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1. Introduction

The subject in this paper can be understood to be originated with the
study of singularities of plane curves, their desingularization by iterated
point blowing-ups, and the problems of existence of curves having either
assigned singularities or passing through a given set of points or infinitely
near points with prescribed multiplicities.
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Early, in the past century, Enriques gave an answer for the existence
of such curves, without conditions on the degree, in terms of precise in-
equalities involving the prescribed multiplicities. Some essential data for
it are the proximity relations among the given infinitely near points, i.e.
the incidence between points and the transforms of exceptional divisors
obtained by blowing-up precedent points. This data is encoded in the so
called Enriques diagrams.

Later, the local study of (complete) linear systems of curves leads Zariski,
in the thirties, to define complete ideals on regular local rings, investigate
their structure and establish their theory in the smooth two dimensional
case. Lipman has continued the development of the theory of complete
ideals for singular two dimensional cases and in higher dimensions; in par-
ticular, in the eighties, by establishing it for finitely supported complete
ideals, i.e. for ideals supported at the closed point and such that there
exist finite sequences of point blowing-ups which make the ideals locally
principal. In parallel, also in the later eighties, Casas develops in mod-
ern geometrical terms the two dimensional theory, and applies it to solve
the problem of determining multiplicities of passage through infinitely near
points for polar curves of plane curve singularities.

Factorization theorems are obtained, in general, for these ideals in terms
of simple (or special *-simple) ideals corresponding to finite chains of in-
finitely near points. An algebraic-geometric point of view, in terms of
geometry of infinitely near points, was given by the first two authors and
Lejeune-Jalabert in the nineties. This includes the treatment of finitely
supported toric ideals, and a rather explicit theory for them.

Applications of finitely supported complete ideals have been developed,
both in the local and global cases, by means of constellations and config-
urations of infinitely near points respectively. Such applications include
those of different subjects as, among others, the study of singularities of
adjoints or polar curves [13], [14], [21], [52], [50], the Poincaré problem on
the degree of projective integral curves of first order algebraic differential
equations [5],[6],[7],[23],[47],[29], the Harbourne-Hirschowitz conjecture on
special linear systems of projective plane curves (and related topics) [61],
[62], [63], [56], [54], or the monodromy and related conjectures for non
degenerated hypersurfaces with respect to clusters, [45], [46].

This paper gives an introduction to this subject as well as a survey on
the main results and several of its applications. Some new results are also
included.

The paper is organized as follows.
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In Section 2 we give a survey on the local aspects of the theory. After
recalling the basic definitions of the geometric theory extending to higher
dimensions the classical case presented in [22], we relate this geometric
framework with the algebraic theory introduced in [70, 71]. It follows
the Lipman’s unique factorization result (allowing negative exponents) for
finitely supported complete ideals [49] on a germ of smooth variety, which
extends to higher dimensions the unique factorization of any complete ideal
of a two dimensional local ring into simple ideals. Each simple ideal in the
factorization is associated to one infinitely near point to the origin, and it
reflects geometrical properties of the chain of points which need to be blown
up in order to create it. A union of such chains with the same origin will be
called constellation along the paper. Constellations with integral weights
at their points are called clusters. Complete ideals supported on a constel-
lation correspond to concrete clusters called idealistic. Such clusters with
the natural semigroup structure are called the Galaxy of the constellation.
Galaxies become closed under taking adjoints, and the part consisting of
idealistic clusters corresponding to adjoint ideals is determined from the
Galaxy itself.

Assuming that the characteristic of the ground field is zero, the morphism
σC : XC → X obtained by composition of the blowing-up of the points
of a constellation C on the smooth germ X is shown to be an embedded
resolution of complete intersections defined by general elements in a finitely
supported complete ideal with that constellation as support. The variety
XC will be called the sky of C. On the other hand, in Section 2.4 it is shown
how the use of characteristic cones provides a natural framework to study
factorizations properties for ideals.

Finally, we consider the case of toric varieties and monomial ideals, giv-
ing explicit description and results on toric constellations and proximity
in combinatorial terms, which are not available in general non toric cases.
Linear proximity, a finer concept than the one of proximity, is also char-
acterized and used for describing the Galaxy, the characteristic cone and
factorization properties. For the ideals in the subgalaxy generated by the
simple factors in Lipman factorization the whole features of Zariski’s the-
ory hold as in the smooth two dimensional case. Generalized Enriques
diagrams, i.e. those which also contain the linear proximity information,
are also characterized.

Section 3 is devoted, on the one hand, to extend the language and theory
of constellations of infinitely near points and clusters to the global situa-
tion. Here, we consider configurations, i.e. finite union of constellations
with origin at different points of a smooth variety. The notions of sky, clus-
ters and Galaxy have an obvious sense also for configurations. On the other
hand, we focus our attention on the study of the cone of curves NE(Z) of a
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projective regular surface Z, mainly bearing in mind the case in which Z is
rational. We give a description of some generalities and known properties
of NE(Z), showing a variety of different shapes that it may have, and, in
particular, we focus on the case of finite generation (polyhedrality). Ratio-
nal surfaces with polyhedral cone of curves are interesting issues that have
several applications, as we shall see in the last section.

The so called P-sufficient configurations, introduced in [27] and [28],
are configurations over a relatively minimal rational surface X satisfying
a numerical condition which depends only on their P-Enriques diagram.
The interest of such a configuration C is given by the fact that its sky XC
has a polyhedral cone of curves. We consider also configurations C of base
points of 1-dimensional linear systems (pencils) % on a projective regular
surface. We give a description of the face of NE(XC) generated by the
classes of the integral components of the curves in %, using it to give (in
characteristic zero) a characterization of the irreducible pencils (that is,
those with integral general curves) in terms of their clusters of base points.
When % is a pencil at infinity a great deal of information is known on the
cone of curves and the characteristic cone of XC [10, 11] and we summarize
it.

In Section 4 we show some of the above mentioned applications of the
theory of clusters of infinitely near points in the global case. In Section
4.1 we describe some results on the theory of foliations based on aspects
in preceding sections. All these results are related to the classical Poincaré
problem on establishing bounds for the degree of projective curves which
are invariant by an algebraic plane foliation. In Section 4.2 we show that the
language of infinitely near points and idealistic clusters can also be applied
to give new results on a conjecture (the Harbourne-Hirschowitz Conjecture)
which deals with the dimension of the linear systems of the projective plane
defined by clusters whose associated configuration is a set of general points
of the plane. In both cases, there is a very extensive literature giving either
partial proofs for problem or for the conjecture or dealing with related
subjects. We recall some results in cases for which the Poincaré problem or
the Harbourne-Hirschowitz Conjecture have a satisfactory answer. Those
results are established in terms of clusters and their proofs involve the
knowledge of the cone of curves of the surfaces associated with certain
pencils at infinity and certain properties of the P-sufficient configurations.

2. Local theory

2.1. Constellations, proximity and Enriques diagrams. Let X be a
regular variety of dimension d at least two, over an algebraically closed field
K. In the sequel we consider varieties obtained from X by a finite sequence
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of closed point blowing-ups. A point P is infinitely near Q ∈ X if Q is
the image of P under the composition of blowing-ups; denote this relation
by P ≥ Q. A geometric description of the blowing-up of a point may be
given as an avatar of the graph construction related to the definition of
projective space. Let ϕ : (Kd \ {O}) → P

d−1 with ϕ(x) the line joining
O to x. Consider the closure Γϕ of the graph of ϕ in K

d × P
d−1. The

blowing-up of K
d with center O is the proper birational morphism given by

the projection on the first factor σ : Bl0K
d := Γϕ → K

d. The exceptional

fiber over O is a rational divisor B0 ' P
d−1.

Definition 2.1. A constellation of infinitely near points (in short, a cons-
tellation) is a set C = {Q0, . . . , Qn}, with Qi ≥ Q0 ∈ X0 = X, such that

Qi ∈ BlQi−1
Xi−1 =: Xi

σi−1

−→ Xi−1, for 1 ≤ i ≤ n; where BlQi−1
Xi−1 denotes

the blowing-up of Xi−1 with center Qi−1 .

The point Q0 is called the origin of the constellation C. We call also the
dimension of X the dimension of C. Let σC = σ0 ◦ · · · ◦ σn : XC → X0

denote the composition of the blowing-ups of all the points of C, where
XC = Xn+1. Two constellations C and C′ over X are identified if there is
an automorphism π of X and an isomorphism π′ : XC → XC′ such that
σC′ ◦ π′ = π ◦ σC . The relation Qj ≥ Qi is a partial ordering on the set
of points of C. If this ordering is total, i.e. Qn ≥ · · · ≥ Q0, we say that
C is a chain constellation. For example, for any constellation C and any
Q ∈ C, the set CQ := {P ∈ C | Q ≥ P} of points preceding Q is a chain
constellation. The number of points in CQ, different from Q, is called the
level of Q. The root of C is the only point of level 0. For each point Q ∈ C
let Q+ be the set of points of C consecutive to Q, i.e. the points following
Q for the ordering ≥ such that there is no strict intermediate point; write
|Q+| for the cardinal of this set. If Q+ has only one point, it denotes this
point. For each point Q = Qi, let BQ (or Bi) be the exceptional divisor

σ
−1
i (Q) on Xi+1, and EQ (or Ei) its successive strict (or proper) transforms

on any Xj (which will be specified if necessary) with Qj ≥ Qi, in particular
in XC . The total transforms are denoted by E∗

Q or E∗
i . The sets of divisors

{EQ | Q ∈ C} and {E∗
Q | Q ∈ C}, considered in XC , are two basis of

the lattice N1 =
⊕

Q∈C ZEQ
∼= Z

n+1 of divisorial cycles with exceptional
support in XC .

Definition 2.2. A point Qj ≥ Qi is proximate to Qi if Qj ∈ Ei in Xj ;
notation : Qj → Qi (or j → i). The proximity index of a point Qj is
defined as the number ind(Qj) of points in C approximated by Qj, i.e.
ind(Qj) := #{Qi ∈ C | Qj → Qi}.
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If R ∈ Q+ then R → Q, these are the so called trivial proximities. If
R belongs to the intersection of several exceptional divisors produced by
blowing-up precedent points then R is proximate to all these points. Since
the irreducible exceptional divisors we consider have normal crossing, in
dimension d a point may be proximate to at most d points. If the dimension
of C is at least three, then R → Q if and only R ≥ Q and ER ∩ EQ 6= ∅
in XC . Note that if R → Q then R ≥ Q , but the converse does not hold

in general. The proximity relation (→) is a binary relation on the set of
points of a constellation, but not an ordering in general.

Remark 2.1. For each point Qi, the only irreducible exceptional divisors,
besides Ei, appearing in the total transform E∗

i , in XC , are exactly those
produced by blowing-up the points proximate to Qi. Therefore Ei = E∗

i −∑
j→i E

∗
j . The so called proximity matrix ((pji)), with pii = 1, pji = −1 if

j → i and 0 otherwise, is the basis change matrix from the Ei’s to the E∗
j ’s

Definition 2.3. The (proximity) Enriques diagram or P-Enriques diagram
of a constellation C is the rooted tree ΓC equipped with a binary relation
(;), whose vertices are in one to one correspondence with the points of
C, the edges with the couples of points (R,Q) such that R ∈ Q+, the root
with the origin of C, and the relation (;) with the proximity relation (→).

The Enriques diagram codes the chronology and incidence data of the
points in a constellation. Any (finite) rooted tree (without the supplemen-
tary data of a binary relation) may be the support graph of an Enriques
diagram.

Remark 2.2. There is another graph in dimension two that may be as-
sociated to the (normal crossing) family of irreducible exceptional divisors
obtained by blowing-up the points of a constellation. This is the so called
dual graph, whose vertices are in bijection with the divisors and each edge is
associated to the intersection point of two divisors. The graph supporting
the Enriques diagram of a constellation and the dual graph of the excep-
tional divisors may be quite different. For instance the first one may be a
chain but not the other, or viceversa.

A natural question is how to characterize the Enriques diagrams, i.e.
which rooted trees equipped with a binary relation on the set of vertices
are induced by some constellation. Given a rooted tree Γ, denote by (�) the
natural partial ordering on the set V(Γ) of its vertices : p � q if q belongs
to the chain from p to the root; similarly, if (;) is a binary relation on
V(Γ), let ind(q) = #{p ∈ V(Γ) | q ; p}. For each vertex q, let q+ be the
set of consecutive vertices to q with respect to the ordering (�).

Theorem 2.1. Let Γ be a finite rooted tree equipped with a binary rela-
tion (;) on the set of its vertices. Then Γ is the Enriques diagram of a
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constellation of infinitely near points C and (;) is induced by the proxi-
mity relation on C if and only if , for any vertices p, q, r of Γ, the following
conditions are satisfied:

(a) q ; p =⇒ q � p , q 6= p

(b) q ∈ p+ =⇒ q ; p

(c) r � p � q and r ; q =⇒ p ; q

If these conditions hold, then the minimum dimension dP of a constellation
whose Enriques diagram is the given one is at most
max(2,maxq∈V(Γ)(ind(q)) + 1).

Proof. The necessity of the conditions follows easily. For the sufficiency,
proceed by induction on the number |V(Γ)| of vertices. If |V(Γ)| > 1, let r

be a maximal vertex of Γ, and assume that a constellation C′ of dimension d

works for Γ′ = Γ \ {r}. Let r ∈ q+, and Q be the point of C′ corresponding

to q. The set Y := {P ∈ C′ | r ; p} is contained in C′Q by (a) and
Q ∈ Y by (b). By (c) one has Q → P for each P ∈ Y \ {Q}, so that
Q ∈ F :=

⋂
P∈Y,P 6=Q EP . It follows that F 6= ∅ and dim(F ) = d + 1 − |Y |,

by the normal crossing of the divisors EP , and on the other hand ind(Q) ≥
|Y \ {Q}| = |Y | − 1. Now, we need a point R (in XC′) corresponding to r,
having the corresponding proximities, i.e. a point R ∈ BQ

⋂
F but not in

(Q+
⋃

P∈CQ\Y EP ) . Such a point exists if d ≥ maxp∈V(Γ)ind(p) + 1 (and

at least 2), which is not less than maxp∈V(Γ′)ind(p) + 1 so the inductive
hypothesis applies. This number is attained. �

Remark 2.3. The minimum dimension dP of constellations inducing a
given P-Enriques diagram may be one less than in the general case if there
are no two maximal vertices r, with maximum indices, say r1 and r2, both
in q+, such that ind(ri) = ind(q)+ 1. Precisely, the minimum dimension is
dP = max( 2 , maxq∈V(Γ)(ind(q) + t(q)) ), where t(q) = 0 (resp. t(q) = 1)

if s(q) := #{r ∈ q+ | ind(r) > ind(q)} ≤ 1 (resp. if s(q) ≥ 2).

2.2. Finitely supported ideals and idealistic clusters.

Definition 2.4. A cluster is a pair K = (C,m) where C = {Q0, . . . , Qn} is
a constellation and m = (m0, . . . ,mn) is a sequence of integers. The integer
mi is called the weight (or virtual multiplicity) of Qi in the cluster.

Given a cluster K as above, we can associate to it the following divisor
in XC with exceptional support: D(K) :=

∑n
i=0 miE

∗
i . Hence, given a

constellation C, the choice of a weight sequence m is equivalent to the
choice of a divisor in the semigroup

∑n
i=0 Z≥0E

∗
i .
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Definition 2.5. Given a closed point Q0 ∈ X, an ideal I in RQ0
:= OX,Q0

is finitely supported if I is primary for the maximal ideal MQ0
of RQ0

and
there exists a constellation C of infinitely near points of X such that IOX

C

is an invertible sheaf. An infinitely near point P of Q0 is a base point of I

if P belongs to the constellation with the minimal number of points with
the above property. We shall denote by CI the constellation of base points
of I.

Given a finitely supported ideal I in RQ0
= OX,Q0

, with associated
constellation of base points CI = {Q0, . . . , Qn}, we can associate to it a
cluster K = KI = (CI ,m), called cluster of base points of I, as we shall
describe now. For any point Qi, 0 ≤ i ≤ n, consider the chain constellation
of preceding points CQi = {P0 = Q0, P1, . . . , Pr = Qi}; the weak transforms
IPj

of I at the points Pj are defined by induction on r by setting IQ0
= I

and, for i > 0, IPi
is the ideal in the local ring (RPi

,MPi
) given by

(x)−ordPi−1
(IPi−1

)
IPi−1

RPi
,

where, ordPi−1
(IPi−1

) := max{n | IPi−1
⊆ Mn

Pi−1
} and x is a generator

of the principal ideal MPi−1
RPi

. For any i, 0 ≤ i ≤ n, the weight mi is
defined to be ordQi

(IQi
). Notice that the ideal IQi

is finitely supported and
mi > 0. Moreover, it follows by induction the following equality between
ideal sheaves on XCI

:

IOX
CI

= OX
CI

(−D(KI)).

Remark 2.4. The completion (or integral closure) I of a finitely supported
ideal I is again finitely supported and KI = KI (see [49, Prop. 1.10]).

For a fixed constellation C rooted at Q0 ∈ X, we shall denote by JC the
set of of finitely supported complete ideals I of OX,Q0

such that CI ⊆ C.
This set JC can be endowed with an operation, called ∗-product: given
I1, I2 ∈ JC , I1 ∗ I2 is defined to be the integral closure of the product ideal
I1I2. Notice that (JC , ∗) has structure of commutative semigroup.

Definition 2.6. We shall say that a cluster K = (C,m) is idealistic if there
exists a finitely supported ideal I in RQ0

such that IOX
C

= OX
C

(−D(K)).
Notice that this implies that I ∈ JC and that mi is the weight of Qi in
KI if Qi ∈ CI and mi = 0 otherwise. The galaxy of C will be the set GC of
idealistic clusters on C.

From [48, Sect. 18] it follows a characterization of the idealistic clusters:

Proposition 2.1. A cluster K = (C,m) is idealistic if and only if m 6= 0
and −D(K) is σC-generated, i.e. OX

C

(−D(K)) is generated by its global
sections on a neighbourhood of the exceptional fiber of σC : XC → X.
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As a consequence of this proposition, one has that the galaxy GC of a
constellation C has a natural structure of commutative semigroup with the
following operation: if Ki = (C,mi) ∈ GC , i = 1, 2, K1 +K2 := (C,m1 +m2).
Moreover, if I1, I2 ∈ JC , it is satisfied that KI1∗I2 = KI1 + KI2 . Also,
Proposition 1.10 of [49] shows that, given a constellation C and an idealistic
cluster K ∈ GC , there exists a unique finitely supported complete ideal
IK ∈ JC such that IKOX

C

= OX
C

(−D(K)); actually, it is the stalk at

the root of C of the sheaf σC∗OX
C

(−D(K)). If we set E
]
C the semigroup

of effective divisors D on XC with exceptional support such that D 6= 0
and OXC

(−D) is σC-generated, above considerations are summarized in
the following result:

Proposition 2.2. Given a constellation C, the assignments K 7→ D(K) and

K 7→ IK give isomorphisms of commutative semigroups (GC ,+) → (E]
C ,+)

and (GC ,+) → (JC , ∗) respectively. The inverse maps are defined by the
assignments D 7→ KJ (where J denotes the stalk of σC∗OX

C

(−D) at the
origin of C) and I 7→ KI , respectively.

Remark 2.5. Note that, in the above statement, for each ideal I ∈ JC

we are identifying the cluster KI = (CI ,m) with (C,m′), where m′
i = mi if

Qi ∈ CI and m′
i = 0 otherwise.

Let Nef(XC/X) be the semigroup of non zero σC-nef divisors on XC (also
called either numerically effective or semiample divisors), that is, those
exceptional divisors D 6= 0 such that D · C ≥ 0 for any exceptional curve
(i.e. effective exceptional irreducible 1-cycle) C on XC .

Proposition 2.3. [9, Prop. 1.22] If C is a constellation over X then E
]
C ⊆

−Nef(XC/X).

If the dimension d of X equals 2, then the effective exceptional irreducible
1-cycles of XC are the strict transforms of the exceptional divisors. Then,
a divisor −D = −

∑n
i=1 miE

∗
i is σC-nef if and only if −D · Ei = mi −∑

j→i mj ≥ 0 for 0 ≤ i ≤ n. This inequalities are classically known as

proximity inequalities (see [22], Chap. II, book 4). But, in this case, it
is also known that if −D is σC-nef then it is σC-generated [22, 48, 13,
51]. Therefore, in dimension 2, the inclusion given in the statement of
Proposition 2.3 is an equality. Hence, we have a satisfactory description of
the idealistic clusters: a cluster is idealistic if and only if its weights satisfy
the proximity inequalities. If d > 2 the inclusion given in Proposition 2.3
need not be an equality. This fact is shown in the following example, taken
from [9]:

Example 2.1. Let X be a 3-dimensional non singular variety and let C =
{Q0, . . . , Q9} a constellation consisting of a closed point Q0 ∈ X and nine
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points Q1, . . . Q9 in general position on a non singular cubic curve C0 in
the exceptional divisor B0 (i.e. such that C0 is the unique cubic curve in
B0 passing through the nine points). Consider the divisor on XC given by

D = 3E∗
0 +

∑9
i=1 E∗

i . −D is σC-nef because, if C is any curve in B0, the

inequality 3 deg(C) −
∑9

i=1 eQi
(C) ≥ 0 (eQi

(C) denoting the multiplicity
of C at Qi) is obvious if C = C0 and it follows from Bézout’s theorem
otherwise. However, −D is not σC-generated because, if otherwise, C0
should be a fixed curve of the finitely supported ideal I such that IOX

C

=
OX

C

(−D).

However, the semigroup E
]
C has the property to be closed under ad-

joints. In fact, if KX
C
/X is the relative canonical divisor of the mor-

phism σC and K = (C,m) is an idealistic cluster, then the adjoint ideal
JK := σC∗OX

C

(−D(K) + KX
C
/X) of the ideal IK is again a finitely sup-

ported on C complete ideal, namely the one associated to the cluster with
weights max(0,mi − d + 1) for any i. This statement is due to Lipman.
Hence, one deduces the following result:

Proposition 2.4. [52, Th. 3.3] For a given constellation C one has that if∑n
i=0 miE

∗
i ∈ E

]
C then

∑n
i=0 max(0,mi − d + 1)E∗

i ∈ E
]
C.

Moreover, a given divisor
∑n

i=0 m′
iE

∗
i is the associated divisor to the

adjoint of some finitely supported ideal if and only if
∑n

i=0(m
′
i +d−1)E∗

i ∈

E
]
C. This follows from the definition and above result. For d = 2 this fact

was proved in [41, Th. 1].

Definition 2.7. A finitely supported complete ideal I of a local ring OX,Q0

is said to be ∗-simple if it cannot be factorized as ∗-product of two proper
ideals of OX,Q0

or, equivalently, I is not the ∗-product of two proper ideals
belonging to JC , whenever I ∈ JC for a constellation C.

Remark 2.6. If d = 2 the product of complete ideals is a complete ideal
and, hence, the operation ∗ coincides with the usual product of ideals; in
this case, the ∗-simple complete ideals are called simple complete ideals.

In [49] Lipman associates, to each point Qj of a constellation C =
{Q0, . . . , Qn}, the unique finitely supported complete ∗-simple ideal PQj

of RQ0
whose cluster of base points KPQj

= (CPQj
,m) satisfies the condi-

tions: CPQj
= CQj , the weight of Qj equals 1 and the weight sequence m

is minimal for the reverse lexicographical ordering in (Z≥0)
`+1, where ` is

the level of Qi. For simplicity of notation, we shall denote by D(Qj) the
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divisor on XC given by D(KPQj
), that is:

D(Qj) :=
∑

Qi≤Qj

mijE
∗
i ,

where mij is the virtual multiplicity of Qi in the cluster KPQj
. Since mjj =

1 for all j, one has that the set (D(Q0), . . . ,D(Qn)) is a basis of N1 and the
basis change matrix from (D(Qi)) to (E∗

i ) is the matrix MC := ((mij)). As
a consequence of this fact and Proposition 2.2 we get the Lipman’s unique
factorization theorem (see [49]):

Theorem 2.2. Given a constellation C = {Q0, . . . , Qn}, for each I ∈ JC
we can write formally, in a unique form, the ideal I as ∗-product of the
∗-simple ideals PQi

associated with the points in C:

I =

∗∏

0≤i≤n

Pri

Qi
(1)

with ri ∈ Z for all i = 0, . . . , n. Moreover, the vector r = (r1, . . . , rn) can
be computed as rt = M−1

C mt, where KI = (C,m).

Remark 2.7. Notice that, in the statement above, ri = 0 if Qi 6∈ CI . More-
over, the expression (1) (with non necessarily positive exponents) means
that there exists a ∗-product of I times ideals PQi

which is equal to a
∗-product of ideals PQj

, which distinct factors in both sides of the equality.

If d = 2 the situation is very simple because of Zariski’s theory of com-
plete ideals (see [70] and [71]). In this case, there exists unique factoriza-
tion of complete ideals as product of simple complete ideals. Moreover, the
exponents ri are non-negative. Lipman, in [51], provides a modern presen-
tation of Zariski’s results. The matrix MC , in this case, coincides with the
inverse of the transpose of the proximity matrix PC and (D(Qi)) is the dual
Z-basis of (−Ei) with respect to the bilinear pairing N1 × N1 → Z given
by the intersection product. The sub-semigroup LC of JC of those ideals
which are ∗-products of the ideals PQi

with non-negative exponents is noth-
ing but the free semigroup generated by the PQi

. By the isomorphisms in
Proposition 2.2, it corresponds to the sub-semigroup LGC of GC generated

by the clusters KPQi
and to the sub-semigroup LC of E

]
C generated by the

divisors D(Qi), 0 ≤ i ≤ n.

2.3. Idealistic clusters and embedded resolutions. The objective of
this section is, on the one hand, to define several concepts whose aim is
to describe how an effective divisor in X passes through the infinitely near
points involved by a cluster and, on the other hand, to state a result showing
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that, if the characteristic of the ground field K is 0, then the morphism
σC associated to the constellation of base points of a finitely supported
ideal I can be seen as the embedded resolution of a subvariety defined by
general enough elements of I. The above mentioned concepts will help us to
precise the meaning of general enough. Recall that a projective birational
morphism π : Z → Y is an embedded resolution of a reduced subvariety V of
Y having an isolated singularity at Q0 ∈ X if Z is non singular, π induces
an isomorphism of Z\π−1(Q0) to X \{Q0} and π−1(V ) is a normal crossing
subscheme. Fix C = {Q0, . . . , Qn} a constellation over X with origin at Q0

and set S := Spec(OX,Q0
) and SC := XC ×X S. We shall denote also by

σC to the induced morphism SC → S. The constellation C can be naturally
regarded as a constellation over S with origin at its closed point Q0 and
σC = σ0 ◦ · · · σn : SC = Sn+1 → · · · → S1 → S0 = S being its associated
composition of blowing-ups.

Definition 2.8. Let K = (C,m) be a cluster, with C as above. Let D be
an effective divisor on S.

(a) For 1 ≤ i ≤ n, the divisor on Si given by Ďi := (σ0 ◦ · · · ◦σi−1)
∗D−∑i−1

j=0 miE
∗
i is called the virtual transform of D on Si with respect

to the cluster K. The virtual transform of D on S, Ď0, will be
considered to be D.

(b) D is said to pass (resp. to pass effectively) (resp. to pass properly)
through K if for any J = {i1 < · · · < ik} with k = 1 (resp. k = 1)
(resp. 1 ≤ k ≤ d) such that EJ := Ei1 ∩ · · · ∩ Eik ⊆ SC is not

empty, the multiplicity at Qik of the inverse image DJ of Ďik on
Ei1 ∩ · · · ∩ Eik−1

⊆ Sik (or Sik if k = 1) is ≥ (resp. =) (resp. =)
mJ := mik .

If D and K are as above and D passes properly with respect to K, we
denote the projective tangent cone to DJ at Qik by TC(D)J . This is a
hypersurface of degree mJ in BJ := Ei1 ∩ · · · ∩ Bik

∼= P
d−k.

Proposition 2.5. [9, Prop. 3.4] With the notations of Definition 2.8, the
map which takes D to Ďn+1 (the virtual transform on Sn+1 = SC) is a one
to one correspondence between the set of effective divisors in S which pass
through K and the complete linear system | − D(K)| on SC. Moreover, for
any effective divisor D in S:

(a) D passes effectively through K if and only if, for any Qi ∈ C, the
multiplicity of the strict (or proper) transform of D at Qi is mi.

(b) If D passes properly through K then, for any J as in Definition 2.8:
(i) the subvariety EJ on SC is not contained in the strict transform

D̃ of D,
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(ii) for 1 ≤ k < d − 1, the scheme EJ ∩ D̃ is the strict transform
by σJ : EJ → BJ of TC(D)J and for any i → J (i.e. i → i`,
1 ≤ ` ≤ k), the multiplicity at Qi of the strict transform of
TC(D)J is mi.

Given an element f ∈ RQ0
= OX,Q0

we denote by Hf the hypersurface
in S defined by f .

Definition 2.9. A r-uple (f1, . . . , fr) of elements in RQ0
with 1 ≤ r <

d is said to be non degenerated with respect to a cluster K = (C,m) if
the hypersurfaces Hf1

, . . . ,Hfr
pass properly through K and, for any J

such that dim EJ ≥ 1, the hypersurfaces {TC(Hfi
)J}

j
i=1 of BJ intersect

transversally except maybe at proper points of BJ in C.

Proposition 2.6. [9, Prop. 3.6] If (f1, . . . , fr) is non degenerated with
respect to K, then σC : SC → S is an embedded resolution of the subvariety
of S defined by f1, . . . , fr.

Theorem 2.3. If the characteristic of the ground field K is 0, I is a finitely
supported ideal of RQ0

and C is its constellation of base points CI , then the
above morphism σC : SC → S is an embedded resolution of the subvariety
of S defined by r, 1 ≤ r < d = dim X, general elements in I.

Proof. It follows from the preceding proposition and the fact that, since the
characteristic of K is 0, a r-uple of general elements of I is non degenerated
with respect to KI [9, Prop. 3.8]. �

2.4. Characteristic cones and factorization properties. As we have
already seen, the results in dimension 2 concerning unique factorization of
complete ideals as a product of simple complete ideals do not extend to
higher dimensions. The use of characteristic cones provides an interesting
framework to study factorization properties of complete ideals in dimension
greater than 2. The main objective of this section is to provide an overview
of this fact. To begin with, we shall define some convex cones related to
a projective morphism, providing also some basic properties. Afterwards,
we shall consider the particular case in which such a morphism is the one
associated with a constellation. Let f : V → Y be a projective morphism
between algebraic schemes over K. Denote by N1(V/Y ) (resp. N1(V/Y ))
the free abelian group of 1-dimensional cycles on V whose support con-
tracts (by f) to a closed point in Y (resp. Cartier divisors on V ) modulo
numerical equivalence. Recall that a 1-dimensional cycle C (resp. a Cartier
divisor D) is numerically equivalent to 0 iff D ·C = 0 for all Cartier divisors
D (resp. all integral curves C contracted to a closed point of Y ) on V . In-
tersection theory provides a Z-bilinear pairing N1(V/Y ) × N1(V/Y ) → Z

which extends to a R-bilinear pairing A1(V/Y ) × A1(V/Y ) → R, where
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A1(V/Y ) := N1(V/Y ) ⊗Z R and A1(V/Y ) := N1(V/Y ) ⊗Z R. The dimen-
sion ρ(V/Y ) of A1(V/Y ) is finite and the above intersection pairing makes
A1(V/Y ) and A1(V/Y ) dual vector spaces [43, Chap. IV, Sect. 4]. For
simplicity of notation, given a contracted effective curve C (resp. a Cartier
divisor D) on V , its classes in N1(V/Y ) and A1(V/Y ) (resp. N1(V/Y )
and A1(V/Y )) will also be denoted by C (resp. D). Let NE(V/Y ) be
the cone of curves of V relative to f , that is, the convex cone in A1(V/Y )
generated by the classes of effective contracted curves in V . Denote by
P (V/Y ) the nef cone relative to f (also called semiample cone), that is,
the dual cone of NE(V/Y ) or, equivalently, the convex cone in A1(V/Y )
consisting of vectors x such that x · C ≥ 0 for every contracted effective
curve in V . According to [43, Chap. IV, Sect. 4], the cone P (V/Y )o ∪ {0}
(P (V/Y )o being the topological interior of P (V/Y )) is generated by the
classes of the relatively ample divisors D (this means that, for every co-
herent sheaf F , the canonical map f∗f∗F ⊗ OV (mD) → F ⊗ OV (mD)
is surjective for all m sufficiently large or, equivalently, Y is covered by
affine subsets U such that the restriction of D to f−1(U) is ample). The

characteristic cone relative to f , P̃ (V/Y ), is defined to be the convex
cone of A1(V/Y ) generated by the classes of Cartier divisors D such that
the natural sequence f∗f∗OV (D) → OV (D) → 0 is exact, The inclusion

P̃ (V/Y ) ⊆ P (V/Y ) is clear. Moreover, since some multiple of an ample

divisor is generated by global sections, it follows that P (V/Y )o ⊆ P̃ (V/Y )

and hence P (V/Y )o = P̃ (V/Y )o. Notice that, since f is projective, there
exist relatively ample divisors and, therefore, the dimension of both cones
P (V/Y ) and P̃ (V/Y ) is ρ(V/Y ). When Y = Spec(K), the above defined
spaces and convex cones are denoted by A1(V ), A1(V ), NE(V ), P (V ) and

P̃ (V ) respectively. Assume now that S = Spec(OX,Q0
), with X and Q0

as in the preceding sections, and C = {Q0, . . . , Qn} is a constellation over
S with associated composition of blowing-ups σC : SC → S. In this case
N1(SC/S) coincides with the free abelian group EC and {E1, . . . , En} is
a R-basis of A1(SC/S) [20, Lem. 15]. Moreover, the characteristic cone

P̃ (SC/S) (resp. nef cone P (SC/S)) is the one generated by the image in

A1(SC/S) of the divisors D such that −D (resp. D) belongs to E
]
C (resp.

Nef(SC/S)). If d = dim S = 2, N1(SC/S) and N1(SC/S) are identified
with N1. Taking into account the unique factorization of the ideals in JC
as a product of the simple complete ideals PQi

(by Zariski’s theory) and

Proposition 2.2, one has that the semigroup E
]
C is freely generated by the

divisors D(Qi). This implies that the cone P̃ (SC/S) is the regular cone
(which coincides with P (SC/S)) generated by the images in A1(SC/S) of

the divisors −D(Qi). For d > 2, the cone P̃ (SC/S) contains the regular
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sub-cone LC generated by the divisors −D(Qi) but, in general, one has

LC 6= P̃ (SC/S). If d > 2, the cone P̃ (SC/S) is not, in general, regular (as
we shall see later) and, hence, there is not, in general, unique factorization
of finitely supported complete ideals as ∗-product of ∗-simple ideals. Fur-
thermore, the regularity of the characteristic cone does not imply unique
factorization of complete ideals (see [8, Example 4.2]). There is a weaker
notion than the unique factorization which is detected from the structure
of the characteristic cone: the semi-factoriality.

Definition 2.10. Let G be a commutative semigroup with cancellation
law. An element g ∈ G \ {0} is called extremal if g has no inverse in G and
if a factorization (additively written) ng = a+b (with n an integer) implies
that sa = qg and tb = pg for suitable integers a, b, p, q. Two extremal
elements x and y are called equivalent, x ∼ y, if there are positive integers
m and n such that nx = my. G is semi-factorial if to each g ∈ G with
g 6= 0 there is an integer n > 0 such that ng is a sum of extremal elements,
and this factorization is unique in the following sense: if ng = a1 + . . .+as,
ai extremal, ai 6∼ aj for i 6= j, and mg = b1 + . . . + bt, bi extremal, bi 6∼ bj

if i 6= j, then s = t and ai ∼ bi after reindexing.

Notice that an ideal I ∈ JC is extremal in (JC , ∗) iff D(KI) is extremal

in E
]
C iff −D(KI) generates an extremal ray of the cone P̃ (SC/S). From

this fact, it can be easily deduced the following result:

Proposition 2.7. The semigroup JC is semi-factorial if and only if the
cone P̃ (SC/S) is simplicial (that is, it is spanned by linearly independent
elements).

The following result and the examples mentioned below show that, in
general, the semi-factoriality of JC does not hold if d > 2.

Proposition 2.8. [20, Th. 20] Suppose that S = Spec(R), where R is the
localization at (x, y, z) of the polynomial ring K[x, y, z]. Let Q0 be the closed
point of S and let Cn = {Q0, Q1, . . . , Qn} be a constellation over S such that
Q1, . . . , Qn are n closed points in general position on the exceptional divisor
associated to the blowing-up at Q0. Then P̃ (SCn

/S) is simplicial if and only
if n ≤ 2.

There are several examples in the literature showing that the characte-
ristic cone P̃ (SC/S) can have very different shapes, indicating the existence
of different factorization’s phenomena:

(i) It can be polyhedral (that is, finitely generated) but not simplicial
[8, Example 4.1].

(ii) It can have infinitely many extremal rays [20, Example 2].
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(iii) It can be non-closed ([8, Example 4.3] and [20, Example 3]).
(iv) As we have pointed out before, it can be regular but with JC not

having unique factorization [8, Example 4.2].

2.5. Toric constellations. Now we consider the toric constellations and
proximity. We begin by recalling some definitions and fixing notations for
toric varieties (for a detailed treatment see some of the basic references on
this subject, e.g. chapter 1 of [59] or [42]). Let N ∼= Z

d be a lattice of

dimension d ≥ 2 and Σ a fan in NR = N⊗ZR, i.e. a finite set of strongly
convex rational polyhedral cones such that every face of a cone of Σ belongs
to Σ and the intersection of two cones of Σ is a face of both. Denote by
XΣ the toric variety over a field K associated with Σ, equipped with the

action of an algebraic torus T ∼= (K∗)d. There is a one to one canonical
correspondence between the T -orbits in XΣ and the cones of Σ. Two basic
facts of this correspondence are that the dimension of a T-orbit is equal to
the codimension of the corresponding cone, and that a T-orbit is contained
in the closure of another T-orbit if and only if the cone associated with the
first one contains the cone associated with the second one. The morphisms
of toric varieties are the equivariant maps induced by the maps of fans
ϕ : (N ′,Σ′) → (N,Σ) such that ϕ : N ′ → N is a Z-linear homomorphism
whose scalar extension ϕ : N ′

R → NR has the property that for each σ′ ∈ Σ′

there exists σ ∈ Σ such that ϕ(σ′) ⊂ σ ; (see [59], 1.5).Let X0 := XΣ0

∼= K
d

be the d-dimensional affine toric variety associated with the fan Σ0 formed
by all the faces of a regular d-dimensional rational cone ∆ in NR. Recall
that a rational cone is called regular (or nonsingular) if the primitive integral
extremal points form a subset of a basis of the lattice. A toric constellation

of infinitely near points is a constellation C = {Q0, . . . , Qn} such that each
Qj is a fixed point for the action of the torus in the toric variety Xj obtained
by blowing-up Xj−1 with center Qj−1, 1 ≤ j ≤ n. If a toric constellation
is a chain, it is called a toric chain. The identification of constellations
stated after definition 2.1 is the same in the toric case, with equivariant
isomorphisms.

Codification of toric constellations and proximity.

By choosing a fixed ordered basis B = {v1, ..., vd} of the lattice N we
obtain a codification of the toric constellations, as well as criteria for proxi-
mity and (as shown in the following) linear proximity.Let ∆ = 〈B〉 be the

(regular) cone generated by the basis B. The blowing-up σi : Xi → Xi−1
of the closed orbit Qi−1, is described as an elementary subdivision of a fan,
as follows.The variety X1 is the toric variety associated with the fan Σ1,

obtained as the minimal subdivision of Σ0 which contains the ray through
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u =
∑

1≤j≤d vj.
For each integer i, 1 ≤ i ≤ d, let Bi be the ordered basis of N obtained
by replacing vi by u in the basis B; and let ∆i := 〈Bi〉. The exceptional
divisor B0 is the closure in X1 of the T -orbit defined by the ray through
u, and each T-fixed point in X1 corresponds to a maximal cone ∆i of the
fan Σ1, 1 ≤ i ≤ d. The choice of the point Q1 ≥ Q0 is thus equivalent to
the choice of an integer a1, 1 ≤ a1 ≤ d, which determines a cone ∆a1

of the
fan Σ1. The subdivision Σ2 of Σ1 corresponding to the blowing-up of Q1 is
obtained by replacing ∆a1

(and its faces) in Σ1 by the cones ∆a
1
i := 〈Ba

1
i〉

(and their faces), where Ba
1
i is the ordered basis of N obtained from Ba1

by the substitution of its i-th vector by
∑

v∈Ba1

v . The choice of Q2 ∈ B1

is equivalent to the choice of an integer a2 ,1 ≤ a2 ≤ d, which determines a
(regular) cone ∆a

1
a
2
.Proceeding by induction on n we obtain a codification

of toric chains and also constellations, since for each Q ∈ C , the constella-
tion CQ is a chain. The codification is given by trees with weighted edges,
where the weights are integers a, 1 ≤ a ≤ d, which give the direction in
which the following blowing-up is done. The precise description follows.

Definition 2.11. Let Γ be a tree, E(Γ) the set of edges of Γ, d an integer,
d ≥ 2.
A d-weighting of Γ is a map α : E(Γ) → {1, . . . ,d} which associates to each
edge of Γ a positive integer not greater than d, such that two edges with a
common origin have different weights. A couple (Γ, α) is called a d-weighted
tree.

Proposition 2.9. Let B be an ordered basis of the lattice N and n a positive
integer.

(a) The map which associates to each sequence of integers {a1, . . . , an}
such that 1 ≤ ai ≤ d, 1 ≤ i ≤ n, the toric chain {Q0, . . . , Qn} where
Q0 is the T -orbit corresponding to the cone ∆ = 〈B〉, and where Qi,
1 ≤ i ≤ n, is the T -orbit in Xi corresponding to the cone ∆a1...ai

of
the fan Σi, is a bijection between the set of such sequences and the
set of d-dimensional toric chains with n + 1 points.

(b) A natural bijection between the set of d-dimensional toric constella-
tions and the set of d-weighted trees is induced by the correspondence
(a).

Remark 2.8. Note that in a d-weighted tree each vertex is the origin of
at most d edges. A d-weighting of a tree Γ induces a partition of the set
E(Γ) of edges, where two edges are in the same class if they have the same
weight. To each class of isomorphism of d-dimensional toric constellations is
associated a unique class of isomorphism of trees equipped with a partition
of the set of edges, partition with at most d classes of edges [34].
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Given a toric constellation by a d-weighted graph, a vertex following
q through a chain with edges weighted by a sequence (a1, . . . , ak) is de-
noted by q(a1, . . . , ak) ; if Q is the point corresponding to q, then the point
corresponding to q(a1, . . . , ak) is written in a similar way Q(a1, . . . , ak).

Proposition 2.10. (Criterion for proximity in terms of a codification)
Q(a1, . . . , ak) → Q if and only if a1 6= aj for 2 ≤ j ≤ k .

Proof. The criterion follows from the fact that this is the condition to ob-
tain, by elementary subdivisions of a regular fan, an adjacent maximal cone
∆a1...ak

(corresponding to a 0-dimensional orbit) to the central ray of ∆a1

(corresponding to the exceptional divisor) of the first subdivision of the cone
∆ corresponding to Q. This is equivalent to saying that Q(a1, . . . , ak) ∈ EQ,
i.e. Q(a1, . . . , ak) → Q. �

We obtain a characterization of toric P-Enriques diagrams and the min-
imum dimension for a toric constellation with a given P-Enriques diagram
( [34], [35])

Theorem 2.4. A P-Enriques diagram (Γ, (;)) is toric, i.e. may be in-
duced by a toric constellation, if and only if:

(a) The proximity index is non-decreasing, i.e. ind(r) ≥ ind(q) if r � q.
(b) If r is proximate to q, then there is at most one vertex s consecutive

to r and not proximate to q, i.e. if r ; q then #{s ∈ r+ | s 6;
q} ≤ 1.

If these conditions hold, then the minimum dimension dtP(Γ, (;)) of a
toric constellation inducing the given P-Enriques diagram (Γ, (;)) is
max(2,maxq∈Γ(ind(q)+s(q))), where s(q) := #{r ∈ q+ | ind(r) > ind(q)}
is the number of consecutive points to q whose proximity index is greater
than the proximity index of q.

Remark 2.9. The minimum dimension dtP may be greater than dP , the
dimension in the not necessarily toric case (Theorem 2.1), because there
are less points available, so one needs to add s(q) to the proximity index,
not just 1 as in the general case.

Corollary 2.1. A P-Enriques diagram (Γ, (;)) whose graph Γ is a chain,
is toric if and only if the proximity index is not decreasing. In this case,
the minimum dimension of an associated constellation is the index of the
terminal point (and at least 2).

Proof. In the toric chain case the condition (b) of the theorem is automat-
ically satisfied and maxq∈Γ(ind(q) + s(q))) = maxq∈Γ(ind(q)) holds. �
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Examples 2.1. (1) The simplest example of a non-toric P-Enriques di-
agram is a chain with four vertices, say q0, q1, q2, q3 such that, besides
the trivial proximities of consecutive vertices, the only other proximity is
q2 → q0. In this example one has ind(q2) = 2 and ind(q3) = 1; condition
(a) fails.

(2) Another example of a non-toric case is a graph of type D4, with a
non-central vertex as the root, and with only the proximities of consecutive
vertices. In this case condition (b) fails. Remark that both cases may be
induced by two dimensional constellations.

(3) If the central vertex is the root in a graph of type Dn, with n ≥ 4, and
if the only proximities are those of consecutive vertices, then conditions
(a) and (b) hold; the minimal dimension of a constellation inducing this
P-Enriques diagram is n − 1 for toric constellations and two for non-toric
ones. If q0 is the root, then ind(q0) = 0, s(q0) = n − 1, t(q0) = 1, and
ind(q) = 1, s(q) = 0, t(q) = 0 for each q 6= q0.

(See Figures (1), (2) and (3)).

Linear proximity and characteristic cones

In dimension two the exceptional divisors appearing in the definition
of the proximity relations are (rational) curves. In higher dimension we
introduce, in the toric case, a condition involving curves which will be
finer, in general, than the proximity. This new condition arises naturally for
toric clusters in higher dimension, from the generalization of the proximity
inequalities.
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Definition 2.12. Let C = {Q0, . . . , Qn} be a toric constellation. A point
Qj is linear proximate to a point Qi with respect to a one dimensional T-
orbit ` ⊂ Bi if Qj belongs to the strict transform in Xj of the closure of `.

This relation is denoted by Qj � Qi , or Qj

`
� Qi if we need to specify the

line ` involved.

If R � Q then R → Q, but the converse does not hold in general.

Proposition 2.11. (Criterion for linear proximity) Let Q be a point in
a toric constellation of dimension d. Each 1-dimensional orbit ` in the
exceptional divisor BQ contains in its closure only two fixed points, say
Q(a) and Q(b). Then R � Q if and only if there are integers a, b and

m such that a 6= b, 1 ≤ a ≤ d, 1 ≤ b ≤ d, 0 ≤ m and R = Q(a, b[m]) or

R = Q(b, a[m]), where x[m] means x repeated m times.

Proof. The wall running between the cones corresponding to Q(a) and Q(b)
is the cone corresponding to the line defined by this two points in BQ. The
only maximal cones, obtained by elementary subdivisions, having this wall
as a face are those corresponding to the points Q(a, b[m]) or Q(b, a[m]) for
some m ≥ 0. �

In dimension two, proximity and linear proximity are equivalent. One
implication may be generalized for toric chains in any dimension.

Proposition 2.12. If C is a toric chain (in any dimension), the proximity
relation determines the linear proximity relation.

Proof. If R � Q, then P → Q for any P such that R ≥ P ≥ Q, P 6= Q,
and these are the only proximities, for the intermediate points in the chain
from Q to R, besides the proximities of consecutive points. Conversely,

assuming this property, then R
`

� Q for the line ` determined by the point
Q+ and the direction Q++ in the projective space BQ, if Q++ is defined
and precedes R, or any line through Q otherwise. Indeed, this assumption
forces the code of R to be Q(a, b[m]) for some weights a and b, m ≥ 0. �

Note that in general the linear proximity does not determine the proxi-
mity, even for chains.

LP-Enriques diagrams.

We introduce now some definitions leading to the notion of the so called
(linear proximity) LP-Enriques diagrams. This is a LP generalization, for
toric constellations of dimension higher than two, of the Enriques diagrams
of two dimensional constellations. We will give later an application of these
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diagrams to prove a converse Zariski theorem. Given a rooted tree Γ, a sub
graph formed by two chains with a common root and no common edge is
called a bi-chain. If Γ is the rooted tree associated with a toric constellation
C, q the vertex corresponding to Q ∈ C and ` is a 1-dimensional orbit in
BQ, then Γq(`) denotes the full subgraph of Γ with vertices corresponding
to Q and to the points R ∈ C such that R � Q. Let Γ(q) be the family
of the maximal Γq(`) when ` describes the set of one dimensional orbits
in BQ. A vertex q ∈ Γ is called simple (resp. ramified) if |q+| = 1 (resp.
if |q+| > 1). The following properties are easily checked with the linear
proximity criterion (Proposition 2.11).

Proposition 2.13. Let C be a toric constellation, Γ the associated tree.

1. (a) For each q ∈ Γ, the family Γ(q) is non-empty and the elements
of Γ(q) are chains or bi-chains with root q.

(b) If γ, γ′ ∈ Γ(q) and γ ⊂ γ′, then γ = γ′.

2. (a) Two distinct elements of
⋃

q Γ(q) have at most one common
edge.

(b) Two edges with common ramification root vertex q (resp. the
edge with the simple root vertex q) belong (resp. belongs) to one
and only one element of Γ(q).

3. (a) For each q ∈ Γ and r ∈ q+ there is at most one vertex s ∈ r+

such that the chain (q, r, s) is not contained in any element of
Γ(q).

(b) If (p, . . . , q, r) is a chain contained in a γ ∈ Γ(p) and s ∈ r+

satisfies 3.(a), then the chain (p, . . . , q, r, s) is contained in γ.

Definition 2.13. The LP-Enriques diagram of a toric constellation C is the
associated graph ΓC equipped with the linear proximity structure formed
by the family of full subgraphs {ΓC(q) | q ∈ ΓC}.

We obtain a characterization of LP-Enriques diagrams and the minimum
dimension for a toric constellation with a given LP-Enriques diagram ( [34],
[35]).

Theorem 2.5. The couple (Γ, {Γ(q) | q ∈ Γ}), given by a tree Γ and a
family of full subgraphs Γ(q), is the LP-Enriques diagram of a toric cons-
tellation C if and only if the properties 1, 2 and 3 hold. The minimum
dimension of the constellations with given LP-Enriques diagram is dPL =
max(2,maxq∈Γ(|q+| + nq)), where nq = maxr∈q+#{γ ∈ Γ(q) | r ∈ γ and
γ is a chain of length > 1}

Remark 2.10. A LP-Enriques diagram may be induced by two non-iso-
morphic constellations. In some cases, for instance if for each vertex q
the family Γ(q) has only bi-chains or is reduced to the vertex, then the
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constellation inducing the given LP-Enriques diagram is unique (up to iso-
morphism of constellations), and its dimension is |q+

0 | if q0 denotes the root.
The maximum possible linear proximity dimension dLP of a fixed tree, by
changing its LP structure, is the number of edges. In this case all the chains
(resp. bi-chains) have only one edge (resp. two edges) or are reduced to a
vertex, for the maximal ones.

Characteristic cones of toric constellations.

For toric constellations the characteristic cone may be explicitly obtained
(see [9], theorem 2.10). Note that in this case the characteristic cone co-
incides with the semiample cone (see [42], page 47). The natural ideals
to consider are the invariant ideals for the toric action, so that the con-
stellations of base points are toric. The conditions that such an ideal I
is finitely supported and complete are formulated in terms of the Newton
polyhedron N of I relative to the local system of parameters of the local
ring, induced by a basis of the lattice where the fan lives. The first condi-
tion is that the fan associated to the Newton polyhedron (which gives the
normalized blowing-up of center I) admits a regular subdivision obtained
by elementary subdivisions of the regular cone ∆ corresponding to Q0; and
the second one is that every monomial corresponding to an integral point of
N + ∆∨ is in I, where ∆∨ denotes the dual cone of ∆.The following result

generalizes, for toric constellations in any dimension, the two dimensional
proximity inequalities found by Enriques. Recall Proposition 2.11.

Theorem 2.6. Let C be a toric constellation of dimension d.
The characteristic cone associated with C is the cone generated by the
classes of the divisors Dm =

∑
Q∈C mQE∗

Q such that m verifies the

linear proximity inequalities mQ ≥
∑

P
`

�Q
mP for each Q ∈ C and each

` = `(Q(a), Q(b)), a 6= b 1 ≤ a ≤ d, 1 ≤ b ≤ d.

Proof. The linear proximity inequalities are necessary, since they are equiv-
alent to (Dm · ¯̀) ≤ 0 for a semiample divisor −Dm and the closure ¯̀ of each
one dimensional orbit `(Q(a), Q(b)). Conversely, if these inequalities hold,
then −Dm is semiample since the classes of the closures of the one dimen-
sional orbits generate the cone of the numerically effective curves NE, and
then the divisor is σ-generated because σ is a toric morphism. �

Remark 2.11.

(1) A constructive proof giving the Newton polyhedron of the unique
complete ideal associated to such a divisor Dm (or the correspond-
ing idealistic cluster) is presented in [9] theorem 2.10 (ii).
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(2) From Theorem 2.6 and Proposition 2.4 one can characterize, in
numerical terms, which toric clusters correspond to adjoint ideals
of finitely supported ideals. In fact, such toric clusters (C,m′) are
exactly those such that the toric cluster given by (C,m), where
mQ = m′

Q + (d − 1), satisfies the conditions of Theorem 2.6.

(3) Theorem 2.6 has been recently used by A. Lemahieu and W. Veys
in [46] to describe the zeta functions for non degenerated hyper-
surfaces with respect to 3-dimensional toric clusters and prove the
monodromy conjecture for them.

Corollary 2.2. We keep the notations of the theorem. Let
C = {Q0, . . . , Qn} be a toric chain.

(a) The characteristic cone associated with C is given by

mi ≥
∑

j�i mj , 0 ≤ i ≤ n.

(b) The divisor Dn =
∑

0≤i≤n mi,nE∗
i associated to the special ∗-simple

ideal PQn
is given by mn,n = 1, mi,n =

∑
j�i mj,n, for 0 ≤ i ≤ n.

Proof. (a) follows from the Theorem and the fact that for each point there
is only one relevant inequality, since C is a chain. (b) follows from (a) since
the minimality property of m is obtained if mn,n = 1 and if every inequality
involving an index i 6= n becomes an equality. �

The special ∗-simple ideals, and the exponents of the factorizations are
determined by the linear proximities:

Theorem 2.7. Let C be a toric constellation.

(a) Let (DQ)Q∈C be the basis of N1 corresponding to the special ∗-simple
ideals with base points in C. Then DQ =

∑
P∈C mPQE∗

P , where
mPQ = 0 if P 6≤ Q, mQQ = 1 and mPQ =

∑
R∈C | Q≥R�P mRQ if

P ≤ Q.
(b) Let PL = ((lPQ)) be the linear proximity matrix defined by lPP = 1,

lPQ = −1 if P � Q and 0 otherwise. Then t
PL is the basis change

matrix from (E∗
Q) to (DQ).

(c) Let I be a toric finitely generated ideal with base points in C. Then
the exponents of its factorization in terms of special ∗-simple ideals
are: rQ = mQ −

∑
P�Q mP .

Proof. (a) follows from corollary 2.2, (b). (b) and (c) follow from (a) and
linear algebra. �

Recall the definition of the LP structure of the tree Γ associated with C
(Proposition 2.13).
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Corollary 2.3. Let PC = P (XC/X) be the characteristic cone associated
with C. The following conditions are equivalent: (a) The cone PC is regular.
(b) (DQ)Q∈C is a basis of the semigroup PC

⋂
N1. (c) The cone PC is

simplicial. (d) The special ∗-simple factorizations have only non negative
exponents. (e) For each Q ∈ C there is only one (maximal) chain or bichain
in Γ(q).

Proof. The conditions (a), (b), (c) and (d) are equivalent since the divisors
DQ form a basis of N1. The equivalence between (e) and (c) follows from
the preceding theorem, and the fact that the supporting hyperplanes of
the maximal faces of the cone PC are those associated with the maximal
elements of ΓQ for each Q ∈ C. �

Remark 2.12. In particular, every toric chain constellation in any dimen-
sion has a regular characteristic cone. There are also non-chain constella-
tions with this property.

We give now an application of the LP-Enriques diagrams for a converse
Zariski Theorem for toric constellations. Recall the notations and results on
the minimal LP-dimension dLP of a LP-Enriques diagram (Theorem 2.5).

Theorem 2.8. The characteristic cone of a toric constellation is regular
if and only if its LP-Enriques diagram is induced by a two dimensional
constellation.

Proof. The characteristic cone of any two dimensional constellation is reg-
ular, by Zariski. Conversely, assume that the characteristic cone is regular.
Then Γ(q) has only one element for each q ∈ Γ, by the last Corollary. It
follows necessarily that 0 ≤ |q+| ≤ 2. Now, 0 ≤ |q+| ≤ 1 implies that
0 ≤ nq ≤ 1 and |q+| = 2 implies that nq = 0. It follows that the minimal
dimension dLP of a constellation inducing the given LP-Enriques diagram
is two. �

In the general toric case, the characteristic cone PC contains the regu-
lar sub-cone LC which is given by the inequalities mQ ≥

∑
P�Q mP for

Q ∈ C. Notice that conditions in Corollary 2.3 are also equivalent to the

equalities LC = E
]
C or LC = PC . For a non toric two dimensional cons-

tellation C, Zariski’s theory shows that one also has LC = E
]
C and that

LC = P (XC/X) = P̃ (XC/X) is a regular cone. For d = 2, Zariski’s theory
asserts also further properties as the following ones:

(i) If I ∈ JC and Q ∈ C, then the weak transform IQ is a complete
ideal; so IQ ∈ JCQ .

(ii) If I, J ∈ JC then I ∗ J = IJ , so IJ is a complete ideal.
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(iii) If K ∈ GC is given by K = (C,m) then µ(IK) = m0 + 1, where µ

stands for the minimal number of generators of an ideal.

The following result, due to E. Tostón [68], shows that above properties
are also true for toric clusters in the sub-semigroup LGC of the galaxy GC
(recall the notations used at the end of Section 2.2).

Theorem 2.9. [68, Th. 3.1, Prop 3.2, 3.4] Let C be a toric constellation.
Then one has:

(i) If I ∈ LC and Q ∈ C then the weak transform IQ is a complete ideal
and IQ ∈ LCQ ⊆ GCQ.

(ii) If I, J ∈ LC then I ∗ J = IJ ; so IJ is a complete ideal.

(iii) If K ∈ LGC is given by K = (C,m) then one has µ(IK) =
(
m0+d−1

d−1

)
.

Part (iii) follows from (ii) and the fact that, in the toric case, the condi-
tions of effective passage through an idealistic cluster are linearly indepen-
dent. For it, (ii) is applied to the ideals IK and M , M being the maximal
ideal.

Remark 2.13.

(1) If C satisfies the equivalent conditions in Corollary 2.3 the statement
of Theorem 2.9 is true for the whole galaxy of C, as one has GC =
LGC and JC = LC . Thus, Zariski’s theory is fully extended for such
constellations. In particular, it is true for toric chains. This gives
an additional insight to Theorem 2.8.

(2) If C does not satisfy conditions in Corollary 2.3 then the statement
of Theorem 2.9 is not longer true for ideals in GC\LC as the following
examples, also due to E. Tostón in [68], show.

Examples 2.2. Consider d = 3, coordinates x, y, z and let C be the toric
constellation consisting of two chains of respective edge weights given by
{1, 2, 2} and {3, 2, 1}. Let K be the cluster supported on C with m-weights
given by 3, 1, 1, 1 and 3, 2, 1, 1 respectively on above chains. Then one has

I = IK = 〈x4
, x

3
y, x

2
z, x

2
y

2
, x

2
yz, xy

3
, xy

2
z, xz

3
, y

3
, y

2
z
2
, yz

3
, z

5〉.

Now, if Q is a 0-dimensional T -orbit connected to Q0 by the edge of weight
3, then one has (x

z
y
z
)2 6∈ IQ but (x

z
y
z
)2 ∈ IQ. Thus (i) is not true for I.

On the other hand, one has xy2z ∈ I ∗ M but xy2z 6∈ IM , which shows
that (ii) is not true for the ideals I and M . Finally, µ(I) = dim(I/IM) >

dim(I/I ∗ M) =
(
3+2
2

)
= 10, so (iii) is again not true for I. Notice that K

is an idealistic cluster. However K is not in LGC because

3 = mQ0
<

∑

P�Q0

mP = 2 + 1 + 1 + 1 + 1 = 6.
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Even it is not true that I2 is complete when I is a toric finitely supported
complete ideal. This happens, for instance, if d = 4 and I = IK′ , where K′ =
(C′,m) is given by the constellation C′ consisting of the three chains with
edge weights {1, 2, 3}, {3, 2, 1}, {4, 2, 2} and respective m-weights given
by 3, 1, 1, 1; 3, 2, 1, 1; 3, 1, 1, 1. If x, y, z, w are the coordinates, one has

x2y2zw 6∈ I2 but x2y2zw ∈ I
2
.

Remark 2.14. The exact conditions under which the equality µ(IK) =(
m0+d−1

d−1

)
is true for clusters are investigated in homological terms in [19].

3. Global theory

3.1. Configurations, global clusters and linear systems.

Definition 3.1. A configuration of infinitely near points (configuration, in
short) is a finite union of constellations whose origins are closed points of
X.

If C is a configuration, as in the case of constellations, σC : XC → X will
denote the composition of the blowing-ups of all the points in C; moreover
two configurations C and C′ over X are identified if there exist an automor-
phism π of X and an isomorphism π′ : XC → XC′ such that σC′ ◦π′ = π◦σC .
Given a configuration C, the relation ≥ and the proximity relation → be-
tween points of C are defined as in the case of constellations. Also, for
a point Q in C, we define the concepts of associated constellation CQ of
preceding points, level of Q, its proximity index ind(Q) and the set of con-
secutive points Q+ as those referred to the maximal constellation contained
in C to which Q belongs. The exceptional divisors, its strict and total trans-
forms and the lattice of divisorial cycles with exceptional support in XC will
be denoted as in the case of constellations. Also, the proximity matrix is
defined, in the same way, as the basis change matrix from the Ei’s to the
E∗

j ’s. If C =
⋃r

i=1 Ci, where the Ci’s are disjoint constellations, we define the
P-Enriques diagram associated to C as the disjoint union of the P-Enriques
diagrams ΓC1

, . . . ,ΓCr
. We also adapt in the obvious way the concept of

cluster to the global case defining it as a pair (C,m), where C = {Qi}
n
i=0 is

a configuration and m = (m0, . . . ,mn) is a sequence of integers; also, mi is
called the weight or virtual multiplicity of Qi in the cluster. As in the local
case, we can associate to the cluster the divisor with exceptional support
D(K) :=

∑n
i=0 miE

∗
i .

Definition 3.2. A sheaf of ideals I on X is said to be finitely supported if
there exists a finite set S of closed points of X such that, for each closed
point Q ∈ X, the stalk IQ is a finitely supported ideal in OX,Q (resp.
IQ = OX,Q) whenever Q ∈ S (resp. Q 6∈ S). This implies that there
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exists a configuration C over X (whose roots are the points in S) such that
IOX

C

is an invertible sheaf. The configuration of base points of I (denoted
by CI) is the configuration with the minimal number of points having this
property, that is, CI =

⋃
Q∈S CIQ

.

Given a finitely supported ideal sheaf I, its cluster of base points KI

will be the cluster (CI ,m) where CI = {Q0, . . . , Qn} is the above defined
configuration of base points and, for 0 ≤ i ≤ n, mi is the weight of Qi in the
cluster KIO

, O ∈ X being the image of Qi by σC
I

. Notice that Definition
2.8 makes sense also for configurations. Also, given a cluster K = (C,m)
and given a non-empty complete linear system |R| on X, the set of elements
of |R| passing through K form a linear system L|R|(K) on X whose elements
are in one to one correspondence with the complete linear system on XC

given by |σ∗
CR − D(K)|. The correspondence is given by the assignation,

to each effective divisor D ∈ |R|, of its virtual transform on XC (defined in
the same way as in Definition 2.8). Also, fixed a non-empty linear system
% ⊆ |R|, one can consider the ideal sheaf I(%) whose stalks at the points
of X are generated by the local equations of the divisors in %. This ideal
sheaf defines a closed sub-scheme of X, called the base point scheme of
%. Notice that I(%) may not be finitely supported (resp. complete). The
determination of the dimension of a linear system of hypersurfaces passing
through a cluster is a very classical problem in algebraic geometry, mainly
considered when the configuration C consists of a set of (proper) points on
a projective space P

r in general position. It has been present in the works
of Bézout, Plücker, Cremona, M. Noether, Bertini, C. Segre, Castelnuovo,
Enriques, Severi and, more recently, Alexander, Hirschowitz, Ciliberto, Mi-
randa, Harbourne, among many others. There are several conjectures and
open questions on this problem and it is related to other topics like the
14-th problem of Hilbert [58], the symplectic packing problem [55, 69] or
the Waring’s problem in number theory (see Section 7 of [16]). For inter-
esting surveys on this subject we refer the reader to [32], [16], [56] or [37].
However, we shall return to it later, but focusing our attention on the case
of linear systems of plane curves.

3.2. Cones of curves of rational surfaces and P-sufficient configu-
rations. As we shall see along this paper, techniques related to the cone
of curves of a projective regular rational surface have fruitful applications
in several problems in Algebraic Geometry. So, we include here a brief
exposition of the basic properties of the cone of curves, and also we recall
the notion, introduced in [27] and [28], of P-sufficient configuration (over
a relatively minimal rational surface). This concept depends only on the
P-Enriques diagram of the configuration and it implies the polyhedrality
of the cone of curves associated with the surface obtained by blowing-up
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the points of the configuration. The obtention of conditions implying the
polyhedrality of the cone of curves is an interesting issue, as we shall see
in the applications. Let Z be a regular projective rational surface and con-
sider its cone of curves NE(Z) ⊆ A1(Z) and its closure with respect to
the real topology, denoted by NE(Z). Notice that, in this case, we can
identify the spaces A1(Z) and A1(Z); we shall denote them by A(Z). We
shall assume that dimA(Z) ≥ 3 (otherwise the cone of curves is regular).
Recall that, if C is a convex cone of A(Z), a face of C is a sub-cone F ⊆ C

such that a + b ∈ F implies that a, b ∈ F , for all pair of elements a, b ∈ C.
The 1-dimensional faces of C are the extremal rays of C. Fix an ample
divisor H on Z. By Kleiman’s ampleness criterion [43], H · x > 0 for all
x ∈ NE(Z) \ {0} and, hence, the cone NE(Z) is strongly convex. This
implies that it is generated by its extremal rays. Consider the cone

Q(Z) = {x ∈ A(Z) | x
2 ≥ 0, H · x ≥ 0}.

By the Hodge index theorem [39, V.1.9] there exists a basis of A(Z) for
which the intersection bilinear form on A(Z) is given by the diagonal matrix
diag(1,−1, . . . ,−1) in such a way that Q(Z) is defined by an inequality of

the type x1 ≥ (
∑ρ(Z)

i=2 x2
i )

1/2 in the suitable coordinates. Then, Q(Z) is the
half-cone over an Euclidean ball of dimension ρ(Z) − 1, which is strictly
convex. One has that Q(Z) ⊆ NE(Z) [44, II.4.12.1] and, therefore, the
extremal rays of NE(Z) must be spanned by elements x ∈ A(Z) such that
x2 ≤ 0. The extremal rays of NE(Z) which are not in Q(Z) are spanned
by classes of integral curves C with C2 < 0 [44, II.4.12.3]. Moreover, if C

is an integral curve on Z such that C2 < 0 then C generates an extremal
ray of NE(Z) [44, II.4.12.2]. The extremal rays of NE(Z) generated by
elements x such that KZ · x < 0 (KZ being a canonical divisor on Z)
are known as a consequence of the Mori cone theorem (see [44, III.1] for
instance): they are exactly those spanned by the images in A(Z) of the
(−1)-curves (that is, integral regular rational curves whose self-intersection
is equal to −1); furthermore, if there are infinitely many (−1)-curves, the
accumulation points of the set of generated extremal rays must be on the
orthogonal hyperplane to the canonical class, K⊥

Z . However, very little is
known concerning the region NE(Z) ∩ (KZ · x ≥ 0). From the classical
theory of surfaces, it is well-known that Z can be obtained by blowing-up
the points of a configuration C over a relatively minimal rational surface
X, that can be either the projective plane P

2 of a Hirzebruch surface Fa :=
P(OP1 ⊕OP1(a)), a being a non negative integer, a 6= 1. We fix, from now
on, both C and X such that Z = XC . When K2

Z ≥ 0 we have the following
results:
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(i) If K2
Z > 0 then NE(Z) is polyhedral (see [53] and [27, Cor. 1(i)]

for the case in which X is the projective plane, and [28, Th. 2(a)]
for the general case). Notice that this happens if and only if the
cardinality of C is ≤ 8 (resp. 7), whenever X = P

2 (resp. X is a
Hirzebruch surface).

(ii) If K2
Z = 0, then either NE(Z) is polyhedral, or the set of extremal

rays of NE(Z) has a unique accumulation point, which is spanned
by −KZ (see [27, Cor. 1(ii)] and [28, Th. 2(b)]). Notice that
K2

Z = 0 if and only if the cardinality of C is 9 (resp. 8), whenever
X = P

2 (resp. X is a Hirzebruch surface).
(iii) If K2

Z = 0 and KZ · D > 0 for some effective divisor D on Z, then
NE(Z) is polyhedral [28, Th. 2(c)].

The cone of curves is not, in general, polyhedral. For instance, in [8,
Example 4.3] it is provided an example of a chain constellation of 9 points
over X = P

2 such that the surface XC has infinitely many (−1)-curves
and, therefore, it has infinitely many extremal rays. The following result
provides conditions for the polyhedrality and regularity of NE(Z) and the

characteristic cone P̃ (X) in terms of the existence of curves passing through
a certain cluster.

Proposition 3.1. [28, Sect. 2.2.2] Set C = {Q0, . . . , Qn} and consider the
cluster K = (C,m), where mi = 1, 0 ≤ i ≤ n. Assuming that X = P

2 the
following properties hold:

(a) If there exists a line passing through K then the cones NE(Z) and
P (Z) are regular, NE(Z) being generated by E0, . . . , En and the
image in A(Z) of the strict transform of the line.

(b) If there exists a conic C passing through K, then NE(Z) is a polyhe-
dral cone generated by E0, . . . , En, the images in A(Z) of the strict
transforms of the lines passing through two points in C, and the im-
age of the virtual transform of C in Z with respect to K. Moreover
P̃ (Z) is a closed cone.

(c) If there exists a conic passing through K and n ≤ 3 then NE(Z)

and P̃ (Z) are regular cones.
(d) if n ≥ 4 and there exists an integral conic such that its successive

strict transforms pass through Q0, . . . , Q4, then P̃ (Z) is not simpli-
cial.

Assuming that X is a Hirzebruch surface Fa, NE(Z) is polyhedral whenever
a curve in the linear system |(1 − a)F + 2M | pass through K, F being a
fiber of the natural morphism Fa → P

1 and M being the divisor of zeros of
a non-trivial global section of OFa

(1).
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Now, we define the above mentioned notion of P-sufficient configuration.

Definition 3.3. Set C = {Q0, . . . , Qn} and consider the divisors D(Qi)
such that PQi

OZ = OZ(−D(Qi)), PQi
being the simple complete ideal of

OX,O associated with Qi, O being the image of Qi on X (see Section 2.2).
Consider the (n + 1)-dimensional symmetric matrix G := ((gij)), where

gij = −αD(Qi) · D(Qj) − (KX
C

· D(Qi))(KX
C

· D(Qj)),

α being 9 (resp. 8) if X = P
2 (resp. X is a Hirzebruch surface). The config-

uration C is said to be P-sufficient if xGxt > 0 for all vectors (x0, . . . , xn) ∈
R

n+1 \ {0} such that xi ≥ 0 for all i.

Remark 3.1. Recall that the coefficients of each divisor D(Qi) are those
appearing in the ith row of the inverse of the proximity matrix of C. Hence,
the matrix G is easy to compute and depends only on the proximity rela-
tions among the points in C.

A general method to decide if a configuration is P-sufficient or not is
given in [26], which consists of checking the non-emptiness of certain sets
defined by linear inequalities. Also, a configuration is P-sufficient whenever
all the entries of the matrix G are non-negative and the diagonal ones are
strictly positive (for an example, see [27, page 86]). Furthermore, when the
configuration is a chain, it is very easy to decide if it is P-sufficient or not:

Proposition 3.2. [28, Cor. 2] When C is a chain constellation, C is P-
sufficient if and only if the last entry of the matrix G is strictly positive.

The following result is proved in [27, Th. 2] when X = P
2 and in [28,

Th. 1] in the general case, and it shows that the P-sufficient configurations
give raise to surfaces with polyhedral cones of curves.

Theorem 3.1. If C is a P-sufficient configuration then the cone of curves
NE(Z) is polyhedral.

Remark 3.2. It can be proved that, if X = P
2 (resp. X is a Hirzebruch

surface) and the cardinality of C is ≤ 8 (resp. ≤ 7) then C is P-sufficient.
For an example of a P-sufficient configuration with 11 points see [27, page
86].

Remark 3.3. If NE(Z) is polyhedral, the configuration C may not be P-
sufficient. For example, take a configuration consisting of 9 or more proper
points on a conic. The cone NE(Z) is polyhedral (by Proposition 3.1) but,
however, the configuration is not P-sufficient.

Remark 3.4. As a result which follows from [43], the topological cells of

the characteristic cone P̃ (Z) (see [43, page 340] for the definition) corre-
spond one to one to surjective morphisms from Z to a (connected) normal
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variety (contractions). Since there is an injection between the set of topo-

logical cells of P̃ (Z) and the one of P (Z) [8, Th. 2.1], one has that the
polyhedrality of NE(Z) implies that the number of contractions is finite.

3.3. Clusters of base points associated with pencils on surfaces.
We shall consider now a particular type of linear systems on a projective
regular surface X: given an effective divisor H, % will be a linear sub-
system of |H| without fixed components and with projective dimension 1 (a
pencil in the sequel). Such a pencil % corresponds to the projectivization of
the sub-vector space V% of H0(X,OX (H)) given by {s ∈ H0(X,OX (H)) |
(s)0 ∈ %} ∪ {0}, (s)0 denoting the divisor of zeros of the section s. If
I(%) is the ideal sheaf on X defining the base point scheme of %, consider
the associated cluster of base points KI(%) = (CI(%),m) and the associated
divisor D(KI(%)).

Cones of curves and irreducible pencils

One can consider the linear system on X of all effective divisors in |H|
passing through the cluster KI(%), which will be denoted by LH(KI(%)).
Then, it is clear that % ⊆ LH(KI(%)). The question we propose to an-
swer now is the following one: when is this inclusion an equality? or,
equivalently, when is a pencil determined by the class of H in the Picard
group and its cluster of base points? A fixed basis of V% provides a ra-
tional map f : X · · · → PV%

∼= P
1 (actually this map is independent from

the basis up to composition with an automorphism of P
1). The closures

of the fibers of f are exactly the curves of the pencil %. For this rea-
son, the elements of % are usually called fibers. Moreover, the morphism
σ := σC

I(%)
: Z := XC

I(%)
→ X is defined by the virtual transform on Z

of the chosen basis of V% with respect to the cluster of base points KI(%),
and it is a minimal composition of point blowing-ups eliminating the inde-
terminacies of the rational map f , that is, the map h := f ◦ σ : Z → P

1

is a morphism (see [4, Th. II.7]). It is clear that, if C1 and C2 are two
curves on Z such that C1 + C2 is contracted (to a closed point) by h, then
both curves C1, C2 must also be contracted by h. Therefore, the images in
A(Z) of all curves of Z which are contracted by h generate a face of the
cone of curves NE(Z), that we shall denote by ∆%. Consider the divisor
G% := σ∗H − D(KI(%)). The linear system %̌ on Z given by the virtual
transforms of the curves in % with respect to the cluster of base points is
contained in the complete linear system |G%|, and the image of G% in A(Z)
is the same than the one of a general fiber of the pencil %. As a consequence,
G% is a nef divisor (since its associated complete linear system is base point

free). Therefore, we conclude that Θ% := NE(Z)∩G⊥
% is a face of NE(Z).
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Lemma 3.1. Both faces ∆% and Θ% coincide.

Proof. The morphism h factorizes as h = t ◦ φ, where
φ : Z → PH0(Z,OZ (G%)) is the morphism induced by a basis of
H0(Z,OZ(G%)) obtained by completing the one given by the virtual trans-
form of the fixed basis of V%, and t : PH0(Z,OZ (G%)) − − → PV%

∼= P
1 is

the projection. A curve C is contracted by φ if and only if G% ·C = 0, and
it is obvious that, in this case, it is also contracted by h. Therefore, one
has that Θ% ⊆ ∆%. Since the strict transforms on Z of two general fibers
do not meet, one has that G2

% = 0. When dimA(Z) ≥ 3, the hyperplane

G⊥
% is tangent to the cone Q(Z) defined in the preceding section. So, we

have the following equivalence (which is also valid when dimA(Z) = 2):

x ∈ G
⊥
% \ {0} and x

2
< 0 if and only if x is not a (real) multiple of G%.

It is clear that there exists y ∈ P (Z) \ {0} such that ∆% ⊆ NE(Z) ∩ y⊥.

But y belongs to G⊥
% , since G% ∈ ∆%. So, by the above equivalence, y is a

multiple of G% and hence ∆% ⊆ Θ%. �

Notice that the integral curves which are contracted by h are exactly
the strict transforms of the integral components of the fibers of the pencil
% and some strict transforms of exceptional divisors (the so-called vertical
exceptional divisors). From this consideration and the above ones it fol-
lows the next result, whose proof is also implicit in [29] but in a different
framework.

Proposition 3.3. An integral curve C on X is a component of a fiber of the
pencil % if and only if its strict transform C̃ on Z satisfies that G% · C̃ = 0.

Moreover, in this case, C̃2 ≤ 0.

We fix a closed immersion i : X ↪→ P
s of X into a projective space; the

degree of a curve F on X will be the intersection product i∗OPs(1) · F .

The pencil % is said to be irreducible if it has integral general fibers. The
following proposition is also proved in [29] when X is the projective plane
using the Cayley-Bacharach Theorem, but we show here a different proof.

Proposition 3.4. If % is irreducible then % = LH(KI(%)), that is, it is
determined by the class of H in the Picard group and its cluster of base
points.

Proof. Reasoning by contradiction, assume that the projective dimension
of LH(KI(%)) is greater than 1. Take a curve C ∈ LH(KI(%)) such that
C 6∈ %. The image in A(Z) of the virtual transform of C on Z with respect

to the cluster KI(%) belongs to |G%| and therefore, if C̃ denotes the strict
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transform, it holds that G% · C̃ = 0 (taking into account that G% is nef
and G2

% = 0). Then, applying the above result, one has that the integral
components of C are fibers of the pencil %. If C1 denotes one of these
components, one has that its degree is strictly less than the one of the
general fibers of % (otherwise, on the one hand, C1 would be a fiber of the
pencil and, on the other hand, it would coincide with C, a contradiction).
But, since the pencil is irreducible, the number of reducible fibers is finite.
The contradiction follows from the fact that, by the initial assumption,
there are infinitely many curves C as above. �

Assuming that the characteristic of the ground field is 0 we prove the
converse of the above statement:

Proposition 3.5. If char(K) = 0 then % is an irreducible pencil if and only
if % = LH(KI(%)).

Proof. Reasoning by contradiction, assume that % = Ld(KI(%)) and % is not
irreducible. Then % is composite with an irreducible pencil, that is, there
exist rational maps q1 : X · · · → P

1 and q2 : P
1 · · · → P

1 such that the
closures of the fibers of q1 correspond to an irreducible pencil ς of degree e,
q2 is generically finite of degree n := d/e > 1 and f = q2 ◦ q1. Therefore, if

C is a general fiber of ς, taking into account that nC̃ is linearly equivalent
to G%, one gets that nC is a fiber of %. Hence, general fibers of % are not
reduced, which is a contradiction. �

Pencils at infinity

We shall assume until the end of this subsection that char(K) = 0. A
specially interesting class of pencils on the projective plane P

2 are the so-
called pencils at infinity.

Definition 3.4. Taking homogeneous coordinates (X1 : X2 : X3) on P
2,

a (linear) pencil (without fixed components) % ⊆ |OP2(d)|, d ∈ Z+, is said
to be at infinity if V% = 〈F,Xd

3 〉, where F (X1,X2,X3) is an homogeneous
polynomial of degree d and X3 = 0 is considered as the line of infinity.

A particular case of pencil at infinity is obtained when F = 0 defines a
curve C having one place at infinity, that is, it intersects with the line of
infinity only in a single point Q and C is reduced and unibranched at Q.
This is easily seen to imply that C is integral. This type of curves have
been extensively studied by several authors as Abhyankar, Moh, Satayhe
and Suzuki [1, 2, 3, 57, 64, 67]. All the curves in the pencil at infinity
defined by F , except the non-reduced one, have one place at infinity and
their singularities at the point of infinity have the same minimal embedded

São Paulo J.Math.Sci. 3, 1 (2009), 115–160



148 A. Campillo, G. Gonzalez-Sprinberg, and F. Monserrat

resolution than the one of C [57]. In [10] is proved a structure theorem for
the cone of curves and the characteristic cone of the surface Z obtained by
blowing-up the configuration of base points of a pencil of this type (which is
a chain constellation). Actually, instead of the cone of curves, the effective
semigroup is considered; it is the sub-semigroup NES(Z) of Pic(Z) spanned
by the classes of the effective divisors.

Theorem 3.2. [10] Let % be a pencil at infinity such that V% = 〈F,Xd
3 〉,

where F = 0 defines a curve having one place at infinity of degree d ≥ 1, and
let Z be the surface obtained by blowing-up the points in the configuration
CI(%). Then:

(a) The semigroup NES(Z) is spanned by the strict transform of the
line of infinity and the strict transforms of the exceptional divisors.

(b) The cones P (Z) and P̃ (Z) coincide and are regular.

Recall that, in the local case, Enriques solved the problem of determin-
ing when there exists a germ of curve passing effectively through a cluster
(C,m) leading to the proximity inequalities [22, 13], and Zariski consid-
ered the semigroup of σC-generated line bundles in order to establish the
unique factorization of complete ideals [71]. In our case, global analogues
to these problems consist of characterizing the semigroup P st

S (Z) ⊆ Pic(Z)
generated by the classes of the strict transforms on Z of curves on P

2, and
the semigroup P̃S(Z) ⊆ Pic(Z) generated by the classes of divisors D on
Z such that OP2(D) is generated by global sections (notice that one has

P̃S(Z) ⊆ P st
S (Z) ⊆ PS(Z), where PS(Z) denotes the semigroup generated

by the nef classes). Concerning these questions, in [10] it is proved the
following result:

Theorem 3.3. Let % and Z be as in Theorem 3.2.

(a) A divisor class D belongs to P st
S (Z) if and only if OP2(D) is gener-

ated by global sections except possibly at finitely many closed points.
(b) P̃S(Z) = P st

S (Z) = PS(Z) if and only if all curves in the pencil %

(except the non-reduced one) are rational.

Due to Theorem 3.2 the cone of curves NE(Z) associated to a pencil
defined by a curve having one place at infinity is always polyhedral. Since
P-sufficient configurations give rise to polyhedral cones of curves, a natural
question arises: when is the configuration of base points of such a pencil
P-sufficient? The answer is given in the following proposition:

Proposition 3.6. [54, Prop. 3] Let % and Z be as in Theorem 3.2. The
configuration CI(%) is P-sufficient if and only if F = 0 defines an Abhyankar-
Moh-Suzuki curve (i.e. it is rational and smooth in its affine part).
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Consider now a pencil at infinity % given by an homogeneous polynomial
F of degree d ≥ 1 but not necessarily defining a curve having one place
at infinity. Assuming certain conditions on F it is possible to describe
the structure of the effective semigroup and the characteristic cone of the
surface Z obtained by blowing-up the configuration of base points of the
pencil:

Theorem 3.4. [11, Th. 3] Assume that % is an irreducible pencil at infinity
such that F factorizes as F

a1

1 · · ·F as

s , where d1, . . . , ds, a1, . . . , as ∈ Z+,
gcd(a1, . . . , as) = 1, F1, . . . , Fs are homogeneous polynomials of respective
degrees d1, . . . , ds such that the curves defined by Fi = 0 have one place at
infinity and, if s ≥ 2, Fi 6∈ 〈F1, Z

d1〉 for some i, 2 ≤ i ≤ s. Then,

(a) The effective semigroup NES(Z) is spanned by the strict transforms
on Z of the following curves: the exceptional divisors, the line of
infinity and the curves defined by the polynomials Fi, 1 ≤ i ≤ s.

(b) P̃ (Z) = P (Z).

4. Applications

4.1. Applications to the Poincaré Problem. Some progress concerning
the theory of foliations have been done by using, as a tool, the language
of configurations and clusters and, also, considerations involving cones of
curves (sections 3.2 and 3.3). They are related to the so-called Poincaré
problem. We shall summarize some of such progress but, previously, we
will introduce briefly some background on the theory of foliations.

Background

We shall assume that K = C. An (algebraic singular) foliation F on a
projective smooth surface (a surface in the sequel) X can be defined by
a collection {(Ui, ωi)}i∈I , where {Ui}i∈I is an open covering of X, ωi is a
non-zero regular differential 1-form on Ui with isolated zeros and, for each
couple (i, j) ∈ I × I,

ωi = gijwj on Ui ∩ Uj, gij ∈ OX(Ui ∩ Uj)
∗
. (2)

The singular locus Sing(F) of F is the discrete subset of X defined by

Sing(F) ∩ Ui = zeroes of wi.

The transition functions gij of a foliation F define an invertible sheaf L
on X and the relations (2) can be thought as defining relations of a global
section of the sheaf L⊗ Ω1

X , which has isolated zeros (because each ωi has
isolated zeros). This section is uniquely determined by the foliation F , up
to multiplication by a non zero element in C. Conversely, given an invertible
sheaf L on X, any global section of L ⊗ Ω1

X with isolated zeros defines a
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foliation F . Alternatively, a foliation can also be defined by a collection
{(Ui, vi)}i∈I , where vi is a vector field on Ui with isolated zeroes, satisfying
analogous relations as in (2). Given P ∈ X, a (formal) solution of F at

P will be an irreducible element f ∈ ÔX,P (where ÔX,P is the mP -adic
completion of the local ring OX,P and mP its maximal ideal) such that the
local differential 2-form ωP ∧df is a multiple of f , wP being a local equation

of F at P . An element in ÔX,P will be said to be invariant by F if all its
irreducible components are solutions of F at P . An algebraic solution of F
will be an integral (i.e. reduced and irreducible) curve C on X such that
its local equation at each point in its support is invariant by F . Moreover,
if every integral component of a curve D on X is an algebraic solution,
we shall say that D is invariant by F . Seidenberg’s result of reduction of
singularities [66] proves that there is a sequence of blowing-ups

Xn+1
πn−→Xn

πn−1

−→ · · ·
π2−→X2

π1−→X1 := X (3)

such that the strict transform Fn+1 of F on the last obtained surface Xn+1
has only certain type of singularities which cannot be removed by blowing-
up, called simple singularities. Such a sequence of blowing-ups is called a
resolution of F , and it will be minimal if it is so with respect to the number
of involved blowing-ups. Assuming that the above sequence of blowing-
ups is a minimal resolution of F , we shall denote by CF the associated
configuration {Pi}

n
i=1 given by the centers of the blowing-ups. Note that

each point Pi is an ordinary (that is, not simple) singularity of the foliation
Fi. An exceptional divisor BPi

(respectively, a point Pi ∈ CF ) is called
non-dicritical if it is invariant by the foliation Fi+1 (respectively, all the
exceptional divisors BPj

, with Pj ≥ Pi, are non-dicritical). Otherwise, BPi

(respectively, Pi) is said to be dicritical. Particularizing to the projective
plane, it holds that a foliation F on P

2 (of degree r) can be defined by
means of a projective 1-form

Ω = AdX1 + BdX2 + CdX3,

where A,B and C are homogeneous polynomials of degree r + 1 without
common factors which satisfy the Euler’s condition X1A+X2B +X3C = 0
(see [33]). From a more geometrical point of view, F can be regarded as
the rational map Φ : P

2 · · · → P̌
2 which sends a point P to (A(P ) : B(P ) :

C(P )). The singular locus of F is the set of points where this rational map
is not defined, that is, the set of common zeros of the polynomials A,B and
C. Moreover, a curve D on P

2 is invariant by F if, and only if, G divides
the projective 2-form dG ∧ Ω, where G(X1,X2,X3) = 0 is an equation of
D.
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The Poincaré problem

We begin with a differential equation with polynomial coefficients of
order 1 and degree 1, that is, of the type Q(x, y)y′ + P (x, y) = 0, with
P,Q ∈ C[x, y] or, in a more general form, given by the vector field D =
Q(x, y)∂/∂x − P (x, y)∂/∂y or, equivalently, the differential form ω =
P (x, y)dx+Q(x, y)dy. It is said that the differential equation is algebraically
integrable or that it has a rational first integral if there exists a rational
function R = f

g
, f, g ∈ C[x, y], such that ω ∧ dR = 0 (or equivalently

D(R) = 0). This implies that the function R is constant on the solutions
of the equation, that is, these are the curves whose implicit equations are
of the form λf +µg = 0, λ, µ ∈ C (hence all solutions are algebraic curves).
In 1891, H. Poincaré [60] observed that, once we possess a bound on the
degree of a polynomial defining a general irreducible solution, we can try
to find the rational first integral by making purely algebraic computations.
The problem of finding this bound in terms of the degree of the foliation is
classically known as the Poincaré problem, although it was studied before
by Darboux and also by Painlevé and Autonne more or less at the same
time than Poincaré. From a more modern point of view, a vector field on
the affine plane is given by polynomial coefficients if and only if it is the
restriction of a foliation of the projective plane. So, the Poincaré problem
can be treated in this framework. Then, we shall say that a foliation F of
P

2 has a rational first integral if there exists a rational function R of P
2

such that dR ∧ Ω = 0. The substantial current interest in the Poincaré
problem was stimulated by Cerveau and Lins Neto in [15]. In this paper,
the problem is stated in a more general form, avoiding the assumption of the
algebraic integrability. That is, if we assume that a foliation F of P

2 has an
algebraic solution C, can we give conditions that allow us to bound deg C

in terms of degF? The main result of [15] gives an answer assuming that
all the singularities of C are simple nodes (in this case deg C ≤ degF + 2).
Carnicer, in [12], proves the same inequality in the case that C does not pass
through dicritical singularities of F . However, there exist examples showing
that, in general, deg C cannot be bounded in terms of degF . A remarkable
counterexample is given in [47] (families of algebraically integrable foliations
of fixed degree and singularities of fixed analytic type are given, in such a
way that the general algebraic solutions have arbitrarily big degree).

Results using infinitely near points

In [5], Carnicer and the first author extend in certain manner the result
given in [12] when dicritical singularities appear. They use, as an important
tool and unifying element in the paper, the language of infinitely near points
and proximity. In fact, they prove proximity formulae for foliations [5, Prop.
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3.5] and use them to give relations between local invariants of an algebraic
solution and local invariants of the foliation. To state the main result, we
need to introduce some notations.

Given a reduced invariant curve C of a foliation F of a projective smooth
surface X, let NC be the configuration over X that consists of those points
in CF whose image on X by the composition of blowing-ups given in (3)
belongs to C. For each P ∈ NC denote by sP (F) the number of points
Q ∈ NC such that P → Q and the exceptional divisor BQ is non-dicritical,
and set νP (C) (resp. νP (F)) the multiplicity at P of the strict transform of
C (resp. the minimum order of the coefficients of a local differential form
defining the strict transform of F at P ).

Theorem 4.1. [5, Th. 1] Let F be a foliation of P
2 and C a reduced curve

which is invariant by F . Let K = (NC = {Qi}
t
i=1,m) be the cluster such

that mi := νQi
(C) + sQi

(F) − νQi
(F) − 1 for all i ∈ {1, . . . , t}. Let d be a

non-negative integer such that the linear system Ld(K) (of curves of degree
d passing through K) is not empty. Then:

deg(C) ≤ deg(F) + 2 + d.

As an application, if either we fix the number of tangents at the singular
points of F , or we fix the equisingularity types of the curve at the singular
points of F , then concrete values of d can be obtained from the fixed data
computing the linear system Ld(K) (this involves the resolution of a system
of linear equations). The obtained bounds will be valid for particular types
of invariant curves. It is worth adding that the above mentioned results
of Cerveau and Lins Neto, and Carnicer are particular cases of Theorem
4.1 since, in both cases, it can be proved that νQi

(F) + 1 ≥ νQi
(C) +

sQi
(F) for all Qi ∈ NC (then, the results follow by taking d = 0). In [7],

the result given in Theorem 4.1 is generalized for foliations of arbitrary
projective smooth surfaces. In this case, one looses the concept of degree
and, in addition to configurations and proximity, the use of divisors and
Intersection Theory is required. The main result is the following one:

Theorem 4.2. [7, Th. 2] Let X be a projective smooth algebraic surface,
F a foliation of X, C a reduced curve which is invariant by F and K =
(NC ,m) as in the statement of Theorem 4.1. If H is a divisor such that
the linear system LH(K) is not empty then:

(DF + H − C) · C1 ≥ 0,

where DF is a Cartier divisor in the divisor class defined by the transition
functions gij associated with the foliation (see the beginning of the section)
and C1 is the reduced curve consisting of the components of C not contained
in the support of H.
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Remark 4.1. If we take, in Theorem 4.2, X = P
2, then one has that

DF = (deg(F) + 2)L, where L is a line. Setting d = deg(H) one obtains
the inequality (deg(F) + 2 + d − deg(C)) deg(C) ≥ 0, that is, deg(C) ≤
deg(F) + 2 + d. Hence, one recovers Theorem 4.1.

Also, a generalization of Theorem 4.1 for 1-dimensional foliations on the
projective space P

n is given in [6], also expressed in terms of infinitely near
points. The above results have been improved by Esteves and Kleiman in
[23] using arguments which do not involve infinitely near points. A recent
result concerning the Poincaré problem is given by C. Galindo and the third
author in [29]. In it, it is provided an algorithm to decide whether a foliation
of P

2 has a rational first integral and to compute it in the affirmative case.
This algorithm runs whenever we assume the polyhedrality of the cone of
curves of the surface obtained by blowing-up the configuration dicritical
points in CF , which we shall denote by BF (this happens, for instance,
when this configuration is P-sufficient). The inputs of the algorithm are
the projective differential 1-form Ω defining the foliation, the configuration
BF of dicritical points and the non-dicritical exceptional divisors coming
from BF . We shall explain now the main ideas that give rise to that result.
Assume now that F is a foliation of P

2 and let πF : ZF → P
2 be the

composition of blowing-ups of the configuration BF . We shall also assume
that the cardinality of BF is greater than 1. If F has a rational first integral
one has the following fundamental facts:

(1) A rational first integral R can be taken to be the quotient of two
homogeneous polynomial of the same degree d, F and G, such that
the pencil % ⊆ |OP2(d)| that they provide is irreducible.

(2) BF coincides with the configuration of base points CI(%) of the pencil
% [29, Prop. 1].

(3) The algebraic solutions of F are the integral components of the
curves in the pencil % and the images of their strict transforms
on A(ZF ), together with the strict transforms of the vertical ex-
ceptional divisors, generates the face of NE(ZF ) given by G⊥

% ∩
NE(ZF ) see Section 3.3, after Lemma 3.1). Moreover, the verti-
cal exceptional divisors are exactly the non-dicritical exceptional
divisors (as a consequence of [30, Prop. 2.5.2.1] and [14, Exercise
7.2]).

Set n the cardinality of the configuration BF (then, dim A(ZF ) = n + 1).

Definition 4.1. An independent system of algebraic solutions for F will
be a set S = {C1, . . . , Cs} such that the system

AS := {C̃1, . . . , C̃s, Ei1 , . . . , Ein−s
} ⊆ A(ZF )
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is R- linearly independent, where C̃i denotes the strict transform of Ci on
ZF and {Eik}

n−s
k=1 are the strict transforms of the non-dicritical exceptional

divisors corresponding to points in BF .

If the cone of curves NE(ZF ) is polyhedral and F has a rational first
integral one has that the face G⊥

% ∩NE(ZF ) has codimension 1 and, there-
fore, it is spanned by n R-linearly independent generators of extremal
rays. Moreover, due to the polyhedrality of NE(ZF ) and the inclusion
Q(ZF ) ⊆ NE(ZF ), one has that a ray in A(ZF ) is an extremal ray of
NE(ZF ) if and only if it is spanned by the image in A(ZF ) of an inte-
gral curve on ZF with strictly negative self-intersection. Therefore, we can
conclude the following

Proposition 4.1. If NE(ZF ) is polyhedral and F has a rational first in-
tegral then there exists an independent system of algebraic solutions S such
that C̃2 < 0 for all C ∈ S. Moreover, the hyperplane G⊥

% is generated by
AS.

We assume from now on that NE(ZF ) is a polyhedral cone. The above
mentioned algorithm consists of two parts. In the first one, from the data
{Ω,BF , (Ei1 , . . . , Ein−s

)} (which comes from the resolution of the singular-
ities of F), either one concludes that F has no rational first integral, or an
independent system of algebraic solutions is returned [29, Alg. 3]. The algo-
rithm generates a strictly increasing sequence of convex cones V0 ⊂ V1 ⊂ · · ·
such that V0 is generated by {EQ}Q∈B

F

and Vi is generated by Vi−1 ∪{Q̃i}
for i ≥ 1, where Q1, Q2, . . . are curves on P

2 (ordered with non-decreasing

degrees) satisfying certain conditions, being Q̃2
i < 0 among them. We

stop when one of the following cases occurs: (1) there exists a subset S of
{Q1, . . . , Qi} which is an independent system of algebraic solutions, or (2)
Q(ZF ) ⊆ Vi. If case (2) holds but (1) does not occur, then we conclude
that F has no rational first integral (see the explanation of Algorithm 3 of
[29]). The second part of the algorithm [29, Alg. 2] will be applied when,
in the first part, an independent system of algebraic solutions S has been
obtained. In the case that F had rational first integral, the hyperplane G⊥

%

would be the one generated by AS . Hence, the first step will be to compute
the primitive (in the lattice Z

n+1 ∼= Pic(ZF ) ⊆ A(ZF )) class TF ,S such that

the hyperplane T⊥
F ,S is the one generated by AS and TF ,S · π∗

FL > 0 for a

line L (see [29, page 618]). Notice that if F had a rational first integral
then G% should be equal to αTF ,S for some integer α > 0. By [29, Prop. 4]
one of the following conditions is satisfied:

(1) T 2
F ,S 6= 0. In this case F has not a rational first integral (since,

otherwise, the equality G2
% = 0 gives a contradiction).
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(2) The coefficients of all the elements of AS in the decomposition of
TF ,S as linear combination of AS are strictly positive. In this case
[29, Th. 2] shows the existence of a unique possible value for α. If
the dimension of the space H0(P2, πF∗OZ

F

(αTF ,S)) is not 2, then F
has not a rational first integral (otherwise we have a contradiction,
since V% would coincide with this space by Prop. 3.4). If the above
dimension is 2, then one can compute a basis {F,G} of the space.
If Ω ∧ d(F/G) = 0 then F/G is a first integral; otherwise, F is not
algebraically integrable.

(3) The set {λ ∈ Z+ | h0(P2, πF∗OZ
F

(λTF ,S)) ≥ 2} is not empty. In
this case one can take α to be the minimum of this set and proceed
as in the above case.

Remark 4.2. Although the algorithm is expressed, for clarity, in terms
of divisors, it involves the computation of linear systems of plane curves
coming from clusters. For instance, to find the curves Q1, Q2, . . . one takes
clusters K = (BF ,m) and, beginning with d = 1 and increasing d succes-
sively, computes (for each fixed value of d) all the linear systems Ld(K)
with (d;m) satisfying certain properties: d2 −

∑
m2

i < 0, the proximity in-
equalities and other properties coming from the adjunction formula. These
properties come from the fact that we want that Q̃i be linearly equivalent
to dπF

∗L−D(K) (L being a general line). The computation of basis of the
linear systems involves the resolution of systems of linear equations. We are
finding non-empty linear systems Ld(K) (whose projective dimension will
be, a fortiori, equal to 0) whose unique curve Qi passes effectively through
the cluster K.

4.2. Applications to the Harbourne-Hirschowitz Conjecture. Clus-
ters of infinitely near points have been applied also to obtain results dealing
with the so-called Harbourne-Hirschowitz Conjecture and related problems.
Fixing r + 1 points P0, P1, . . . , Pr of P

2 in general position and given r + 1
non-negative integers m = (m0,m1, . . . ,mr), the linear system Ld(m) of
plane projective curves of fixed degree d having multiplicity mi (or larger)
at Pi for each i, has an expected dimension (attained when all the condi-
tions being imposed are independent):

edim Ld(m) := max

{
d(d + 3)

2
−

n∑

i=0

mi(mi + 1)

2
,−1

}
.

Those systems whose dimension is larger than the expected one are called
special. The Harbourne-Hirschowitz Conjecture intends to give a descrip-
tion of all special linear systems. One of the equivalent formulations of
this conjecture asserts that a linear system is special if and only if it has
a multiple fixed component such that its strict transform on the surface
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obtained by blowing-up the points P0, P1 . . . , Pr is a (−1)-curve. This con-
jecture goes back to B. Segre [65] and it has been reformulated by several
authors (see [36], [31], [40], [38], [17], [18], and [16] for a survey). There
exists an extensive literature either giving partial proofs of the conjecture
or dealing with related subjects. It is out of the scope of this paper to give a
global overview of the topic; [37], [56], [16] and references given therein will
be helpful for the interested reader. We mention here the result given in
[61], where the semicontinuity theorem and a sequence of specializations to
constellations of infinitely near points are used to obtain an algorithm for
computing an upper bound for the least degree d for which r+1 ≥ 9 general
points of given multiplicities m0,m1, . . . ,mr impose independent conditions
to the linear system of curves of degree d (that is, the regularity of the sys-
tem of multiplicities); also, an explicit formula for a bound is obtained
when all the multiplicities are equal to m: d+2 ≥ (m+1)(

√
r + 2.9+π/8)

(the Harbourne-Hirschowitz Conjecture implies that the imposed condi-
tions are independent when d(d + 3) ≥ (r + 1)m(m + 1) − 2). In [54] it
is provided an unbounded family of systems of multiplicities (mi)

r
i=0 for

which the Harbourne-Hirschowitz Conjecture is satisfied (considering C as
the base field). This result is obtained specializing the r + 1 general points
to the configuration of base points of the pencil at infinity defined by an
Abhyankar-Moh-Suzuki curve and using semicontinuity. The statement is
the following one:

Theorem 4.3. Let % be the pencil at infinity defined by an Abhyankar-
Moh-Suzuki curve that is not a line and let CI(%) = {Q0, Q1, . . . , Qr} be its
constellation of base points. Let m = (m0,m1, . . . ,mr) be a system of mul-
tiplicities such that the cluster (CI(%),m) satisfies the proximity inequalities
mi −

∑
Qj→Qi

mj ≥ 0, 0 ≤ i ≤ r, the second one being a strict inequality

(that is, m1 −
∑

Qj→Q1
mj > 0). If the linear system (supported at gen-

eral points) Ld(m) is special, then it has a multiple fixed component whose
strict transform on the surface obtained by blowing-up the general points is
a (−1)-curve. Furthermore, this curve is the line joining the points corre-
sponding with the multiplicities m0 and m1.

Notice that the above result depends only on the P-Enriques diagram
associated with the resolution of the singularity at infinity of the fixed
Abhyankar-Moh-Suzuki curve, and not on the curve itself. These P-En-
riques diagrams are completely characterized (see [24] and [25]) and each
of them provides an unbounded family of multiplicities for which the Har-
bourne-Hirschowitz Conjecture is satisfied. It is worth adding that some
of the facts in which the proof of Theorem 4.3 is based are the above
mentioned results (Theorems 3.2 and 3.3) on the structure of the effective
semigroup, the nef cone and the characteristic cone of the surface obtained
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by eliminating the base points of a pencil defined by a curve having one
place at infinity. In addition, it is relevant the fact that the configurations
CI(%) as in the statement of Theorem 4.3 are P-sufficient (Prop. 3.6). In [54]
it is also generalized the algorithm given in [61] for bounding the regularity
of a system of multiplicities by using P-Enriques diagrams of pencils at
infinity associated with Abhyankar-Moh-Suzuki curves.
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Éc. Norm. Sup. 35 (2002), 231–266.
[48] J. Lipman, Rational singularities with applications to algebraic surfaces and

unique factorization, Publ. IHES 36 (1969), 195–279.
[49] J. Lipman,On complete ideals in regular local rings, In: Algebraic Geometry and

Commutative Algebra in Honor of M. Nagata, Kinokuniya (1987), 203–231.
[50] J. Lipman, Adjoints and polars of simple complete ideals in two dimensional

regular local rings, Bull. Soc. Math. de Belgique 45 (1993), 223–244.
[51] J. Lipman, Proximity inequalities for complete ideals in two-dimensional regular

local rings, Contemporary Math. 159 (1994), 293–306.
[52] J. Lipman, A vanishing theorem for finitely supported ideals in regular local rings,

Michigan Math. J. 57 (2008), 573–585.
[53] Y. Manin, Cubic forms. Algebra, Geometry, Arighmetic. North Holland Mathe-

matical Library 4, North Holland, Amsterdam, London (1974).
[54] F. Monserrat, Curves having one place at infinity and linear systems on rational

surfaces, J. Pure Appl. Algebra, 211 (2007), 685–701.
[55] D. McDuff, L. Polterovich, Symplectic packings and algebraic geometry, Inven-

tiones Math. 115 (1994), 405–429.
[56] R. Miranda, Linear systems of plane curves, Notices of the Amer. Math. Soc. 46

(2) (1999), 192–202.
[57] T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer.

Math. Soc. 44 (1974), 22—23.
[58] M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math. 33 (1959), 766–772.
[59] T. Oda, Convex bodies and algebraic geometry, an introduction to the theory of

toric varieties, Ergebnisse der Math. 15, Springer-Verlag (1988).
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[62] J. Roé, Conditions imposed by tacnodes and cusps, Trans. Amer. Math. Soc. 353

(2001), no. 12, 4925-4928.
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