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Abstract. It has been proposed that biological structures termed frac-
tones may govern morphogenic events of cells; that is, fractones may
dictate when a cell undergoes mitosis by capturing and concentrat-
ing certain chemical growth factors created by cells in their immedi-
ate vicinity. Based on this hypothesis, we present a model of cellular
growth that incorporates these fractones, freely-diffusing growth factor,
their interaction with each other, and their effect on cellular mitosis.
The question of how complex biological cell structures arise from single
cells during development can now be posed in terms of a mathematical
control problem in which the activation and deactivation of fractones
determines how a cellular mass forms. Stated in this fashion, several
new questions in the field of control theory emerge. We present this new
class of problems, as well as an initial analysis of some of these ques-
tions. Also, we indicate an extension of the proposed control method
to layout optimization.
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1. Introduction

All vertebrate animals, including humans, produce new neurons and glia
(the two primary specialized cell types of the brain) throughout life. Neu-
rons and glia derive from neural stem cells, which reside, proliferate, and
differentiate in specialized zones termed niches. Neural stem cells prolifer-
ate extensively during development and progressively generate the brain,
a phenomenon named neurulation, or brain morphogenesis. Interestingly,
neural stem cells exist and continue to generate neurons and glial cells af-
ter birth and throughout adulthood in very restricted niches, primarily the
walls of the lateral ventricle (see Fig. 1).

What are the mechanisms that control neural stem cell proliferation and
differentiation? Neural stem cells and their progeny respond to growth
factors, endogenous signaling molecules that circulate in the extracellular
milieu (in between cells). Growth factors regulate stem cell proliferation,
differentiation, and migration [5]. It is not known how growth factors are
selected from the extracellular milieu and dispatched within the stem cell
niches to control proliferation, differentiation, and migration, and, ulti-
mately, the architecture of the forming brain (during morphogenesis) or
the plasticity (structural changes and maintenance) of the adult brain.

F. Mercier and colleagues have characterized extracellular matrix struc-
tures, named fractones, in the neural stem cell niches of the adult and
developing brain [16, 13, 8]. In these niches, fractones directly contact
neural stem cells and their immediate progeny [16]. Investigation of the
function of fractones revealed that fractones capture growth factors from
the extracellular milieu via heparan sulfates, the primary components of
fractones [13]. Moreover, fractone-heparan sulfates activate growth factors
at the surface of neural stem cells [9]. Since the majority of growth fac-
tors depend on heparan sulfates to exert their biological signal, fractones
may represent the stem cell niche structures that capture and process a
multitude of growth factors to orderly control stem cell proliferation, dif-
ferentiation, and migration.

Figure 1A shows fractones aligned along the walls of the lateral ventri-
cle, i.e. the neural stem cell niche in the adult brain. Neural stem cells
proliferate next to fractones (arrows). An individual fractone is a complex
structure in which processes of several stem and progenitor cells are in-
serted (see Fig. 1C). Transmission electron microscopy allowed us to see
the detailed structure of a fractone (see Fig. 1C) [16]. Fractones also exist
during development, and are associated with proliferating neural stem cells
(see Fig. 2).

Inspired by these biological discoveries, we have developed a mathemat-
ical model predicting cellular proliferation from the spatial distribution of
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Figure 1: Fractones are extracellular matrix structures associated with pro-
liferating cells in the neurogenic zone (neural stem cell niche) of the adult
mammalian brain. A. Vizualization of fractones (green, puncta, arrows) by confocal
laser scanning microscopy (Pascal Zeiss) in the primary neurogenic zone of the adult
mouse brain, i.e. the wall of the lateral ventricle (LV) at the surface of the caudate nu-
cleus (Ca). Each green puncta is an individual fractone. To be detected, fractones were
immunolabeled for their heparan sulfate components (using the antibody 10E4, Seikagaku,
Japan) and this antibody visualized by secondary antibodies conjugated to AlexaFluor 488
(green fluorophore) [13]. The red puncta indicate proliferating neural stem cells and pro-
genitor cells immunolabeled for the mitotic marker bromodeoxyuridine. Stem cells and
their progeny proliferate next to fractones (arrows). B. Location of the confocal image A
(arrow) in a schematic representation of the mouse brain (cut in the sagittal plane). C.
Visualization of an individual fractone by transmission electron microscopy (dark-grey
structure indicated by the four red arrows. The processes of neural stem cells and of their
progeny, which appear light-grey (blue arrows) are inserted into the folds of the fractone.
Scale bars. A: 50 µm; C: 1 µm.

fractones. We have modeled this biological process as a control system, the
control depicting the spatial distribution of the active fractones. This is a
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novel approach with respect to the most commonly reaction-diffusion (R-
D) models seen in the literature on morphogenesis; however, this approach
is not that surprising. Indeed, the usage of control theory is instrumental
to overcome many challenges faced by researchers to design systems with
a very high degree of complexity and interaction with the environment

Figure 2: Fractones are associated with proliferating cells during the devel-
opment of the mammalian brain. A. Fractones visualized as green puncta by im-
munofluorescence microscopy (DMIL Leica) in the brain of E14.5 embryos after immuno-
labeling for laminin (arrow). Proliferating cells (immunostained for the mitotic marker
phosphrylated histone-3) are associated with fractones at the interface between the form-
ing striatum and thalamus. B. Schematic representation of an E14.5 embryo showing
the plane and the location of the head sections from which originate the images A and C.
C. Low magnification of the whole head immunolabaled for laminin and phosphorylated
histone-3. The microscopic field shown in the image A is indicated in the low magnifi-
cation image (arrow). Note that the proliferating neural stem cells are primarily located
along the ventricle walls (LV: lateral ventricle and 3V: third ventricle). The green lines
indicate the meninges (blue arrow) and developing blood (blue arrowhead). Scale bars.
A: 30 µm; B: 0.5 mm.
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[6, 7, 19]. Examples of the applicability of control theory in physical and
biological systems are numerous [24, 25].

Due to the specific nature of morphogenesis and, in particular, cellular
proliferation, our innovative model opens an entirely new area of research
in control theory. As a result, new methods have to be developed to analyze
biological systems from the perspective of control theory. This will advance
the field of control theory by considering this new class of problems and by
providing insight toward the development of innovative ideas and methods
to solve these types of problems. In this paper, we present our initial
analysis of this new type of control problem and some preliminary results,
as well as an application of our model in the problem of layout optimization
found in the fields of structural and mechanical engineering.

2. Mathematical Model

Our approach to model morphogenesis differs drastically from the classi-
cal R-D model. Our attempt to depict this biological process using contol
theory is directly motivated by the hypothesis that fractones govern the
activation of GFs to trigger cell proliferation.

2.1. Control Systems. In the literature, a control system is described by
a differential equation

ẋ(t) = f(x(t), u(t)), x(t) ∈ M (1)

where M is a n-dimensional manifold, and u : [0, T ] → U , U ⊂ IRm, is
the control. We assume here f to be analytic. Examples of such systems
includes guidance control, automation, artificial intelligence, and traffic op-
timization. In our case, however, the space in which the system exists is
continuously evolving with time; that is, as time increases, the dimension
of the space is also increasing.

2.2. Cell, Diffusion, and Fractone Spaces. Before deriving the actual
dynamical model, we need to introduce the main topological spaces of in-
terest for our model.

Definition 1. The ambient space in which the morphogenic events take
place is assumed to be a compact subset of IR2 and, for simplicity, in this
paper we assume the ambient space is fixed. We denote by A a discretiza-
tion of the ambient space (using for instance discretization by dilatation or
Hausdorff discretization, see [22]). So, in the sequel, A is identified to a
subset of Z2. The precision of the discretization is initially set by the user
but eventually will be determined by the experimental biological maps. To
avoid any confusion with the biological cells, in the rest of this paper, we
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call a cell of our discretization a unit and we identify each unit to an or-
dered pair of integer (i, j). The origin unit of our discretization is chosen
arbitrarily and will be identified to (0, 0).

The relevant components for the biological process under consideration
are: the cells, the space in which the growth factors diffuse, and the frac-
tones.
Definition 2.
(i) We denote by Cell(t) the configuration of cells in the ambient space at
a given time t, and we call it the cell space. It is a closed subset of the
ambient space and is identified in the sequel to a subset of A (a discussion
on this identification is included in Remark 1).
(ii) The diffusion space at time t, denoted by Diff(t), represents the space
in which growth factors are diffusing. It is the complement of the cell space
in the ambient space and its discretization is identified to A\Cell(t). At
each time t, the diffusion space is split into two components, the free diffu-
sion space Free(t) where the growth factors diffuse freely, and the fractone
space, Fract(t) where the diffusion is perturbed. In this paper a fractone is
identified to one unit of our discretization.
(iii) The data of Cell(t), Free(t) and Fract(t) forms what we call the Con-
figuration space at time t, and we denote it by Conf(t).
Note that A = Cell(t) ∪Diff(t) and Diff(t) = Fract(t) ∪ Free(t).

Definition 3. Let S(t) be one of the spaces defined above. We define the
dimension of the space S at time t as the number of indices (i, j) such that
(i, j) ∈ S(t) where S(t) has been identified to its discretization.

Topologically, we can interpret the above definitions as follows: we can
visualize the configuration space at a given time t as a compact subset
of IR2 with holes depicted by the cells. On a given discretization of this
topological space (varying with time), we will model the diffusion of growth
factors (which is perturbed at the location of a fractone). Finally, we will
incorporate into our model the mechanisms that allows duplication of cells.
Remark 1. From a purely theoretical point of view, there are many ways
that we can represent the cells in the ambient space. Indeed, we can make
the assumption that they are all circular and have the same dimension or
that their shape differs in size and form. Notice that, from a practical point
of view, the shape and size of the cells of the initial configurations will be
given by the experimental map and its discretization. To write the dynamic
model of our biological process we only assume that the size and shape of
all cells are identical as well as the fact that the cells are vertically and
horizontally aligned. The assumptions made for the simulations presented
in this paper are clearly explained in Example 1. Also, in this paper, we
make the assumption that a fractone is one unit of our discretization. In
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future work, we plan to relax this assumption to allow more complex forms
for the fractones.

Example 1. Consider the ambient space shown in Figure 3 at time t = 0,
where individual cells are represented by large circles, and fractones are
represented by small circles. The cells are drawn spaced apart so that
individual cells are distinguishable and fractones are clearly visible, but in
reality the cells may be pushed up against one another. In Figure 4, we

Figure 3: An ambient space with 14 cells and 4 fractones. Note the assumption
of uniform cell size, uniform cell shape, and alignment of cells.

discretize to the ambient space (but not the cells). We assume that the
space between cells accounts for 33% of the total space occupied by the
cell. Thus, in the figure, we choose a precision such that each large circle
is inscribed in a 9 × 9 square with a 1 unit border. This 11 × 11 square
represents one cell with associated spacing. Fractones fit within a single
unit. Then A = {(i, j) ∈ Z × Z | 0 ≤ i ≤ 87, 0 ≤ j ≤ 32}

⋃
{(i, j) ∈

Z×Z | 33 ≤ i ≤ 76, 33 ≤ j ≤ 54}. We note that the location of the origin,
(0, 0), was an arbitrary choice. Figure 5(a) shows the full discretization.
Each cell is represented by a 9× 9 square with a 1 unit border. The border
is not considered part of the cell space, but is part of the diffusion space.
This 2 unit wide “channel” between neighboring cells allows growth factor
to diffuse between cells. Each fractone is represented by a single unit. It
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Figure 4: The ambient space with origin chosen to be on the bottom left. Each
large circle representing a cell is 9 units in diameter. Each fractone is 1 unit
in diameter. There is a 2 unit space between cells.

follows that the cell space in the example is given by:

Cell(0) = {(i, j) | i ∈ {23, 24, . . . , 86} \ {32, 33, 43, 44, 54, 55, 65, 66, 76, 77} ,

j ∈ {12, 13, . . . , 20}}
⋃

{(i, j) | i ∈ {12, 13, . . . , 86} \ {21, 22, . . . , 33, 43, 44,

54, 55, 65, 66, 76, 77} , j ∈ {23, 24, . . . , 31}}
⋃

{(i, j) | i ∈ {56, 57, . . . , 64} ,

j ∈ {34, 35, . . . , 42}}
⋃

{(i, j) | i ∈ {45, 46, . . . , 64} \ {54, 55} ,

j ∈ {45, 46, . . . , 53}}

Moreover, we have:

Fract(0) = {(21, 27), (44, 27), (49, 44), (60, 21)}
Free(0) = A\ (Cell(0) ∪ Fract(0))
Diff(0) = Fract(0) ∪ Free(0).

Previous simulations where cell spacing was assumed to be only 20% of
the total space occupied by the cell had 1 unit wide channels. In these
simulations, the diffusion process was occuring much to slow compared
versus reality.
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Figure 5: (a) The discretization of the original ambient space. Note that the
free diffusion space and the fractone space together form the diffusion space.
(b) A “cell”: a 9 × 9 square in the cell space with a 1 unit border in the
diffusion space

In our proposed model, the morphogenic events will be governed by a
control system defined on a state space. In this paper, we assume only
one growth factor is diffusing in the space. The state space is defined
at each time t as the concentration of growth factor in each unit of our
discretization of the diffusion space Diff(t). We denote the state space by
M(t). More precisely, since there is a one-to-one correspondence between
units and ordered pairs of integer, we have:

Definition 4. Let (i, j) ∈ Diff(t). At each time t, we introduce the con-
centration of growth factor in unit (i, j) that we denote by Xi,j(t). The
state space M(t) at time t is then M(t) = Rdim(Diff(t))

≥0 .

As will be seen later, the rate of change in the concentration of growth
factor is described using classical diffusion equations.

Remark 2. Due to the morphogenic nature of the biological process under
study, the state space is constantly evolving as well as the configuration
space. This distinguishes in a very non-trivial way our problem from the
traditional problems in engineering or physics whose systems are usually
defined on a static configuration space.

2.3. Moded for the Perturbed Diffusion of Growth Factors. For
simplicity, we assume the diffusion of a unique type of growth factor and

São Paulo J.Math.Sci. 5, 2 (2011), 281–315



290 M.Chyba et al.

equal sensitivity of the fractones with respect to that growth factor. How-
ever, our model is developed such that expanding to several types of growth
factors and varying fractone sensitivity to respective growth factors can be
added in a straightforward way.

Our assumption that fractones act like captors implies that the diffusion
of growth factor in the extra-cellular space is being perturbed from a regular
diffusion process. We model the diffusion process as an affine control system
defined at each t on the state space M(t):

Ẋ(t) = F 0(X(t)) +
∑

(i,j)∈Diff(t)

F (i,j)(X(t)) · u(i,j)(t), X(t) ∈ M(t). (2)

Here, the drift vector field F 0(x(t)) represents pure diffusion as if no frac-
tones exist, the control vector fields F (i,j)(X(t)) reflect the perturbation
in the diffusion process when fractones are present, and u(.) is called the
control. Notice that, for the diffusion process, the cells play the role of
obstacles. This is captured in equation (2) with the sum acting on indices
(i + k, j + l) that belongs to the diffusion space only, so if a unit of our
discretization belongs to a biological cell, then the diffusion is prevented to
and from that unit.

In order to accurately describe these mechanisms, let us first introduce
∆ = {(0, 1), (0,−1), (1, 0), (−1, 0)}, and ν the diffusion parameter associ-
ated to the considered growth factor. The drift vector field is given by:

F 0(X(t)) = ν ·
∑

(k, l)∈∆
(i+k,j+l)∈Diff(t)

(Xi+k,j+l(t)−Xi,j(t)). (3)

The perturbation of the pure diffusion due to the fractones existence is
modeled as follows. As mentioned before, a fractone is identified to a single
unit (i, j) of our discretization. The hypothesis is that every active fractone
stores the quantity of growth factors that it captures, and that this quantity
becomes unavailable to the diffusion process. Moreover, a key element in
our hypothesis is that the spatial distribution of fractone varies through the
sequence of morphogenic events. The role of the function u(.) introduced
in equation (2) is precisely to control the location and activation of the
fractones. Mathematically, we assume that a passive fractone exists in
every unit of the free space which biologically corresponds to the situation
when either there is no fractone or the fractone is being produced but is
not yet active. Once a fractone becomes active, the unit shifts from the
free space into the fractone space. This leads to the following definition:

Definition 5. To each unit (i, j) ∈ Free(t), we associate what we call a
passive fractone. A passive fractone does not perturb the diffusion process.
An active fractone at time t is defined as a unit of our discretization that
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belongs to the set Fract(t). An active fractone is one that acts as a captor
for the diffusion process.

Let (i, j) ∈ Diff(t). The control function is then defined as:

u(i,j)(t) =
{

0 if (i, j) ∈ Free(t)
1 if (i, j) ∈ Fract(t)

. (4)

Definition 6. Let T be the duration of the cascade of morphogenic events
under study. An admissible control is a measurable function u : [0, T ] →
{0, 1}dim(Diff(t)) that satisfies equation (4).

From our definitions, we now have that, when the fractone identified
to unit (i, j) ∈ Diff(t) becomes active at time t, the component ui,j(t) of
the control is turned on to 1. Then, the active fractone stores the current
quantity of growth factors available in unit (i, j) and acts as captor for the
diffusion process. In other words, diffusion from a unit (i, j) ∈ Fract(t)
to its neighbors is prevented. More precisely, under the assumption that
(i, j) ∈ Fract(t), we have:

F
(i,j)
i,j (X(t)) = ν ·

∑
(k, l)∈∆

(i+k,j+l)∈Diff(t)

Xi,j(t) (5)

F
(i,j)
i+k,j+l(X(t)) = −ν ·Xi,j(t) for (k, l)∈∆,

(i+k,j+l)∈Diff(t) (6)

Those equations reflect the fact that the quantity of growth factor in an
active fractone becomes invisible to the diffusion process. Once the stored
quantity reaches a given threshold, the fractone signals to the cells that
mitosis can occur.

Example 2. Figures 6-7 illustrate the perturbed diffusion process on the
configuration space introduced in the previous examples. We represent
three snapshots of a diffusion process resulting from two single sources of
growth factor as it can be seen in the first picture of Figure 6. The third
dimension represents the quantity of GF in the corresponding unit. In red
are the cells, light blue represents the free space, the dark blue spaces do
not belong to the ambient space (they represent obstacles for the diffusion
and mitosis) and, as before, in green we represent the active fractones.

2.4. Mitosis. As mentioned in the introduction, growth factors are regu-
larly produced by the biological cells and then are diffusing freely in the
available extra-cellular space. When the growth factor is significantly close
to an active fractone, said fractone captures and concentrates the growth
factor. Once the concentration of growth factor reaches a significant value,
the fractone gives the order to its associated cell to undergo mitosis. In
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reality, the time for a cell to undergo mitosis is approximately four hours.
However, by the time mitosis actually occurs, the fractone may have re-
located. What is interesting is that the previous location of a fractone
has been shown to be the location of new cells after the next morphogenic
event. Due to this correlation, it is clear that the spatial distribution of
fractones dictates the location of future morphogenic events, hence the frac-
tones are the obvious choice to represent the controls in our system. One
may argue that the reality does not match the model in that there is a
time lapse in which the fractones may or may not move, and the cell un-
dergoes mitosis. To alleviate this problem, the model is so that mitosis
occurs instantaneously once an order has been issued by a fractone, and
that fractone movement is also instantaneous in that we associate every
avaiable unit in Free(t) with a fractone, and that “moving” a fractone is
equivalent to changing the control from 1 to 0 in one location (making this
fractone inactive) and vice-versa in another location (making this fractone
active). To equivalently describe this process mathematically, we state that
the spatial distribution of the fractones and the concentrations of freely-
diffusing growth factors dictate the location and appearance of holes (i.e.
cells) in the configuration space.

Now that mitosis is occuring, a natural question arises: when a cell
undergoes mitosis, how does the existing mass of cells deform? The de-
formation of the mass of cells undergoing morphogenic events is extremely
complex. Indeed, it involves many different criteria to take into account
as well as forces to optimize. Our goal in this paper is to state and start
analyzing some control problems formulated in a new setting rather than
to produce the most accurate simulation of the biological process which
would render such a complex system that an analytic study could not be
conducted. Therefore, our criterion for the deformation of the mass of cell
is based on the minimization of a given distance function.

Definition 7. We assume in the sequel that we have a distance function,
denoted by d, defined on the set of ordered pairs of integers. More precisely,
for each a = (a1, a2), b = (b1, b2) ∈ Z × Z, the distance between a and b is
well defined by the positive real number d(a, b).

When mitosis occurs at a given time t, the configuration space Conf(t)
undergoes a topological change. Indeed, with new cells forming, they be-
come additional holes in the ambient space, and while the dimension of
Free(t) decreases, the dimension of Cell(t) increases. To accomodate for
the formation of new cells, Cell(t) has to deform accordingly to a pre-
scribed algorithm. Assume unit (i, j) represents an active fractone and we
denote by C the associated cell (under our current assumptions a fractone
can be linked to a single cell only). Since we assume all cells rigid and of
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equal shape, we can identify a biological cell to a single unit of our dis-
cretization. For instance, in Example 1, each cell can be identified to its
middle unit denoted here by (a, b) and we can write C = (a, b). The defor-
mation algorithm is defined as to preferentially deform the current mass of
cells in the direction of the closest empty space in a clockwise orientation
as starting from angle zero (as referenced by an axis superimposed on the
center of the “mother” cell). More precisely, assume C = (a, b) duplicates.
The algorithm looks incrementally for the closest unit (i, j) ∈ Free(t) to
(a, b) (based on the chosen distance d) such that (i, j) can be identified to
a cell (see Example 3 for more details). Since more than one unit identified
to a cell can be at the same distance from (a, b), we need to use a selection
algorithm. There are many ways to select among those units; it could even
arbitrarily be determined by the computer. See Example 3 for the choice
made for our simulations.

Example 3. This example uses the assumptions made in Examples 1 and
2. For the simulations included in this paper, we use the following defor-
mation algorithm. Let α1 = (a1, b1), α2 = (a2, b2) ∈ Z×Z, we consider the
Euclidean distance:

dE(α1, α2) =
√
|a1 − b1|2 + |a2 − b2|2.

Our choice of distance is motivated by the assumption that the mass of
cells is optimizing its shape by prioritizing compactness. As it was ex-
plained above, we assume that each cell is identified to its middle unit of
its discretization. It is therefore understood that C = (a, b) = {(i, j) ∈
Cell(t); a − 4 ≤ i ≤ a + 4, b − 4 ≤ j ≤ b + 4}. Let Ci = (ai, bi),
i = 1, 2 be two biological cells. Therefore, since every cell has a unit-
wide boundary, then a1 = a2 mod 11 and b1 = b2 mod 11 and dE(C1, C2) ∈{

11
√

n2 + m2 | n, m ∈ Z
}

. It follows that the deformation algorithm will
search for the closest units in Free(t) that are at distances of the form
11
√

n2 + m2 from the cell undergoing mitosis. Notice that, given a cell C,
the closest units multiples of 11 from C are at a distance 1 (i.e. (n, m) =
(0, 1) or (1, 0)), and there are 4 of them. The next closest units of 11 are
at a distance

√
2, and there are also 4 of them. Table 1 list some of the

possible distances (divided by 11 in the table). The pattern is very clear.

(1) 12 possible units if dE = 11 ∗ r where r is an integer that is the
hypotenuse of a Pythagorean triple,

(2) 8 possible units if dE = 11 ∗ r where r is not along a diagonal or an
axis in Table 1, or

(3) 4 possible units if dE = 11 ∗ r where r is on a diagonal or an axis,
and is not the hypotenuse of a Pythagorean triple.
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0 1 2 3 4 5 6 7 8 9 10
1

√
2

2
√

5
√

8
3

√
10

√
13

√
18

4
√

17
√

20
√

25
√

32
5

√
26

√
29

√
34

√
41

√
50

6
√

37
√

40
√

45
√

52
√

61
√

72
7

√
50

√
53

√
58

√
65

√
74

√
85

√
98

8
√

65
√

68
√

73
√

80
√

89
√

100
√

113
√

128
9

√
82

√
85

√
90

√
97

√
106

√
117

√
130

√
145

√
162

10
√

101
√

104
√

109
√

116
√

125
√

136
√

149
√

164
√

181
√

200

Table 1: Sample distance distribution for the deformation of the mass of cells as measured
from the “mother” cell (located at 0). Here, only one half of one quadrant is displayed
since it is symmetrical with respect to the other quadrants, and the table is symmetrical
about its diagonal.

To select among several units at the same distance dE from the duplicating
cell C = (a, b), we define i` − a and j` − b, for all `, where ` represents
the number of possible locations at a given distance. The algorithm looks
first for a unit in Free(t) such that j` − b ≤ 0 and chooses preferentially
the max {i`} and its corresponding coordinate. If no such unit is found,
the algorithm searches for a unit in Free(t) such that j` − j0 > 0, and
chooses preferentially the min {i`} and its corresponding coordinate. Once
the unit at the shortest distance dE is detected, the deformation occurs in
that direction. In Figure 8, we display a sequence of morphogenic events
to illustrate how our deformation algorithm works.

When a cell undergoes mitosis and the distance algorithm has chosen a
position in Free(t) for Cell(t) to deform toward (let us refer to this closest
selected unit at a distance dE mod 11 as (c, d)), the growth factor present
in the space must move in order to make room for the deformed mass of
cells. Hence, the algorithm for redistribution of GF occurs as follows:

(1) it calculates the sum of the GF present in the space associated to a
cell centered in unit C = (c, d) where the mass of cells will deform
toward, i.e.

4∑
k,l=−4

Xc+k,d+l(t).

(2) deforms Cell(t) such that (c, d) ∈ Cell(t).
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(3) counts the number of units in Free(t)∪Frac(t) that are at a distance
dE ≤ 8 from (c, d).

(4) distributes 70% of the sum from (1) evenly in each unit from (3).
(5) counts the number of units in Free(t) ∪ Frac(t) at a distance 8 <

dE ≤ 11 from (c, d).
(6) distributes the remaining 30% of the sum from (1) evenly in each

unit from (5).

In this way, one can see that once the new cell enters the system, the
deformation of Cell(t) creates a “pressure wave” that distributes the GF
around the space where the deformation impacts Free(t). It should be
noted that the distances and percentages chosen are arbitrary and are eas-
ily adjustable. In Figure 9, we represent a simulation of a sequence of
morphogenic events. We display the cell’s duplications as well as the diffu-
sion of growth factors. For our simulations, we also included in the model
that every biological cell in the simulations produce GF, and that the units
that comprise the edge of a cell produce an amount of GF equal to 0.2 /
unit / 3 seconds, that way the whole cell can be thought of as producing
an amount of GF equal to 7.2 / 3 seconds (since there are 36 edge units in
a 9x9 cell). Accordingly, the GF threshold for a fractone is currently set at
0.4.

Fig. 9(a): : Initial cell space.
Fig. 9(b-c): : The initial cell produces growth factor, which diffuses

and is captured by the neighboring fractone at (23, 18).
Fig. 9(d): : The cell undergoes mitosis. The fractone at (23, 18)

deactivates and a fractone at (34, 18) activates.
Fig. 9(e-h): : Cells continue to produce growth factor, which diffuses

and is captured by the fractone at (34, 18), triggering mitosis when
concentrations are high enough.

Fig. 9(h-j): : The fractone at (34, 18) deactivates, and a fractone at
(34, 7) activates until mitosis occurs

Fig. 9(k-n): : The fractone deactivates and a fractone at (13, 18)
activates until mitosis occurs.

Fig. 9(n-0): : Finally, the fractone at (13, 18) deactivates, and the
fractone at (34, 18) reactivates, prompting mitosis when growth fac-
tor concentrations are high enough.

2.5. Problem Formulation.

2.5.1. Biological formulation. .
Given an initial and final configuration of cells in a prescribed ambient
space, determine an initial concentration of growth factors and a dynamic
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spatial distribution of fractones such that the mass of cells transforms from
its initial configuration to its final configuration.

2.5.2. Mathematical formulation. .
Let us now rephrase this using the mathematical definitions introduced
previously. To summarize, the quantity of growth factor in each unit of our
discretization is regulated through the following affine control system:

Ẋ(t) = F 0(X(t)) +
∑

(i,j)∈Diff(t)

F (i,j)(X(t)) · u(i,j)(t), X(t) ∈ M(t). (7)

where the state space M(t) = Rdim(Diff(t))
+ varies with time, the vector fields

F0, F
(i,j) are given respectively by equations (3) and (5,6), and such that

u(.) is an admissible control. What is unusual in the considered problem
with respect to traditional control problems is that the initial and final
conditions are given in terms of Cell(0) and Cell(T ) rather than in terms
of X(0), X(T ).

More precisely, we have:
Problem α: Given A, Cell(0) and Cell(T ), determine X(0) and an ad-
missible control u(.) such that Cell(0) transforms into Cell(T ) under the
evolution of system (2) and the prescribed rules for mitosis.
Notice that the admissible control is determined by the fractone set Fract(t)
at almost every time t ∈ [0, T ].
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Figure 6: On the top figure, we can see two single initial sources of GF (located
at exactly two units of our discretization). The bottom figure shows diffusion
of the two sources in the neighboring units in Diff(t) while avoiding the units
in Cell(t).
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Figure 7: This figure displays the fact that as the diffusion process advances
the acrtive fractones capture the GF, this can be seen with the quantify of
growth fractones growing above the active fractones represented in green.
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Figure 8: Starting from a unit cell and a single fractone that spans two units,
the sequence of images illustrate the deformation algorithm as duplication of
the cell associated to the fractone occur. If we choose the origin such that the
center of the initial cell is at (0, 0). we have that the initial cell space (Figure
8,1) is {(i, j) ∈ Z × Z| − 4 ≤ i ≤ 4,−4 ≤ j ≤ 4}, and the final cellspace (Figure
8,11) is {(i, j) ∈ Z×Z|−26 ≤ i ≤ 26,−26 ≤ j ≤ 26}\{(i, j)|i ∈ {−6,−5, 5, 6, 16, 17}, j ∈
{−6,−5, 5, 6, 16, 17}}.
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Figure 9: Cell space growth, with growth factor production, diffusion, and
capture by fractones. Fractones are activated and deactivated between mito-
sis events.
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3. Theoretical Results

In this section, we analyze some theoretical questions related to the
mathematical problem α stated in Section 2.5.2. The key element in our
model is the role played by the fractones as controllers. Under our hypoth-
esis, they regulate cell’s proliferation and differentiation. Growth factor
intervenes in cell proliferation, but the fractones are the mechanism guid-
ing and regulating GF. In our model, the production and diffusion of GF
determines the time (or equivalently the order) at which the morphogenic
events take place but it is the fractones that control the process. For in-
stance, production of GF can always be altered such that a given active
fractone will reach the GF threshold at a precise time. Moreover, the re-
sults presented in this section are based on having a unique active fractone
at a time. Therefore, the diffusion and production of GF does not play any
role in generating the morphogenic events (it only provides temporal infor-
mation). For this reason, in this section, we consider the simplified problem
where we neglect the GF diffusion and focus on how spatial distribution
of fractones regulate cell proliferation. Once again, this is not a restrictive
simplification and our results can be simulated using the complete model.

The results presented in this section are based on the assumptions made
in our examples, in particular we consider the algorithm for deformation of
the mass of cells described in Example 3.

The first two results deal with existence and uniqueness of solutions for
our mathematical problem.

Lemma 1. There exist choices of A,Cell(0) and Cell(T ) such that we cannot
find an initial concentration of growth factor X(0) as well as an admissible
control to solve Problem α.

Proof. This result is a consequence of our choice for the rules governing the
deformation of the cell space once mitosis happens. Figure 10 provides an
example. �

Lemma 2. Assume A,Cell(0) and Cell(T ) are such that there exists X(0)
and an admissible control such that there is a solution to Problem α. The
solution might not be unique.

Proof. It is straightforward to produce an example; see Figure 11 for an
illustration. �

Lemmas 1 and 2 suggest two lines of work. First, since we might not be
able to reach a prescribed final cell configuration a natural questions is then:
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Figure 10: Example of a final configuration that can be attained using our
algorithm from the initial configuration on the right with two cells but not
from the single cell configuration on the left.

Figure 11: Illustration of several sequences of morphogenic events starting
from a unique cell and reaching the same final configuration.

How close can we reach a prescribed final configuration? Second, the non-
uniqueness of the solution when it exists raises the question of optimality.
In this paper, we will focus on the first aspect, i.e. on the reachable set
of configurations. Optimization of the solutions will be addressed in a
forthcoming paper. Before we can state some results we need to introduce
some definitions. In order to measure how close two configurations of cells
are from each other we use the Hausdorff distance. In the sequel, all spaces
are identified to their corresponding discretization and a given ambient
space A has been prescribed in which all the considered mass of cells live.
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Definition 8. Given a cell space Cell ⊂ A, an element of Cell corresponds
to a biological cell. In our discretization, it is identified to a single unit
representing the cell. In Example 1, an element (i.e. a cell) a ∈ Cell
is a 9 × 9 square identified to its middle unit (ia, ja) and we write Ca =
(ia, ja) ∈ Cell. Under our assumption that our cells are horizontally and
vertically aligned, we have given two cells Ca, Cb ∈ Cell that dE(Ca, Cb) ∈
{11

√
n2 + m2|n, m ∈ Z}. For this section, we introduce a new distance dC :

dC(Ca, Cb) = dE(Ca, Cb)/11

so that two adjacent cells are at a distance 1 and not 11 (the 11 being solely
dependent on the discretization and therefore misleading). Two diagonal
cells are therefore at a distance

√
2.

Definition 9. Let CellA, CellB ⊂ A be two cell spaces.

(1) We define the directed Hausdorff distance, d, by:

d(CellA, CellB) = max
Ca∈CellA

min
Cb∈CellB

dC(Ca, Cb)

Thus d(CellA, CellB) gives the minimum distance from the cell
Ca ∈ CellA to any cell in CellB, where Ca is the cell in CellA
furthest from any cell in CellB.

(2) The Hausdorff distance, DH , is given by:

DH(CellA, CellB) = max(d(CellA, CellB), d(CellB, CellA))

Example 4. Consider the cell spaces in Fig. 12. With the origin placed in
the bottom left of the ambient space, we let

CellA =

{(i, j)|i ∈ {12, 13, . . . , 20}, j ∈ {1, 2, . . . , 9, 12, 13, . . . , 20, 23, 24, . . . , 31}}
⋃

{(i, j)|i ∈ {23, 24, . . . 31}, j ∈ {12, 13, . . . , 20}}

and

CellB ={(i, j)|i, j ∈ {1, 2, . . . , 9}}
⋃

{(i, j)|i, j ∈ {23, 24, . . . , 31}}
⋃

{(i, j)|i ∈ {34, 35, . . . , 42, 45, 46, . . . , 53}, j ∈ {12, 13, . . . , 20}}.

An easy calculation shows that d(CellA, CellB) =
√

2, d(CellB, CellA) = 2,
and DH(CellA, CellB) = 2.

The next definition introduces the notion of a walk between two biological
cells.
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Figure 12: (a) The cells in CellA and CellB represented by circles. (b) The
discretization of CellA and CellB with axes included.

Definition 10. Let Ca, Cb be two cells. A walk from Ca to Cb is a sequence
of cells, {Cai}n

i=0, such that Ca = Ca0 , Cb = Can and dC(Caj , Caj+1) = 1
for j = 0, 1, 2, . . . , n− 1. A walk {Cai}n

i=0 is minimal if

max
j=0,1,2,...,n

min(dC(Ca0 , Caj ), dC(Caj , Can))

≤ max
j=0,1,2,...,m

min(dC(Cb0 , Cbj
), dC(Cbj

, Cbm))

for any other walk {Cbi
}m

i=0 with Cb0 = Ca, Cbm = Cb.

Clearly, a walk must “cross” the line equidistant (using the Euclidian
metric) to the two end-point cells Ca and Cb. We will call any cell through
which this line passes a “middle cell”. Notice that for some scenarios,
there might not be any middle cell (see Figure 13a). This can be the case
only if the first or second indices of the cells Ca and Cb coincide. Assume
that Ca and Cb are not aligned, then middle cells exists and it is clear
that a minimal walk must contains a middle cell such that the sum of its
distance to Ca and its distance to Cb is less or equal to this sum for any
other middle cell. It is also true that this distance represents the value
maxj=0,1,2,...,n min(dC(Ca0 , Caj ), dC(Caj , Can)) (see Figure 13).

Proposition 1. Let C1 and C2 be two cells in the ambient space. Then,
there exists a minimal walk from C1 to C2. The minimal walk might not be
unique.

Proof. The proof is based on our previous remarks. First let us intro-
duce a specific construction for a walk between C1 = (i1, j1) and C2 =
(i2, j2) and then we will prove that it is minimal. We introduce di ={
b i2−i1

2 c if i2 − i1 ≥ 0
d i2−i1

2 e if i2 − i1 < 0
and
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Figure 13: (a) Two example walks, one of which is a minimal walk. (b) A
minimal walk, with middle cells highlighted. Note that any minimal walk
must pass through the middle cell in the center, and will not pass through
any other middle cell.

dj =
{
b j2−j1

2 c if j2 − j1 ≥ 0
d j2−j1

2 e if j2 − j1 < 0
as the horizontal and vertical integer part

distances. If di ≤ 2 and dj ≤ 2, the minimal walk is straightforward to con-
struct. Otherwise, we construct a minimal walk inductively by finding a
minimal walk between (i1, j1) and (i1 + di, j1 + dj) and a minimal walk
between (i2 − di, j2 − dj) and (i2, j2) (if the horizontal and vertical integer
part distances between these two indices are greater than 2 we keep sub-
diving). We concatenate these minimal walks to achieve a walk between
(i1, j1) and (i2, j2). This final walk is minimal. Indeed, its middle point is
the furthest unit in the walk from either a1 or a2 but by construction it is
also the closest cell from a1 and a2 among the set of all middle cells (and
this is also true for each of the subdivision). �

Notice that it is not true that the concatenation of two minimal walks is
always also a minimal walk.

Definition 11. A cell space Cell is called 1-connected if for any two cells,
Ca, Cb ∈ Cell, there exists a walk {Cai} with Cai ∈ Cell for all i and
Ca0 = Ca, Can = Cb. More generally, Cell is said to be r-connected if there
exist a sequence {Cai}n

i=0 with Cai ∈ Cell for all i, Ca0 = Ca, Can = Cb

and such that dC(Caj , Caj+1) ≤ r for j = 0, 1, 2, . . . , n − 1. We call Cell
minimally r-connected if Cell is r-connected but not m-connected for any
m < r.

Definition 12. Let CellA and CellB be two cell spaces. A path (when it
exists) between CellA to CellB is a sequence of morphogenic events such
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Figure 14: (a): 1-connected cell space. (b): Minimally 3-connected cell space
.

that CellA deforms into CellB. More precisely, the existence of a path is
equivalent to the existence of an initial value X(0) and an admissble control
u(.) defined on [0, T ], CellA = Cell(0) such that there is a solution to prob-
lem α with CellB = Cell(T ). Given the fact that in this section we neglect
the role of the growth factor, it boils down to the existence of a dynamic
spatial distribution of fractones that generates the desired growth.

Proposition 2. Given an initial cell space Cell(0) and a 1-connected cell
space CellF such that Cell(0) ⊂ CellF , then there exists a path from Cell(0)
to Cell(T ) for some T such that DH(Cell(T ),CellF ) ≤ 1.

Proof. Since Cell(0) is assumed to be a strict subset of Cell(T ), let Ca0 ∈
Cell(0) such that there exists Ca1 ∈ Cell(T ) with dC(Ca0 , Ca1) = 1 and
Ca1 /∈ Cell(0) (ie. Ca1 must be directly above, below, to the right, or to the
left of Ca0). This is possible since Cell(T ) is 1-connected. We activate a
fractone associated to the cell Ca0 to induce mitosis. If Ca1 is to the right
of Ca0 , then when growth is triggered, the mass of cell deforms and Ca1

is brought into the new cell space. If Ca1 is below, to the left, or above
Ca0 , then growth must occur at least two, three, or four times, respectively,
before the mass of cell deforms in the Ca1 direction. The extra cells created
in this growth will be distance 1 from Ca0 , and therefore either in CellF or
a distance 1 from CellF . Inductively, we inactivate the fractone and repeat
the process. When no cell Ca0 satisfying our assumptions exists, then
the newly obtained cell space at that time, T , must be within Hausdorff
distance 1 since no extra cell created was more than distance 1 from any
element of CellF . �

The next natural question is to determine how to modify the deforma-
tion algorithm in order to replace the existence of a path from Cell(0) to
Cell(T ) for some T such that DH(Cell(T ),CellF ) ≤ 1 in Proposition 2 by
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Figure 15: Proposition 2 states that from any initial cell space included in the
final cell space represented in blue can be deformed into a cell space strictly
included in the green space at Hausdorff distance 1 of the desired final cell
space.

the existence of a path such that Cell(T ) = CellF , i.e. we can reach exactly
the final prescribed cell space. Proposition 3 states that we can improve the
accuracy of the growth if we allow rotation of the entire configuration space
between growth events. This is not suprising since it essentially allows us
to choose the direction of cell growth.

Proposition 3. Given an initial cell space Cell(0) and a 1-connected cell
space CellF such that Cell(0) ⊂ CellF , then, with rotations of the configu-
ration space allowed between morphogenic events, there exists a path from
Cell(0) to Cell(T ) for some T such that DH(Cell(T ),CellF ) = 0.

Proof. As in Proposition 2, let Ca0 ∈ Cell(0) such that there exists Ca1 ∈
Cell(T ) with dC(Ca0 , Ca1) = 1 and Ca1 /∈ Cell(0). Rotate Cell(0) and
CellF together until Ca1 (or its rotational image) lies to the right of Ca0

(or its rotational image). We then proceed exactly as in Proposition 2 by
activating a fractone associated to cell Ca0 . The cell space is then deformed
exactly in the Ca1 direction. Since CellF is connected, this process can be
repeated, and the cell space rotated back to its original orientation, until
DH(Cell(T ),CellF ). �
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One should note this path from Cell(0) to Cell(T ) is neither unique
nor time-optimal. In fact, it is quite slow as at most 1 fractone is active
at any given time. Notice also that from the biological point of view,
a deformation algorithm that allows translation and rotation of the cell
space is not realistic for several reasons. It is interesting purely from a
mathematical point of view.

The next result concerns a cell growth from an initial cell space to reach
as close as possible a final cell space that is minimally r-connected, r > 1.
Let us first state a useful lemma.

Lemma 3. Let C1 = (i1, j1) and C2 = (i2, j2) be two cells in a cell space such
that dC(C1, C2) = r, r not even . Then for the middle point Cam = (im, jm)
of a minimal walk between C1 and C2, min(dC(C1, Cam), dC(Cam , C2)) ≤
r√
2
.

Proof. Let di = 1
11 |i2 − i1| and dj = 1

11 |j2 − j1|. Then r =
√

d2
i + d2

j . We
first note that the case where either di or dj equal 0 is trivial. The minimal
walk is a straight row or column, and the distance to a middle cell is equal
to r

2 (if r is even there is no middle cell). If di = 1 and dj = 1, then it is
simple to verify that r =

√
2 and the distance to the middle points is 1.

Otherwise, in general, there are three cases: (i) di, dj both even; (ii) one
of di, dj odd; (iii) or both di,dj odd. Case (i): If di, dj both even, then the

middle point is a distance
√

(di
2 )2 + (dj

2 )2 = r/2 < r√
2

from either C1 or C2.
Case (ii): Without loss of generality, suppose di is odd and dj is even. Then
the furthest distance from the middle point of a minimal walk to either C1

or C2 will be
√

(di+1
2 )2 + (dj

2 )2 = 1
2

√
d2

i + d2
j + 2di + 1 ≤ 1√

2

√
d2

1 + d2
j if

2di + 1 ≤ d2
i + d2

j . Since di ≥ 2 and dj ≥ 1 (else we would be in one
of the previously proven cases), the inequality holds. Case (iii): If both
di, dj are odd (note in this case di ≥ 3 and dj ≥ 3), then the furthest
distance from the middle point of a minimal walk to either C1 or C2 is√

(di+1
2 )2 + (dj−1

2 )2 . It follows that
√

(di+1
2 )2 + (dj−1

2 )2 ≤ 1√
2

√
d2

1 + d2
j if

2di − 2dj + 2 < d2
i + d2

j . Since di ≥ 3 and dj ≥ 3, the inequality holds (the
same argument is true if we invert i and j in the equations depending on
the minimal walk that has been chosen). �

Proposition 4. Given an initial cell space Cell(0) and a minimally r-
connected cell space, r > 1, CellF =

⋃n
i=1 CellFi, where each CellFi is

1-connected. Assume Cell(0) ⊂ CellFk
for some k. Then there exists a path

from Cell(0) to Cell(T ) for some T such that DH(Cell(T ),CellF ) ≤ r√
2
.
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Proof. First, we construct from CellF a new cell space by bridging the gaps
between all its components CellFi . The algorithm goes as follows. Find
the cell in CellF1 and the cell in

⋃
i6=1 CellFi that have minimal distance

dC to each other. Find a minimal walk between these two cells, call it
{Ca1i}. Without loss of generality, suppose we connect CellF1 and CellF2 .
Then find a cell in CellF1 ∪CellF2 and a cell in

⋃
i>2 CellFi that minimize

the distance dC between all cells in those two cell spaces. Again, find a
minimal walk between these two cells, call it {Ca2i}. Proceed iteratively
until all CellFi have walks, {Caji}, between them. Then let CellG be the
union of CellF and

⋃n−1
j=1 {Caji}. Then CellG is 1-connected, so by previous

Proposition, there exists a path from Cell(0) to Cell(T ) for some T such
that DH(Cell(T ),CellG) ≤ 1. The difference between CellF and CellG are
the minimal walks, so the Hausdorff distance from Cell(T ) to CellF will
be at most the maximum distance from a walk endpoint to a point

√
2

away from the closest middle cell. Since CellF is minimally r-connected,
we need only to consider the walks between cells at a distance r from
each other. Let C1 = (i1, j1) and C2 = (i2, j2) be two such cells. Let
di = 1

11 |i2 − i1| and dj = 1
11 |j2 − j1|. Then r =

√
d2

i + d2
j . Suppose first

that di is 0. We note dj cannot equal one since we assume CellF is not
1-connected. If dj ≥ 3 is odd, then the minimal walk between C1 and
C2 is a column of cells, and the minimum of the maximum distances to

a cell one away (left or right) from this walk is given by
√

(dj−1
2 )2 + 1.

This will be less than or equal to r√
2

if 5 ≤ d2
j + 2dj , which is true for

dj ≥ 3. Similarly, if dj ≥ 2 is even, then the distance to a cell one away

from the middle cell is:
√

(dj

2 )2 + 1. Note that
√

(dj

2 )2 + 1 ≤ r√
2

if 4 ≤
d2

j , which is always true for dj ≥ 2. Remark that the above argument
applies even if the values of di and dj are swapped (covering the case where
the minimal walk is a horizontal row of cells), and covers the worst-case
scenario; clearly, growing to the right along a horizontal minimal walk
will match the minimal walk exactly, giving a Hausdorff distance within
r/2, while growing to the left requires you to pass through a middle cell
above or below the middle cell of the minimal walk. Suppose now that
neither di nor dj are 0. If both di and dj are even, then the minimal walk
must pass through the middle cell M1 = (i1 ± di

2 , j1 ± dj

2 ), where the ±
is determined by the relative position of C2 to C1. Then the maximum
distance from an endcell of the walk (ie. C1, C2) to a cell within

√
2 of

m1 is
√

(di
2 + 1)2 + (dj

2 − 1)2) (or equivalently we can interchange i and
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j). Moreover,
√

(di
2 + 1)2 + (dj

2 − 1)2) ≤ r√
2

if 8 ≤ (d2
i − 4di) + (d2

j + 4dj),
which is always true for di, dj ≥ 2. The case of di = dj = 1 is trivial. So
suppose di and dj are both odd and not both 1. Then there are two middle
cells the minimal walk could pass through. Without loss of generality, let
it pass through (i1 + di+1

2 , j1 + dj−1
2 ). Then the neighboring cells of interest

are N1 = (i1 + di−1
2 , j1 + dj+1

2 ) and N2 = (i1 + di+3
2 , j1 + dj−3

2 ). The

distance from C1 to N1 is
√

(di+1
2 )2 + (dj−1

2 )2). And this is less than r√
2

if 2 ≤ (d2
i − 2di) + (d2

j + 2dj , which is always true for di, dj ≥ 1. The

distance from C1 to N2 is
√

(di+3
2 )2 + (dj−3

2 )2). And this is less than r√
2

if
18 ≤ (d2

i −6di)+(d2
j +6dj), which is always true for di, dj ≥ 3. It fails in the

cases when di ≤ 7 and dj = 1, however in these cases, it turns out that N2 is
closer to C2 than to C1 and it is easy to show that a walk can still be grown
that satisfies the desired conclusion (see Figure 16). Finally suppose now,
without loss of generality, that di is odd and dj is even. Assume that one
of the middle cells of the minimal walk is M2 = (i1 + di−1

2 , j1 + dj

2 ) (other
cases are similar). By symmetry, a second middle cell that the minimal
walk must pass through is M3 = (i1 + di+1

2 , j1 + dj

2 ). M2 is closer to C1

than to C2, and similarly, M3 is closer to C2 than to C1. Therefore, in
calculating Hausdorff distance, we need only look at the distances between
cells neighboring M2 and C1. By symmetry, these will be the same as the
distances between points neighboring M3 and C2. The neighboring cells
to M2 are N3 = (i1 + di−3

2 , j1 + dj+2
2 ) and N4 = (i1 + di+1

2 , j1 + dj−2
2 ).

The distance to N3 is
√

(di−3
2 )2 + (dj+2

2 )2). This is less than or equal to
r√
2

if 13 ≤ (d2
i + 6di) + (d2

j − 4dj), which holds except in the cases where
di = 1 and dj ≤ 4. However, as in the previous case, it is easy to show
that a walk can still be grown that satisfies the desired conclusion. The

distance to N4 is
√

(di+1
2 )2 + (dj−2

2 )2). This is less than or equal to r√
2

if
5 ≤ (d2

i − 2di) + (d2
j + 4dj), which holds for di ≥ 1 and dj ≥ 2.

�

Proposition 5. Given an initial cell space Cell(0) and a minimally r-
connected cell space CellF =

⋃n
i=1 CellFi, where each CellFi is 1-connected,

such that Cell(0) ⊂ CellFk
for some k, then, with rotations allowed between

morphogenic events, there exists a path from Cell(0) to Cell(T ) for some T
such that DH(Cell(T ),CellF ) ≤ r√

2
.
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Figure 16: (a) The four possible configurations when di = 1, dj = 5 or di = 5,

dj = 1. Cells are numbered by order of growth. r =
√

26. The Hausdorff

distance in all four cases is
√

5.

Proof. As in the above proof, we construct a new cell space, CellG, that
bridges the gaps between each CellFi . From Proposition 3, there exists
a path from Cell(0) to Cell(T ) such that DH(Cell(T ),CellG) = 0. CellF
differs from CellG solely by the minimal walks. Thus DH(CellG,CellF ) is
the distance from the cell on a minimal walk which is furthest from any
point in CellF . This must be one of the middle cells of a minimal walk. Since
CellF is minimally r-connected, the longest minimal walk(s) must connect
cells a distance r apart. Therefore, by Lemma 3, DH(CellG,CellF ) ≤ r√

2
.

�

In this section, we presented some answers to the one of the most basic
question, which is the existence of a path between two given cell spaces.
Clearly, much is still to be answered. For instance, when the existence
of a path is established, we would like to determine a systematic way to
compute an admissible control to solve problem α. New techniques in
control theory will need to be developed since our problem differs from the
classical ones. This is much more complex than what is presented here.
In a forthcoming work, we will also address the uniqueness question. A
first intuition would be to use as many fractones as possible to speed up
the sequence of morphogenic events, but examples can be constructed to
illustrate that the use of more than one fractone is not more time efficient.
A first step will be to actually determine a cost function to be minimized;
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indeed, time might not be the dominant factor in terms of the biological
process.

4. Application to Layout optimization

As part of engineering design, layout optimization plays a critical role in
the pursuit of optimal design. Layout optimization aims at finding the opti-
mum distribution or layout of material within a bounded domain, called the
design domain, that minimizes an objective or target function, while satis-
fying a set of constraints (see the recent monograph and reviews [2, 10, 23],
and the references therein). The existing topology optimization methods
rest on sound mathematical foundations (see, for example, [4, 2]). And
mathematically, the search space, where the optimization layout is defined,
is a topological vector space of infinite dimension—usually a Sobolev space
[4]. In practice, however, computational methods used to solve layout opti-
mization can only store and compute finite amount of data. This limitation
forces any numerical optimization methods to rely on approximations of the
search space and of the admissible topology configurations. The popular
SIMP method [2], for example, models the search space as discrete functions
on the discretized design domain. In other words, each point represents the
“pixel” of the desired blueprint of the optimal design. As a consequence,
a good resolution of the design may require a large number of pixels, and
these pixels model both void and solid regions.

Similarly to our computational methods, natural systems are also re-
stricted to a finite encoding: the DNA. However, natural systems have de-
vised a strikingly different solution to the finitude problem, where the DNA
encodes a developmental program that when “compiled and executed” per-
forms a sequence of tasks that develops the final structure in stages. The
results are patterned, complex, and multi-scaled structures that perform
multiple task functions and are generically resistant to damage.

The control model developed in this paper determines a cellular prolifer-
ation process that mimics the developmental stages of natural organisms.
These laws can be evolved to respond to desired requirements, and thus
be used to search for high-performing engineering layouts. One possibility
is to use environment cues for crafting the control laws determining the
placement of the fractones. For instance, in a problem to minimize the
mass of material to sustain a load, the stress level in the cells may be used
as a parameter controlling the creation of a fractone when the stress level
on a cell surpass a fixed threshold. An exploratory result is presented in
Figure 17, where it is shown the cellular division following the inclusion of
a fractone on a cell when its level stress exceeded a preassigned limit. The
result of the application of a simplified version of the procedure without the
diffusion of the growth factor is shown in Figure 18—note that in this form
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Figure 17: Stress-based law for fractone placement.

the method is similar to bi-directional evolutionary structural optimization
methods (see e.g. [20]).

Figure 18: Preliminary result for layout optimization of a cantilever.

This approach will be developed in a forthcoming work.
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