan sew=(1,...)
lz;fOF}(w)—{a12+a22 sew=(2,...) (107)
Now fix a;; = pji, where p;; are the entries of the row stochastic matrix
P initially fixed. Then we get a11 + a91 = p11 +pi2 = 1 e a12 + az =
p21 +p22 = 1. Therefore for such choice of a;; and for any w € I,Ii, the sum
(107) equals 1. So, by (106), we get

2 2
foF

/ log(> 7 )dv == mipi;logpi; = H(P) (108)

i=1 i,j=1

Therefore,
2

inf 1 P 109
. [roe H 5 ar < (109)
o
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Now note that any positive function f can be written as

2
w) = Z aijpji 157 (w)

ij=1
Define
2
w) = Z aij 15 (w
ij=1
and
2
w) ==Y pji l5(w)
ij=1
We have
/ logfdl/—/ Z log az]p]z 1 dV Z IOg al]pjl )
) L ij=1 ij=1

2 2 2
= Z mipjilog(aijpji) = Z 7pji log(ai;) + Z mjpjilog(psi)  (110)
ij=1 ij=1 ij=1
Ifw= (ia.jv e )7 then f o E(w) = ay;p; and so

S foFR =Y aipu
! !
We write

ZfoFl Zzaljpﬂ ij E )) (111)

We also have the followmg:

Lemma 5.

/[,g(logu)dl/ = /logudy (112)
Proof We have
/log udy = /Zlog(aij)ljidu = Zlog(aij)u(ﬁ) = Zlog(aij)ijji
.3 i,J i,J

(113)
And also

/ L,(logu)dy = / > ) “log(ai)pjily(Fi(w))dy
[
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= Y tostas)ps Y [ 1Ry
] l
= “log(ai)pji »_v(lj) = log(aij)pji(mipij+maps;) = Y _log(ai;)mipji
1

ij ij i,
(114)
So,
/[,g(logu)dl/ = /logudy (115)
O

Then, by using (110), (112) and (113),

k 2
fok
log( Ydv = [ log(y foF)dv— [ logfdv

2 2 2
= /log(Zf o Fi)dv — ( > mpjilog(ai) + Y mipij log(pz‘j))
=1

ij=1 ij=1
= /log (Lg(u))dv — /logudl/+H(P) (116)
= /log (Lg(u))dv — /Eg(logu) dv+ H(P) (117)
We would like to show that
/ log (L, () dv — / £y (logu)dv > 0 (118)
This follows immediately if we show that for w = (7,7,...),
log (Ly(u)) (w) = Ly(logu) (w) (119)

The last expression follows from convexity. Indeed, to prove the above
inequality, it is enough to show that for any w = (4,7, ...), we have

log ( Z aliPil) > Z pirlog ay; (120)
] ]

And such inequality is true, because the p; are positive numbers with
> pii =1, for any i, and the function log is concave.

Therefore we conclude from (117) and (118) that

k
/log(z ! (}Fi)dy > H(P) (121)
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Conclusion By (109) and (121) we conclude that if v is a Markov mea-
sure associated to a stochastic matrix P, then

inf / los(}_ / ‘}F Yy — H(P), (122)

and the function f such that

2
f(z) = Z pijl(z) (123)

ij=1
realizes the infimum.

¢

We conclude this section by stating the variational problem of pressure
for our setting. We consider the the set of V;, i = 1,2,...,k fixed, and
we consider a variable set of W;, ¢« = 1,2,...,k. In the normalized case,
the different possible choices of p;,i = 1,2,...,k, (which means different
choices of W;,i =1,2,...,k) play here the role of the different Jacobians of
possible invariant probabilities (see [15] II.1, and [12]) in Thermodynamic
Formalism. In some sense the probabilities p can be identified with the
Jacobians (this is true at least for Gibbs probabilities of Holder potentials
[17]). The set of Gibbs probabilities for Holder potentials is dense in the
set of invariant probabilities [11].

Let H : My — My be a hermitian operator. We have the following
problem. Define Fy : Mp — R,

1

k .
=1

f

where p,, is the barycenter of u, that is, the unique p € My such that

(o) = /MN ldg,

for all [ € V*. Then, in order to find the associated Gibbs state we have to
find 1 € Mp such that

1
)d” - Ttr(Hp,U«)v

Fo(f) = sup Fo(p).
HEME

We consider above each p which is associated to a possible set of W;.

O
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